Skip to main content
Log in

Direction of Vorticity and a Refined Regularity Criterion for the Navier–Stokes Equations with Fractional Laplacian

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We give a refined regularity criterion for solutions of the three-dimensional Navier–Stokes equations with fractional dissipative term \((-\Delta )^{\alpha /2}v\). The criterion is composed by the direction field of the vorticity and its magnitude simultaneously. Our result is a generalized of previous results by Beirão da Veiga and Berselli (Differ Integral Equ 15(3):345–356, 2002), and Zhou (ANZIAM J 46(3):309–316, 2005, Monatsh Math 144(3):251–257, 2005). Moreover, our result mentioned about the relation between the solution of the Navier–Stokes equations and the Euler equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beirão da Veiga, H.: Vorticity and smoothness in viscous flows. In: Birman, M.S., Hildebrandt, S., Solonnikov, V.A., Uraltseva, N.N. (eds.) Nonlinear Problems in Mathematical Physics and Related Topics, II, Volume 2 of Int. Math. Ser. N. Y., pp. 61–67. Kluwer/Plenum, New York (2002)

  2. Beirão da Veiga, H., Berselli, L.C.: On the regularizing effect of the vorticity direction in incompressible viscous flows. Differ. Integral Equ. 15(3), 345–356 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Beirão da Veiga, H., Giga, Y., Grujić, Z.: Vorticity Direction and Regularity of Solutions to the Navier–Stokes Equations. In: Giga, Y., Novotny, A. (eds.) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pp. 901–932. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10151-4_18-1

    Google Scholar 

  4. Calderón, A.P., Zygmund, A.: On singular integrals. Am. J. Math. 78, 289–309 (1956)

    Article  Google Scholar 

  5. Chae, D.: On the regularity conditions for the Navier–Stokes and related equations. Rev. Mat. Iberoam. 23(1), 371–384 (2007)

    Article  MathSciNet  Google Scholar 

  6. Chorin, A.J.: The evolution of a turbulent vortex. Commun. Math. Phys. 83(4), 517–535 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  7. Constantin, P.: Geometric statistics in turbulence. SIAM Rev. 36(1), 73–98 (1994)

    Article  MathSciNet  Google Scholar 

  8. Constantin, P., Fefferman, C.: Direction of vorticity and the problem of global regularity for the Navier–Stokes equations. Indiana Univ. Math. J. 42(3), 775–789 (1993)

    Article  MathSciNet  Google Scholar 

  9. Fan, J., Ozawa, T.: On the regularity criteria for the generalized Navier–Stokes equations and Lagrangian averaged Euler equations. Differ. Integral Equ. 21(5–6), 443–457 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Frisch, U., Sulem, P.L., Nelkin, M.: A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech. 87(4), 719–736 (1978)

    Article  ADS  Google Scholar 

  11. Ju, N.: The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations. Commun. Math. Phys. 255(1), 161–181 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. Katz, N.H., Pavlović, N.: A cheap Caffarelli–Kohn–Nirenberg inequality for the Navier–Stokes equation with hyper-dissipation. Geom. Funct. Anal. 12(2), 355–379 (2002)

    Article  MathSciNet  Google Scholar 

  13. Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod; Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  14. Serrin, J.: The initial value problem for the Navier–Stokes equations. In: Nonlinear Problems (Proceedings of a Symposium, Madison, Wisconsin, 1962), pp. 69–98. University of Wisconsin Press, Madison, Wisconsin (1963)

  15. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  16. Tanahashi, M., Miyauchi, T., Ikeda, J.: Scaling law of coherent fine scale structure in homogeneous isotropic turbulence. In: Proceedings of 11th Symposium on Turbulence Shear Flows (1997)

  17. Triebel, H.: The Structure of Functions, Monographs in Mathematics, vol. 97. Birkhäuser Verlag, Basel (2001)

    Book  Google Scholar 

  18. Wu, J.: Generalized MHD equations. J. Differ. Equ. 195(2), 284–312 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  19. Zhou, Y.: Direction of vorticity and a new regularity criterion for the Navier–Stokes equations. ANZIAM J. 46(3), 309–316 (2005)

    Article  MathSciNet  Google Scholar 

  20. Zhou, Y.: A new regularity criterion for the Navier–Stokes equations in terms of the direction of vorticity. Monatsh. Math. 144(3), 251–257 (2005)

    Article  MathSciNet  Google Scholar 

  21. Zhou, Y.: Regularity criteria for the generalized viscous MHD equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 24(3), 491–505 (2007)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to Professor Yong Zhou for telling me information. He also thanks Professor Tsuyoshi Yoneda for kind help for his research on the Navier–Stokes equations, and Professor Takahito Kashiwabara for useful comments. He was supported by the Leading Graduate Course for Frontiers of Mathematical Sciences and Physics (FMSP) at the University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kengo Nakai.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Communicated by Y. Giga

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakai, K. Direction of Vorticity and a Refined Regularity Criterion for the Navier–Stokes Equations with Fractional Laplacian. J. Math. Fluid Mech. 21, 21 (2019). https://doi.org/10.1007/s00021-019-0422-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-019-0422-9

Mathematics Subject Classification

Keywords

Navigation