Skip to main content
Log in

Physical Processes Affecting Radiation Fog Based on WRF Simulations and Validation

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The goal of this work is to assess the sensitivity of the Weather Research and Forecasting (WRF) model to various microphysical and land surface model parameterizations, as well as their effectiveness in capturing a radiation fog event that occurred on 15–16 February 2000 over Delhi in the Indo-Gangetic Plain (IGP). Fog forecasting using state-of-the-art mesoscale models is challenging due to limitations in understanding of atmosphere-land surface feedbacks and fog microphysics. Fog can have adverse effects because of low visibility on transport and aviation but affects positively agriculture and forestry by absorbing fog water. In India, the IGP is particularly susceptible to fog during the winter months of December, January, and February (DJF). To reach the goal in this work, preliminary investigation is carried out with five model experiments centered at Delhi for testing model sensitivity to nesting and gravitational settling of fog. The non-nested domain fares better at fog forecasting as compared to the nested domain. Accounting for the gravitational settling of fog droplets in the model further enhances model performance. Thereafter, to assess the model sensitivity to parameterization schemes, 40 model suite combinations with five microphysical (MP) schemes, two planetary boundary layer (PBL) schemes, and four land surface model (LSM) schemes are compared. The validations for fog formation, development, and dissipation are performed using observations collected over Safdarjung airport in Delhi. We conclude that the Thompson MP scheme, along with the Mellor-Yamada Nakanishi-Niino (MYNN 2.5) PBL and Rapid Update Cycle (RUC) LSM scheme, is able to capture the radiation fog event better than other schemes, and it is critical for evaluating the life cycle of radiation fog.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bang, C. H., Lee, J. W., & Hong, S. Y. (2008). Predictability experiments of fog and visibility in local airports over Korea using the WRF model. Journal of the Korean Society for Atmospheric Environment (english), 24(E2), 92–101.

    Google Scholar 

  • Benjamin, S. G., Grell, G. A., Brown, J. M., & Smirnova, T. G. (2004). Mesoscale weather prediction with the RUC hybrid isentropic-terrain-following coordinate model. Monthly Weather Reviews, 132, 473–494. https://doi.org/10.1175/1520-0493(2004)132%3c0473:MWPWTF%3e2.0.CO;2

    Article  Google Scholar 

  • Bergot, T., Terradellas, E., Cuxart, J., Mira, A., Liechti, O., Mueller, M., & Nielsen, N. W. (2007). Intercomparison of single-column numerical models for the prediction of radiation fog. Journal of Applied Meteorology and Climatology, 46(4), 504–521.

    Article  Google Scholar 

  • Bott, A., & Trautmann, T. (2002). PAFOG—a new efficient forecast model of radiation fog and low-level stratiform clouds. Atmospheric Research, 64(1–4), 191–203.

    Article  Google Scholar 

  • Brown, R., & Roach, W. T. (1976). The physics of radiation fog: II—a numerical study. Quarterly Journal of the Royal Meteorological Society, 102(432), 335–354.

    Google Scholar 

  • Chen, C., Zhang, M., Perrie, W., Chang, R., Chen, X., Duplessis, P., & Wheeler, M. (2020). Boundary-layer parameterizations to simulate fog over atlantic canada waters. Earth and Space Science. https://doi.org/10.1029/2019EA000703.

    Article  Google Scholar 

  • Chen, S.-H., & Sun, W.-Y. (2002). A one-dimensional time dependent cloud model. Journal of the Meteorological Society of Japan, 80(1), 99–118. https://doi.org/10.2151/jmsj.80.99

    Article  Google Scholar 

  • Doran, J.A., Roohr, P. J., Beberwyk, D. J., Brooks, G. R., Gayno, G. A., Williams, R. T., Lewis, J. M., & Lefevre, R.J. (1999). The MM5 at the air force weather agency-new products to support military operations. In: The 8th conference on aviation, range, and aerospace meteorology, Dallas, Texas, 10–15 January.

