Skip to main content
Log in

Algebraic density property of homogeneous spaces

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let X be an affine algebraic variety with a transitive action of the algebraic automorphism group. Suppose that X is equipped with several fixed point free nondegenerate SL2-actions satisfying some mild additional assumption. Then we prove that the Lie algebra generated by completely integrable algebraic vector fields on X coincides with the space of all algebraic vector fields. In particular, we show that apart from a few exceptions this fact is true for any homogeneous space of form G/R where G is a linear algebraic group and R is a closed proper reductive subgroup of G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Andersén, Volume-preserving automorphisms of \( {\mathbb{C}^n} \), Complex Var. Theory Appl. 14 (1990), no. 1–4, 223–235.

    MATH  Google Scholar 

  2. E. Andersén, L. Lempert, On the group of holomorphic automorphisms of \( {\mathbb{C}^n} \), Invent. Math. 110 (1992), no. 2, 371–388.

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Andersén, Complete vector fields on \( {\mathbb{C}^n} \), Proc. Amer. Math. Soc. 128 (2000), no. 4, 1079–1085.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Bala, R. W. Carter, Classes of unipotent elements in simple algebraic groups. I, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 1, 401–425.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Bala, R. W. Carter, Classes of unipotent elements in simple algebraic groups. II, Math. Proc. Cambridge Philos. Soc. 80 (1976), no. 1, 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Bourbaki, Elements of Mathematics, Lie Groups and Lie Algebras, Chaps. 7–9, Springer, Berlin, 2005.

    MATH  Google Scholar 

  7. C. Chevalley, Théorie des Groupes de Lie, Tome II, Groupes Algébriques, Actualités Sci. Ind., Vol. 1152, Hermann, Paris, 1951. Russian transl.: К. Шевалле, Теория групп Ли, II, Алгебраические группы, ИЛ, М., 1958.

    MATH  Google Scholar 

  8. D. H. Collingwood, W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold, New York, 1993.

    MATH  Google Scholar 

  9. J. M. Drezet, Luna’s slice theorem and applications, in: Algebraic Group Actions and Quotients, Hindawi, Cairo, 2004, pp. 39–89.

    Google Scholar 

  10. Е. Б. Дынкин, Полупростые подалгебры полулростых алгебр Ли, Мат. Сб., нов. сер. 32(72) (1952), 349–462. Engl. transl.: E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. (2) 6 (1957), 111–244.

  11. H. Flenner, S. Kaliman, M. Zaidenberg, Completions of \( {\mathbb{C}^*} \)-surfaces, in: Affine Algebraic Geometry, Osaka University Press, Osaka, 2007, pp. 149–201.

    Google Scholar 

  12. W. Fulton, J. Harris, Representation Theory, A First Course, Graduate Texts in Mathematics, Vol. 129, Readings in Mathematics, Springer-Verlag, New York, 1991.

    MATH  Google Scholar 

  13. F. Forstnerič, J.-P. Rosay, Approximation of biholomorphic mappings by automorphisms of \( {\mathbb{C}^n} \), Invent. Math. 112 (1993), no. 2, 323–349.

    Article  MathSciNet  MATH  Google Scholar 

  14. F. D. Grosshans, Algebraic Homogeneous Spaces and Invariant Theory, Lecture Notes in Mathematics, Vol. 1673, Springer-Verlag, Berlin, 1997.

    MATH  Google Scholar 

  15. A. Huckleberry, A. Isaev, Infinite-dimensionality of the autromorphism groups of homogeneous Stein manifolds, Math. Ann. 344 (2009), no. 2, 279–291.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Kaliman, F. Kutzschebauch, Density property for hypersurfaces \( uv = p\left( {\bar x} \right) \), Math. Z. 258 (2008), 115–131.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Kaliman, F. Kutzschebauch, Criteria for the density property of complex manifolds, Invent. Math. 172 (2008), 71–87.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. M. Landsberg, L. Manivel, B. W. Westbury, Series of unipotent orbits, Experiment. Math. 13 (2004), 13–29.

    MathSciNet  MATH  Google Scholar 

  19. G. D. Mostow, Fully reducible subgroups of algebraic groups, Amer. J. Math. 78 (1956), 200–221.

    Article  MathSciNet  MATH  Google Scholar 

  20. Э. Б. Винберг, В. В. Горбацевич, А. Л. Онищик, Строение групп и алгебр Ли, Итоги науки и техн., Соврем. пробл. мат., Фунд. направл., т. 41, ВИНИТИ, М, 1990, 5–257. Engl. transl.: A. L. Onishchik, E. B. Vinberg, V. V. Gorbatsevich, Structure of Lie groups and Lie algebras, in: Lie Groups and Lie Algebras, III, Encyclopaedia of Mathematical Sciences, Vol. 41, Springer-Verlag, Berlin, 1994, pp. 1–248.

  21. В. Л. Попов, О полиномиальных автомрфизмах аффинных пространств, Изв. РАН, сер. мат. 65 (2001), no. 3, 153–174; Engl. transl.: V. L. Popov, On polynomial automorphisms of affine spaces, Izv. Math. 65 (2001), no. 3, 569–587.

    Google Scholar 

  22. Э. Б. Винберг, В. Л. Попов, Теория инвариантов, Итоги науки и техн., Соврем. пробл. мат., фунд. направл., т. 55, ВИНИТИ, М, 1989, 137–314. Engl. transl.: V. L. Popov, E. B. Vinberg, Invariant theory, in: Algebraic Geometry, IV, Encyclopaedia of Mathematical Sciences, Vol. 55, Springer-Verlag, Berlin, 1994, pp. 123–284.

  23. J.-P. Rosay, Automorphisms of \( {\mathbb{C}^n} \) , a survey of Andersén–Lempert theory and applications, in: Complex Geometric Analysis in Pohang (1997), Contemporary Mathematics, Vol. 222, Amer. Math. Soc., Providence, RI, 1999, pp. 131–145.

    Google Scholar 

  24. G. Schwarz, The topology of algebraic quotients, in: Topological Methods in Algebraic Transformation Groups, Birkhäuser, Boston, 1989, pp. 135–151.

    Google Scholar 

  25. A. Toth, D. Varolin, Holomorphic diffeomorphisms of complex semisimple Lie groups, Invent. Math. 139 (2000), no. 2, 351–369.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Toth, D. Varolin, Holomorphic diffeomorphisms of semisimple homogenous spaces, Compos. Math. 142 (2006), no. 5, 1308–1326.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Varolin, The density property for complex manifolds and geometric structures, J. Geom. Anal. 11 (2001), no. 1, 135–160.

    MathSciNet  MATH  Google Scholar 

  28. D. Varolin, The density property for complex manifolds and geometric structures, II, Internat. J. Math. 11 (2000), no. 6, 837–847.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Winkelmann, Invariant rings and quasiaffine quotients, Math. Z. 244 (2003), no. 1, 163–174.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Donzelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donzelli, F., Dvorsky, A. & Kaliman, S. Algebraic density property of homogeneous spaces. Transformation Groups 15, 551–576 (2010). https://doi.org/10.1007/s00031-010-9091-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-010-9091-8

AMS classification

Navigation