Skip to main content
Log in

Generic Regularity of Conservative Solutions to the Rotational Camassa–Holm Equation

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we prove generic regularity of energy conservative solutions to the rotation Camassa–Holm equation, which can be considered as a model in the shallow water for the long-crested waves propagating near the equator with effect of the Coriolis force due to the Earth’s rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alber, M.S., Camassa, R., Holm, D.D., et al.: The geometry of peaked solitons and billiard solutions of a class of integrable PDE’s. Lett. Math. Phys. 32(2), 137–151 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bressan, A., Chen, G.: Generic regularity of conservative solutions to a nonlinear wave equation. Ann. l’Inst. Henri Poincare (C) Nonlinear Anal. 34(2), 335–354 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bressan, A., Huang, T., Yu, F.: Structurally stable singularities for a nonlinear wave equation. Preprint arXiv:1503.08807 (2015)

  4. Bressan, A., Geng, C., Zhang, Q.: Uniqueness of conservative solutions to the Camassa–Holm equation via characteristics. Discrete Contin. Dyn. Syst. Ser. A 35(1), 25–42 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bressan, A., Constantin, A.: Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183(2), 215–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bressan, A., Constantin, A.: Global dissipative solutions of the Camassa–Holm equation. Anal. Appl. 5(01), 1–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bloom, J.M.: The Local Structure of Smooth Maps of Manifolds. Harvard University, New York (2004)

    Google Scholar 

  8. Cao, C., Holm, D.D., Titi, E.S.: Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models. J. Dyn. Differ. Equ. 16(1), 167–178 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, R.M., Gui, G., Liu, Y.: On a shallow-water approximation to the Green–Naghdi equations with the Coriolis effect. Adv. Math. 340, 106–137 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661–1664 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the equatorial undercurrent. Geophys. Astrophys. Fluid Dyn. 109(4), 311–358 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. 46(6), 1935–1945 (2016)

    Article  ADS  Google Scholar 

  13. Constantin, A.: On the modelling of equatorial waves. Geophys. Res. Lett. 39(5), L05602 (2012)

    Article  ADS  Google Scholar 

  14. Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 457(2008), 953–970 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Constantin, A., Gerdjikov, V.S., Ivanov, R.I.: Inverse scattering transform for the Camassa–Holm equation. Inverse Prob. 22(6), 2197–2207 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Constantin, A., Strauss, W.A.: Stability of the Camassa–Holm solitons. J. Nonlinear Sci. 12(4), 415–422 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Constantin, A., Strauss, W.A.: Stability of peakons. Commun. Pure Appl. Math. 53(5), 603–610 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181(2), 229–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Ann. Scuola Normale Superiore Pisa Classe di Sci. 26(2), 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. l’Inst. Fourier 50(2), 321–362 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Constantin, A., Escher, J.: On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z. 233(1), 75–91 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dafermos, C.M., Geng, X.: Generalized characteristics uniqueness and regularity of solutions in a hyperbolic system of conservation laws. Ann. l’Inst. Henri Poincare (C) Nonlinear Anal. 8(3–4), 231–269 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. De Monvel, A.B., Kostenko, A., Shepelsky, D., et al.: Long-time asymptotics for the Camassa–Holm equation. SIAM J. Math. Anal. 41(4), 1559–1588 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Danchin, R.: A few remarks on the Camassa–Holm equation. Differ. Integral Equ. 14(8), 953–988 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Danchin, R.: A note on well-posedness for Camassa–Holm equation. J. Differ. Equ. 192(2), 429–444 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Da Silva, P.L., Freire, I.L.: Well-posedness, travelling waves and geometrical aspects of generalizations of the Camassa–Holm equation. J. Differ. Equ. 267(9), 5318–5369 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D 4(1), 47–66 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Fisher, M., Schiff, J.: The Camassa–Holm equation: conserved quantities and the initial value problem. Phys. Lett. A 259(5), 371–376 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Golubitsky, M., Guillemin, V.: Stable Mappings and Their Singularities. Springer, Berlin (2012)

    MATH  Google Scholar 

  30. Gui, G., Liu, Y., Sun, J.: A nonlocal shallow-water model arising from the full water waves with the Coriolis effect. J. Math. Fluid Mech. 21(2), 21–27 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gui, G., Liu, Y., Luo, T.: Model equations and traveling wave solutions for shallow-water waves with the Coriolis effect. J. Nonlinear Sci. 29(3), 993–1039 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Kouranbaeva, S.: The Camassa–Holm equation as a geodesic flow on the diffeomorphism group. J. Math. Phys. 40(2), 857–868 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Li, Y.A., Olver, P.J.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 162(1), 27–63 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Li, M., Zhang, Q.: Generic regularity of conservative solutions to Camassa–Holm type equations. SIAM J. Math. Anal. 49(4), 2920–2949 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Misiołek, G.: A shallow water equation as a geodesic flow on the Bott–Virasoro group. J. Geom. Phys. 24(3), 203–208 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Schaeffer, D.G.: A regularity theorem for conservation laws. Adv. Math. 11(3), 368–386 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  37. Thom, R., Fowler, D.H.: Structural Stability and Morphogenesis: An Outline of a General Theory of Models. Benjamin, New York (1975)

    Google Scholar 

  38. Tu, X., Liu, Y., Mu, C.: Existence and uniqueness of the global conservative weak solutions to the rotation-Camassa–Holm equation. J. Differ. Equ. 266(8), 4864–4900 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Zhang, L.: Non-uniform dependence and well-posedness for the rotation-Camassa–Holm equation on the torus. J. Differ. Equ. 267(9), 5049–5083 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojie Yang.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Communicated by A. Constantin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S. Generic Regularity of Conservative Solutions to the Rotational Camassa–Holm Equation. J. Math. Fluid Mech. 22, 49 (2020). https://doi.org/10.1007/s00021-020-00510-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-020-00510-w

Keywords

Navigation