Skip to main content

Advertisement

Log in

Evaluation and potential improvements of WRF/CMAQ in simulating multi-levels air pollution in megacity Shanghai, China

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The accuracy of atmospheric numerical model is important for the prediction of urban air pollution. This study investigated and quantified the uncertainties of meteorological and air quality model during multi-levels air pollution periods. We simulated the air quality of megacity Shanghai, China with WRF/CMAQ (Weather Research and Forecasting model and Community Multiscale Air Quality model) at both non-pollution and heavy-pollution episodes in 2012. The weather prediction model failed to reproduce the surface temperature and wind speed in condition of high aerosol loading. The accuracy of the air quality model showed a clear dropping tendency from good air quality conditions to heavily polluted episodes. The absolute model bias increased significantly from light air pollution to heavy air pollution for SO2 (from 2 to 14%) and for PM10 (from 1 to 33%) in both urban and suburban sites, for CO in urban sites (from 8 to 48%) and for NO2 in suburban sites (from 1 to 58%). A test of applying the Urban Canopy Model scheme to the WRF model showed fairly good improvement on predicting the meteorology field, but less significant effect on the air pollutants (6% for SO2 and 19% for NO2 decease in model bias found only in urban sites). This study gave clear evidence to the sensitivities of the model performance on the air pollution levels. It is suggested to consider this impact as a source for model bias in the model assessment and make improvement in the model development in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AirNow (2014) http://airnow.gov/index.cfm?action=aqibasics.aqi

  • An XQ, Sun ZB, Lin WL, Jin M, Li N (2013) Emission inventory evaluation using observations of regional atmospheric background stations of China. J Environ Sci 25:537–546

    Article  CAS  Google Scholar 

  • Byun D, Schere KL (2006) Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl Mech Rev 59:51–77

    Article  Google Scholar 

  • Carmichael GR, Song CH, Sunwoo Y, Ohara T, Lau A, Koo YS (2012) Air quality modeling in Asia 2011. Atmos Environ 58:2–4

    Article  Google Scholar 

  • Carmona I, Kaufman YJ, Alpert P (2008) Using numerical weather prediction errors to estimate aerosol heating. Tellus B 60:729–741

    Article  Google Scholar 

  • CPSC (China Pollution Source Census) (2009) http://cpsc.mep.gov.cn

  • Dawson JP, Adams PJ, Pandis SN (2007) Sensitivity of PM2.5 to climate in the Eastern US: a modeling case study. Atmos Chem Phys 7:4295–4309

    Article  CAS  Google Scholar 

  • Ding AJ, Fu CB, Yang XQ, Sun JN, Petaja T, Kerminen VM, Wang T, Xie Y, Herrmann E, Zheng LF, Nie W, Liu Q, Wei XL, Kulmala M (2013) Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in eastern China. Atmos Chem Phys 13:10545–10554

    Article  Google Scholar 

  • Eder B, Yu S (2006) A performance evaluation of the 2004 release of models-3 CMAQ. Atmos Environ 40:4811–4824

    Article  CAS  Google Scholar 

  • Elminir HK (2005) Dependence of urban air pollutants on meteorology. Sci Total Environ 350:225–237

    Article  CAS  Google Scholar 

  • EPA (U.S. Environmental Protection Agency) (2014) Air quality index—a guide to air quality and your health. 02/2014, EPA-456/F-14-002. http://www.epa.gov/airnow/aqi_brochure_02_14.pdf.

  • Fassò A (2013) Statistical assessment of air quality interventions. Stoch Env Res Risk Assess 27(7):1651–1660

    Article  Google Scholar 

  • Fu JS, Jang CJ, Streets DG, Li ZP, Kwok R, Park R, Han ZW (2008) MICS-Asia II: modeling gaseous pollutants and evaluating an advanced modeling system over East Asia. Atmos Environ 42:3571–3583

    Article  CAS  Google Scholar 

  • Gong DY, Ho CH, Chen DL, Qian Y, Choi YS, Kim JW (2007) Weekly cycle of aerosol-meteorology interaction over China. J Geophys Res 112:D22202

    Article  Google Scholar 

  • Grell G, Freitas SR, Stuefer M, Fast J (2011) Inclusion of biomass burning in WRF-Chem: impact of wildfires on weather forecasts. Atmos Chem Phys 11:5289–5303