  • Duanyang, L., Meijuan, P., Jun, Y., Guozheng, Z. H. A. N. G., Wenlian, Y. A. N., & Zihua, L. I. (2010). Microphysical structure and evolution of a four-day persistent fog event in Nanjing in December 2006. Journal of Meteorological Research, 24(1), 104–115.

    Google Scholar 

  • Dudhia, J. (1989). Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two–dimensional model. Journal of Atmospheric Science, 46, 3077–3107. https://doi.org/10.1175/1520-0469(1989)046%3c3077:NSOCOD%3e2.0.CO;2

    Article  Google Scholar 

  • Dudhia, J. (1996). A multi-layer soil temperature model for MM5. In: The Sixth PSU/NCAR mesoscale model users' workshop

  • Duynkerke, P. G. (1991). Radiation fog: A comparison of model simulation with detailed observations. Monthly Weather Review, 119, 324–341.

    Article  Google Scholar 

  • Finstad, K., Lozowski, E., & Makkonen, L. (1988). On the median volume diameter approximation for droplet collision efficiency. Journal of Atmospheric Science, 45, 4008–4012.

    Article  Google Scholar 

  • Fuzzi, S., Facchini, M. C., Orsi, G., Lind, J. A., Wobrock, W., Kessel, M., et al. (1992). The Po valley fog experiment 1989. Tellus B, 44(5), 448–468.

    Article  Google Scholar 

  • Ghude, S. D., Bhat, G. S., Prabhakaran, T., Jenamani, R. K., Chate, D. M., Safai, P. D., et al. (2017). Winter fog experiment over the Indo-Gangetic plains of India. Current Science, 112(4), 767.

    Article  Google Scholar 

  • GIS Development Geospatial Resource Portal. (2009). Earthquakes in Delhi. http://www.gisdevelopment.net/application/naturalhazards/earthquakes/nheq0007.htm.

  • Gultepe, I., & Isaac, G. A. (2004). Aircraft observations of cloud droplet number concentration: Implications for climate studies. Quarterly Journal of the Royal Meteorological Society, 130(602), 2377–2390.

    Article  Google Scholar 

  • Gultepe, I., & Isaac, G. A. (2006a). Visibility versus precipitation rate and relative humidity. In: Preprints, 12th cloud physics conference, Madison, WI, American Meteorological Society P (vol. 2, pp. 1161–1178).

  • Gultepe, I., & Milbrandt, J. A. (2007). Microphysical observations and mesoscale model simulation of a warm fog case during FRAM project. Fog and boundary layer clouds: Fog visibility and forecasting (pp. 1161–1178). Birkhäuser.

    Chapter  Google Scholar 

  • Gultepe, I., & Milbrandt, J. A. (2010). Probabilistic parameterizations of visibility using observations of rain precipitation rate, relative humidity, and visibility. Journal of Applied Meteorology and Climatology, 49(1), 36–46.

    Article  Google Scholar 

  • Gultepe, I., Muller, M. D., & Boybeyi, Z. (2006). A new warm fog parameterization scheme for numerical weather prediction models. Journal of Applied Meteorology and Climatology, 45, 1469–1480.

    Article  Google Scholar 

  • Gultepe, I., Tardif, R., Michaelides, S. C., Cermak, J., Bott, A., Bendix, J., et al. (2007). Fog research: A review of past achievements and future perspectives. Pure and Applied Geophysics, 164(6–7), 1121–1159.

    Article  Google Scholar 

  • Gultepe, I., Pearson, G., Milbrandt, J. A., Hansen, B., Platnick, S., Taylor, P., et al. (2009). The fog remote sensing and modeling field project. Bulletin of the American Meteorological Society, 90(3), 341–360.

    Article  Google Scholar 

  • Gultepe, I., Sharman, R., Williams, P. D., Zhou, B., Ellrod, G., Minnis, P., et al. (2019). A review of high impact weather for aviation meteorology. Pure and Applied Geophysics, 176(5), 1869–1921.

    Article  Google Scholar 

  • Hingmire, D., Vellore, R. K., Krishnan, R., Ashtikar, N. V., Singh, B. B., Sabade, S., & Madhura, R. K. (2019). Widespread fog over the Indo-Gangetic Plains and possible links to boreal winter teleconnections. Climate Dynamics, 52(9–10), 5477–5506.

