Skip to main content
Log in

Optimality of logarithmic interpolation inequalities and extension criteria to the Navier–Stokes and Euler equations in Vishik spaces

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We show the logarithmic interpolation inequality by means of the Vishik space \({\dot{V}}^{s}_{q,\sigma ,\theta }\) which is larger than the homogeneous Besov space \({\dot{B}}^{s}_{q,\sigma }\). We emphasize that \({\dot{V}}^{s}_{q,\sigma ,\theta }\) may be the largest normed space that satisfies the logarithmic interpolation inequality. As an application of this inequality, we prove that the strong solution to the Navier–Stokes and Euler equations can be extended if the scaling invariant quantity of vorticity in the Vishik space is finite. Namely, the Beirão da Veiga- and Beale–Kato–Majda-type regularity criteria are improved in the terms of the Vishik space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)

    Article  MathSciNet  Google Scholar 

  2. Beirão da Veiga. H.: A new regularity class for the Navier–Stokes equations in \({\mathbb{R}} ^{n}\). Chinese. Ann. Math. Ser. 16B, 407–412 (1995)

    MATH  Google Scholar 

  3. Bergh, J., Lofstrom, J.: Interpolation spaces An introduction. Berlin-New York-Heidelberg, Springer-Verlag (1976)

    Book  Google Scholar 

  4. Borchers, W., Miyakawa, T.: \(L^2\) decay for the Navier–Stokes flow in halfspaces. Math. Ann. 282, 139–155 (1988)

    Article  MathSciNet  Google Scholar 

  5. Brezis, H., Gallouet, T.: Nonlinear Schrodinger evolution equations. Nonlinear Anal. Theory Methods Appl. 4, 677–681 (1980)

    Article  MathSciNet  Google Scholar 

  6. Brezis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Commun. Patial Differ. Equ. 5, 773–789 (1980)

    Article  MathSciNet  Google Scholar 

  7. Chae, D.: On the well-posedness of the Triebel-Lizorkin spaces. Commun. Pure Appl. Math. 55, 654–678 (2002)

    Article  Google Scholar 

  8. Chemin, J-Y.: Perfect incompressible Fluids, Oxford Lecture Series in Mathematics and its Applications. Oxford Science Publications, Oxford (1988)

    Google Scholar 

  9. Enger, H.: An alternative proof of the Brezis–Wainger inequality. Commun. Partial Differ. Equ. 14(4), 541–544 (1989)

    MathSciNet  MATH  Google Scholar 

  10. Farwig, R., Sohr, H.: On the Stokes and Navier–Stokes system for domains with noncompact boundary in \(L^{q}\)-spaces. Math. Nachr. 170, 53–77 (1994)

    Article  MathSciNet  Google Scholar 

  11. Giga, Y.: Analyticity of the semigroup generated by the Stokes operator in \(L_{r}\) spaces. Math. Z. 178, 297–329 (1981)

    Article  MathSciNet  Google Scholar 

  12. Giga, Y., Miyakawa, T.: Solutions in \(L^r\) of the Navier-Stokes initial value problem. Arch. Ration. l Mech. Anal. 89, 267–281 (1985)

    Article  Google Scholar 

  13. Iwashita, H.: \(L^p-L^q\) estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier–Stokes initial value problems in \(L^p\) spaces. Math. Ann. 285, 265–288 (1989)

    Article  MathSciNet  Google Scholar 

  14. Kanamaru, R.: Brezis–Gallouet–Wainger type inequalities and a priori estimates of strong solutions to Navier–Stokes equations., J. Funct. Anal. (to appear)

  15. Kanamaru, R.: Improvement of the extension criterion on strong solutions to the Navier–Stokes equations in Vishik type spaces., (submitted).

  16. Kato, T.: Strong \(L^p\)-solutions of the Navier–Stokes equation in \({\mathbb{R}}^{m}\), with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MathSciNet  Google Scholar 

  17. Kato,T., Lai,C.Y., Nonlinear evolution equations and the Euler flow. J. Funct. Anal. 56, 15–28 (1984).

    Article  MathSciNet  Google Scholar 

  18. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  Google Scholar 

  19. Kozono, H., Ogawa, T., Taniuchi, Y.: The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 242, 251–278 (2002)

    Article  MathSciNet  Google Scholar 

  20. Kozono, H., Taniuchi, Y.: Bilinear estimates in BMO and the Navier–Stokes equations. Math. Z. 235, 173–194 (2000)

    Article  MathSciNet  Google Scholar 

  21. Kozono, H., Taniuchi, Y.: Limiting case of Soblev inequality in BMO, with application to the Euler equations. Commun. Math. Phys. 214, 191–200 (2000)

    Article  Google Scholar 

  22. Kozono, H., Wadade, H.: Remarks on Gagliardo–Nirenberg type inequality with critical Sobolev space and BMO. Math. Z. 259, 935–950 (2008)

    Article  MathSciNet  Google Scholar 

  23. Kubo, T., Shibata, Y.: On some properties of solutions to the Stokes equation in the half-space and perturbed half-space. In: D’Ancona, P., Georgev, V.(eds.) Dispersive Nonlinear Problems in Mathematical Physics. Quad. Mat., vol. 15, pp. 149–220. Dept. Math., Seconda Univ. Napoli, Caserta (2004)

  24. Nakao, K., Taniuchi, Y.: Brezis-Gallouet-Wainger type inequalities and blow-up criteria for Navier–Stokes equations in unbounded domains. Commun. Math. Phys. 357, 951–973 (2018)

    Article  MathSciNet  Google Scholar 

  25. Nakao, K., Taniuchi, Y.: Brezis-Gallouet-Wainger type inequality and its application to the Navier–Stokes equations. Contemp. Math. 710 (2018)

  26. Ogawa, T., Taniuchi, Y.: On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain. J. Differ. Equ. 190, 39–63 (2003)

    Article  MathSciNet  Google Scholar 

  27. Ogawa, T., Taniuchi, Y.: A note on blow-up criterion to the 3-D Euler equations in a bounded domain. J. Math. Fluid Mech. 5, 17–23 (2003)

    Article  MathSciNet  Google Scholar 

  28. Ozawa, T.: On critical cases of Sobolev’s inequalities. J. Funct. Anal. 127, 259–269 (1995)

    Article  MathSciNet  Google Scholar 

  29. Vishik, M.: Incompressible of an ideal fluid with borderline spaces of Besov type. Ann, Sci. Ecole Norm. Sup. 32, 769–812 (1999)

    Article  Google Scholar 

  30. Weissler, F. B.: The Navier–Stokes initial value problem in \(L^p\). Arch. Rational Mech. Anal. 74, 219–230 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the referee for his/her valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Kanamaru.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanamaru, R. Optimality of logarithmic interpolation inequalities and extension criteria to the Navier–Stokes and Euler equations in Vishik spaces. J. Evol. Equ. 20, 1381–1397 (2020). https://doi.org/10.1007/s00028-020-00559-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-020-00559-0

Keywords

Navigation