    Article  CAS  Google Scholar 

  • Holt T, Pullen J (2007) Urban canopy modeling of the New York City metropolitan area: a comparison and validation of single- and multilayer parameterizations. Mon Weather Rev 135:1906–1930

    Article  Google Scholar 

  • Huang K, Fu JS, Gao Y, Dong XY, Zhuang GS, Lin YF (2014) Role of sectoral and multi-pollutant emission control strategies in improving atmospheric visibility in the Yangtze River Delta, China. Environ Pollut 184:426–434

    Article  CAS  Google Scholar 

  • ISSRC (International sustainable system research center) (2014) International vehicle emission model (IVE model). http://www.issrc.org/ive/

  • Jacobson MZ, Kaufman YJ (2006) Wind reduction by aerosol particles. Geophys Res Lett 33:L24814

    Article  Google Scholar 

  • Kassomenos PA, Paschalidou AK, Vlachogianni A (2013) One-day-ahead prediction of maximum carbon monoxide concentration in urban environments. Stoch Env Res Risk Assess 27:561–572

    Article  Google Scholar 

  • Kuo YM, Chiu CH, Yu HL (2015) Influences of ambient air pollutants and meteorological conditions on ozone variations in Kaohsiung, Taiwan. Stoch Environ Res Risk Assess 29:1037–1050

    Article  Google Scholar 

  • Kwok RHF, Fung JCH, Lau AKH, Fu JS (2010) Numerical study on seasonal variations of gaseous pollutants and particulate matters in Hong Kong and Pearl River Delta Region. J Geophys Res. doi:10.1029/2009JD012809

    Google Scholar 

  • Li L, Huang C, Huang HY, Wang YJ, Yan RS, Zhang GF, Zhou M, Lou SR, Tao SK, Wang HL, Qiao LP, Chen CH, Streets DG, Fu JS (2014) An integrated process rate analysis of a regional fine particulate matter episode over Yangtze River Delta in 2010. Atmos Environ 91:60–70

    Article  CAS  Google Scholar 

  • Liu XH, Zhang Y, Cheng SH, Xing J, Zhang QA, Streets DG, Jang C, Wang WX, Hao JM (2010a) Understanding of regional air pollution over China using CMAQ, part I performance evaluation and seasonal variation. Atmos Environ 44:2415–2426

    Article  CAS  Google Scholar 

  • Liu XH, Zhang Y, Xing J, Zhang QA, Wang K, Streets DG, Jang C, Wang WX, Hao JM (2010b) Understanding of regional air pollution over China using CMAQ, part II. Process analysis and sensitivity of ozone and particulate matter to precursor emissions. Atmos Environ 44:3719–3727

    Article  CAS  Google Scholar 

  • MEIC (Multi-resolution Emission Inventory for China) (2015) http://www.meicmodel.org

  • Miao SG, Chen F, Lemone MA, Tewari M, Li QC, Wang YC (2009) An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J Appl Meteorol Clim 48:484–501

    Article  Google Scholar 

  • NCEP (National Center for Environmental Protection) (2015) http://rda.ucar.edu/datasets/ds083.2/

  • Otte TL, Pleim JE (2010) The meteorology-chemistry interface processor (MCIP) for the CMAQ modeling system: updates through MCIPv3.4.1. Geoscientific Model Dev 3:243–256

    Article  Google Scholar 

  • Pernigotti D, Georgieva E, Thunis P, Bessagnet B (2012) Impact of meteorology on air quality modeling over the Po valley in northern Italy. Atmos Environ 51:303–310

    Article  CAS  Google Scholar 

  • SEMC (Shanghai Environmental Monitor Center) http://www.semc.gov.cn/aqi/home/Station.aspx, 2015-8-4

  • Skamarock WC, Klemp JB (2008) A time-split non-hydrostatic atmospheric model. J Comput Phys 227:3465–3485

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2005) A description of the advanced research WRF version 2. NCAR Tech Notes-468+STR

  • Tan JN, Yu Q, Ma WC, Ma JL, Cheng J, Zhang Y (2014) Development of refined emission inventory of air pollutants: a case study of Shanghai Baoshan District. Acta Sci Circum 34:1099–1108 (in Chinese)

    CAS  Google Scholar 

  • Tan JN, Zhang Y, Ma WC, Yu Q, Wang J, Chen LM (2015) Impact of spatial resolution on air quality simulation: a case study in a highly industrialized area in Shanghai, China. Atmos Pollut Res 6:322–333