    Article  Google Scholar 

  • Hong, S.-Y., & Lim, J.-O.J. (2006). The WRF single–moment 6–class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42, 129–151.

    Google Scholar 

  • Jimenez, P. A., Jimy Dudhia, J., Gonzalez-Rouco, F., Navarro, J., Montavez, J. P., & Garcia-Bustamante, E. (2012). A revised scheme for the WRF surface layer formulation. Monthly Weather Reviews, 140, 898–918. https://doi.org/10.1175/MWR-D-11-00056.1PDF

    Article  Google Scholar 

  • Jin, J., Miller, N. L., & Schlegel, N. (2010). Sensitivity study of four land surface schemes in the WRF model. Advances in Meteorology, 2010, 11. https://doi.org/10.1155/2010/167436

    Article  Google Scholar 

  • Kain, J. S. (2004). The Kain-Fritsch convective parameterization: An update. Journal of Applied Meteorology and Climatology, 43, 170–181. https://doi.org/10.1175/1520-0450(2004)043%3c0170:TKCPAU%3e2.0.CO;2

    Article  Google Scholar 

  • Katata, G., Nagai, H., Wrzesinsky, T., Klemm, O., Eugster, W., & Burkard, R. (2008). Development of a land surface model including cloud water deposition on vegetation. Journal of Applied Meteorology and Climatology, 47(8), 2129–2146.

    Article  Google Scholar 

  • Kutty, S. G., Dimri, A. P., & Gultepe, I. (2019). Climatic trends in fog occurrence over the Indo-Gangetic plains. International Journal of Climatology, 2019, 1–14. https://doi.org/10.1002/joc.6317

    Article  Google Scholar 

  • Lala, G. G., Mandel, E., & Jiusto, J. E. (1975). A numerical evaluation of radiation fog variables. Journal of Atmospheric Sciences, 32(4), 720–728.

    Article  Google Scholar 

  • Leduc, M., & Laprise, R. (2009). Regional climate model sensitivity to domain size. Climate Dynamics, 32, 833–854.

    Article  Google Scholar 

  • Leduc, M., Laprise, R., Moretti-Poisson, M., & Morin, J.-P. (2011). Sensitivity to domain size of mid-latitude summer simulations with a regional climate model. Climate Dynamics, 37(1–2), 343–356. https://doi.org/10.1007/s00382-011-1008-2

    Article  Google Scholar 

  • Lim, K.-S.S., & Hong, S.-Y. (2010). Development of an effective double–moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Monthly Weather Reviews, 138, 1587–1612. https://doi.org/10.1175/2009MWR2968.1

    Article  Google Scholar 

  • Mansell, E. R., Ziegler, C. L., & Bruning, E. C. (2010). Simulated electrification of a small thunderstorm with two–moment bulk microphysics. Journal of Atmospheric Science, 67, 171–194. https://doi.org/10.1175/2009JAS2965.1

    Article  Google Scholar 

  • Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research, 102, 16663–16682. https://doi.org/10.1029/97JD00237

    Article  Google Scholar 

  • Mohan, M., & Bhati, S. (2011). Analysis of WRF model performance over subtropical region of Delhi, India. Advances in Meteorology, 2011, 621235. https://doi.org/10.1155/2011/621235

    Article  Google Scholar 

  • Nakanishi, M., & Niino, H. (2009). Development of an improved turbulence closure model for the atmospheric boundary layer. Journal of Meteorological Society of Japan, 87, 895–912. https://doi.org/10.2151/jmsj.87.895PDF

    Article  Google Scholar 

  • Niu, G. Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., & Xia, Y. (2011). The community Noah land surface model with multiparameterization options (Noah–MP): 1. Model description and evaluation with local–scale measurements. Journal of Geophysical Research. https://doi.org/10.1029/2010JD015139

    Article  Google Scholar 

  • Nygaard, B. E. K., Kristjánsson, J. E., & Makkonen, L. (2011). Prediction of in-cloud icing conditions at ground level using the WRF model. Journal of Applied Meteorology and Climatology, 50(12), 2445–2459.

    Article  Google Scholar 

  • Pérez-Díaz, J. L., Ivanov, O., Peshev, Z., Álvarez-Valenzuela, M. A., Valiente-Blanco, I., Evgenieva, T., et al. (2017). Fogs: Physical basis, characteristic properties, and impacts on the environment and human health. Water, 9(10), 807.

    Article  Google Scholar 

  • Pilié, R. J., Mack, E. J., Kocmond, W. C., Eadie, W. J., & Rogers, C. W. (1975). The life cycle of valley fog. Part II: Fog microphysics. Journal of Applied Meteorology, 14(3), 364–374.

    Article  Google Scholar 

  • Pithani, P., Ghude, S. D., Prabhakaran, T., Karipot, A., Hazra, A., Kulkarni, R., et al. (2019a). WRF model sensitivity to choice of PBL and microphysics parameterization for an advection fog event at Barkachha, rural site in the Indo-Gangetic basin, India. Theoretical and Applied Climatology, 136(3–4), 1099–1113.

    Article  Google Scholar 

  • Pithani, P., Ghude, S. D., Chennu, V. N., Kulkarni, R. G., Steeneveld, G. J., Sharma, A., et al. (2019b). WRF model prediction of a dense fog event occurred during the winter fog experiment (WIFEX). Pure and Applied Geophysics, 176(4), 1827–1846.

    Article  Google Scholar 

  • Pleim, J. E. (2007). A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing. J. Appl. Meteor. Climatol., 46, 1383–1395. https://doi.org/10.1175/JAM2539.1PDF

    Article  Google Scholar 

  • Rani, S. I., George, J. P., Rajagopal, E. N., Renshaw, R., Maycock, A., Barker, D. M., & Rajeevan, M. (2021). IMDAA: High resolution satellite-era reanalysis for the Indian Monsoon Region. Journal of Climate, 34, 1–78.

    Article  Google Scholar 

  • Reddy, B. R., Srinivas, C. V., Shekhar, S. R., Baskaran, R., & Venkatraman, B. (2020). Impact of land surface physics in WRF on the simulation of sea breeze circulation over southeast coast of India. Meteorology and Atmospheric Physics, 132, 1–19.

    Article  Google Scholar 

  • Roach, W. T., Brown, R., Caughey, S. J., Garland, J. A., & Readings, C. J. (1976). The physics of radiation fog: I–a field study. Quarterly Journal of the Royal Meteorological Society, 102(432), 313–333.

    Google Scholar 

  • Román-Cascón, C., Yagüe, C., Sastre, M., Maqueda, G., Salamanca, F., & Jiménez, S. V. (2012). Observations and WRF simulations of fog events at the Spanish Northern Plateau. Advances in Science and Research, 8, 11–18.

    Article  Google Scholar 

  • Román-Cascón, C., Steeneveld, G. J., Yagüe, C., Sastre, M., Arrillaga, J. A., & Maqueda, G. (2016). Forecasting radiation fog at climatologically contrasting sites: Evaluation of statistical methods and WRF. Quarterly Journal of the Royal Meteorological Society, 142(695), 1048–1063.

    Article  Google Scholar 

  • Sandeep, A., & Prasad, V. S. (2018). Intra-annual variability of heat wave episodes over the east coast of India. International Journal of Climatology, 38, e617–e628.

    Article  Google Scholar 

  • Sandeep, A., & Prasad, V. S. (2020). On the variability of cold wave episodes over Northwest India using an NGFS retrospective analysis. Pure and Applied Geophysics, 177(2), 1157–1166.

    Article  Google Scholar 

  • Sawaisarje, G. K., Khare, P., Shirke, C. Y., Deepakumar, S., & Narkhede, N. M. (2014). Study of winter fog over Indian subcontinent: Climatological perspectives. Mausam, 65(1), 19–28.