    Article  CAS  Google Scholar 

  • Tewari M, Chen F, Kusaka H, Miao S (2008) Coupled WRF/unified Noah/urban-Canopy modeling system. NCAR WRF documentation, NACR, Bulder, pp 1–20. https://www.rap.ucar.edu/research/land/technology/urban/WRF-LSM-Urban.pdf

  • Wang LT, Jang C, Zhang Y, Wang K, Zhang QA, Streets D, Fu J, Lei Y, Schreifels J, He KB, Hao JM, Lam YF, Lin J, Meskhidze N, Voorhees S, Evarts D, Phillips S (2010) Assessment of air quality benefits from national air pollution control policies in China. Part II: evaluation of air quality predictions and air quality benefits assessment. Atmos Environ 44:3449–3457

    Article  CAS  Google Scholar 

  • Wang SX, Xing J, Chatani S, Hao JM, Klimont Z, Cofala J, Amann M (2011a) Verification of anthropogenic emissions of China by satellite and ground observations. Atmos Environ 45:6347–6358

    Article  CAS  Google Scholar 

  • Wang ZH, Bou-Zeid E, Smith JA (2011b) A spatially-analytical scheme for surface temperatures and conductive heat fluxes in urban canopy models. Bound Layer Meteorol 138:171–193

    Article  Google Scholar 

  • Wang LT, Xu J, Yang J, Zhao XJ, Wei W, Cheng DD, Pan XM, Su J (2012) Understanding haze pollution over the southern Hebei area of China using the CMAQ model. Atmos Environ 56:69–79

    Article  CAS  Google Scholar 

  • Wang J, Wang S, Jiang J, Ding A, Zheng M, Zhao B, Wong CD, Zhou W, Zheng G, Wang L, Pleim EJ, Hao J (2014) Impact of aerosol–meteorology interactions on fine particle pollution during China’s severe haze episode in January 2013. Environ Res Lett 9:094002

    Article  Google Scholar 

  • Wong DC, Pleim J, Mathur R, Binkowski F, Otte T, Gilliam R, Pouliot G, Xiu A, Young JO, Kang D (2012) WRF-CMAQ two-way coupled system with aerosol feedback: software development and preliminary results. Geosci Model Dev 5:299–312

    Article  Google Scholar 

  • WRF (The Weather Research & Forecasting Model) (2016) http://www.wrf-model.org/index.php

  • Xu J, Zhang YH, Fu JS, Zheng SQ, Wang W (2008) Process analysis of typical summertime ozone episodes over the Beijing area. Sci Total Environ 399:147–157

    Article  CAS  Google Scholar 

  • Yu S, Mathur R, Pleim J, Wong D, Gilliam R, Alapaty K, Zhao C, Liu X (2014) Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF-CMAQ: model description, development, evaluation and regional analysis. Atmos Chem Phys 14:11247–11285

    Article  CAS  Google Scholar 

  • Zhan WJ, Zhang Y, Ma WC, Yu Q, Chen LM (2013) Estimating influences of urbanizations on meteorology and air quality of a Central Business District in Shanghai, China. Stoch Env Res Risk Assess 27:353–365

    Article  Google Scholar 

  • Zhang MG, Uno I, Zhang RJ, Han ZW, Wang ZF, Pu YF (2006) Evaluation of the models-3 community multi-scale air quality (CMAQ) modeling system with observations obtained during the TRACE-P experiment: comparison of ozone and its related species. Atmos Environ 40:4874–4882

    Article  CAS  Google Scholar 

  • Zhang H, Sato N, Izumi T, Hanaki K, Aramaki T (2008) Modified RAMS-urban canopy model for heat island simulation in Chongqing, China. J Appl Meteorol Clim 47:509–524

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21677038), the Science & Technology Commission of Shanghai Municipality (No. 14ZR1402800, 15DZ1205404), the National Key Technology R&D Program of Ministry of Science and Technology of China (2014BAC16B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 771 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Zhang, Y., Ma, W. et al. Evaluation and potential improvements of WRF/CMAQ in simulating multi-levels air pollution in megacity Shanghai, China. Stoch Environ Res Risk Assess 31, 2513–2526 (2017). https://doi.org/10.1007/s00477-016-1342-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1342-3

Keywords

Navigation