    Google Scholar 

  • Singh, S., & Singh, D. (2010). Recent fog trends and its impact on wheat productivity in NW plains in India. In: 5th International conference on fog, fog collection and dew, Münster, Germany, 25–30 July 2010.

  • Steeneveld, G. J., Ronda, R. J., & Holtslag, A. A. M. (2015). The challenge of forecasting the onset and development of radiation fog using mesoscale atmospheric models. Boundary Layer Meteorology, 154(2), 265–289.

    Article  Google Scholar 

  • Stoelinga, T. G., & Warner, T. T. (1999). Non-hydrostatic, mesobeta-scale model simulations of cloud ceiling and visibility for an east coast winter precipitation event. Journal of Applied Meteorology, 38, 385–404.

    Article  Google Scholar 

  • Tan, J., Zhang, Y., Ma, W., Yu, Q., Wang, Q., Fu, Q., et al. (2017). Evaluation and potential improvements of WRF/CMAQ in simulating multi-levels air pollution in megacity Shanghai, China. Stochastic Environmental Research and Risk Assessment, 31(10), 2513–2526.

    Article  Google Scholar 

  • Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Ek, M., Gayno, G., Wegiel, J., & Cuenca, R. H. (2004) Implementation and verification of the unified NOAH land surface model in the WRF model. In: 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp. 11–15

  • Thompson, G., & Eidhammer, T. (2014). A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. Journal of Atmospheric Science, 71(10), 3636–3658. https://doi.org/10.1175/JAS-D-13-0305.1PDF

    Article  Google Scholar 

  • Warner, T. T., Peterson, R. A., & Treadon, R. E. (1997). A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bulletin of the American Meteorological Society, 78, 2599–2617.

    Article  Google Scholar 

  • Yang, Z.-L., Niu, G.-Y., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Longuevergne, L., Manning, K., Niyogi, D., Tewari, M., & Xia, Y. (2011). The community Noah land surface model with multiparameterization options (Noah–MP): 2. Evaluation over global river basins. Journal of Geophysical Research. https://doi.org/10.1029/2010JD015140

    Article  Google Scholar 

  • Yang, B., Zhang, Y., Qian, Y., Huang, A., & Yan, H. (2015). Calibration of a convective parameterization scheme in the WRF model and its impact on the simulation of East Asian summer monsoon precipitation. Climate Dynamics, 44(5–6), 1661–1684.

    Article  Google Scholar 

  • Zhang, G. Z., Bian, L. G., Wang, J. Z., Yang, Y. Q., Yao, W. Q., & Xu, X. D. (2005). The boundary layer characteristics in the heavy fog formation process over Beijing and its adjacent areas. Science in China Series D, 48, 80–101.

    Article  Google Scholar 

  • Zhang, F., Ren, B., Dou, C., & Wang, C. (2020). Numerical simulation of near-surface atmospheric conditions during a radiation fog over the complex terrain. In: IOP conference series: Earth and environmental science (vol. 555, No. 1, p. 012093). IOP Publishing.

Download references

Acknowledgements

The first author acknowledges the University Grants Commission funding for Senior Research Fellowship and Jawaharlal Nehru University for providing the requisite facilities. The authors acknowledge National Center for Atmospheric Research for free access to WRF model. National Centers for Environment Information, National Oceanic and Atmospheric Administration for providing access to the data set. The authors gratefully acknowledge NCMRWF, Ministry of Earth Sciences, Government of India, for IMDAA reanalysis. IMDAA reanalysis was produced under the collaboration between UK Met Office, NCMRWF, and IMD with financial support from the Ministry of Earth Sciences, under the National Monsoon Mission programme. The authors gratefully acknowledge NCMRWF, Ministry of Earth Sciences, Government of India, for NGFS reanalysis which was produced under the collaboration between NCMRWF, IITM, and IMD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Dimri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2354 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutty, S.G., Dimri, A.P. & Gultepe, I. Physical Processes Affecting Radiation Fog Based on WRF Simulations and Validation. Pure Appl. Geophys. 178, 4265–4288 (2021). https://doi.org/10.1007/s00024-021-02811-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02811-1

Keywords

Navigation