Skip to main content
Log in

Error estimates of invariant-preserving difference schemes for the rotation-two-component Camassa–Holm system with small energy

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

A rotation-two-component Camassa–Holm (R2CH) system was proposed recently to describe the motion of shallow water waves under the influence of gravity. This is a highly nonlinear and strongly coupled system of partial differential equations. A crucial issue in designing numerical schemes is to preserve invariants as many as possible at the discrete level. In this paper, we present a provable implicit nonlinear difference scheme which preserves at least three discrete conservation invariants: energy, mass, and momentum, and prove the existence of the difference solution via the Browder theorem. The error analysis is based on novel and refined estimates of the bilinear operator in the difference scheme. By skillfully using the energy method, we prove that the difference scheme not only converges unconditionally when the rotational parameter diminishes, but also converges without any step-ratio restriction for the small energy case when the rotational parameter is nonzero. The convergence orders in both settings (zero or nonzero rotation parameter) are \(O(\tau ^2 + h^2)\) for the velocity in the \(L^\infty \)-norm and the surface elevation in the \(L^2\)-norm, where \(\tau \) denotes the temporal stepsize and h the spatial stepsize, respectively. The theoretical predictions are confirmed by a properly designed two-level iteration scheme. Compared with existing numerical methods in the literature, the proposed method demonstrates its effectiveness for long-time simulation over larger domains and superior resolution for both smooth and non-smooth initial values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availibility

Data will be made available on reasonable request.

References

  1. Akrivis, G.D.: Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13, 115–124 (1993)

    MathSciNet  Google Scholar 

  2. Antonopoulos, D.C., Dougalis, V.A., Mitsotakis, D.E.: Error estimates for Galerkin finite element methods for the Camassa–Holm equation. Numer. Math. 142, 833–862 (2019)

    MathSciNet  Google Scholar 

  3. Bressan, A., Constantin, A.: Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183, 215–239 (2007)

    MathSciNet  Google Scholar 

  4. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  5. Camassa, R., Lee, L.: Complete integrable particle methods and the recurrence of initial states for a nonlinear shallow-water wave equation. J. Comput. Phys. 227, 7206–7221 (2008)

    ADS  MathSciNet  Google Scholar 

  6. Chen, R., Fan, L., Gao, H., Liu, Y.: Breaking waves and solitary waves to the rotation-two-component Camassa–Holm system. SIAM J. Math. Anal. 49, 3573–3602 (2017)

    MathSciNet  Google Scholar 

  7. Chen, R., Liu, Y.: Wave breaking and global existence for a generalized two-component Camassa–Holm system. Int. Math. Res. Not. 268, 45–66 (2011)

    Google Scholar 

  8. Chertock, A., Kurganov, A., Liu, Y.: Finite-volume-particle methods for the two-component Camassa–Holm system. Commun. Comput. Phys. 27, 480–502 (2020)

    MathSciNet  Google Scholar 

  9. Coclite, G., Karlsen, K., Risebro, N.: A convergent finite difference scheme for the Camassa–Holm equation with general \(H^1\) initial data. SIAM J. Numer. Anal. 46, 1554–1579 (2008)

    MathSciNet  Google Scholar 

  10. Cohen, D., Matsuo, T., Raynaud, X.: A multi-symplectic numerical integrator for the two-component Camassa–Holm equation. J. Nonlinear Math. Phys. 21, 442–453 (2014)

    ADS  MathSciNet  Google Scholar 

  11. Cohen, D., Raynaud, X.: Convergent numerical schemes for the compressible hyperelastic rod wave equation. Numer. Math. 122, 1–59 (2012)

    MathSciNet  Google Scholar 

  12. Cohen, D., Owren, B., Raynaud, X.: Multi-symplectic integration of the Camassa–Holm equation. J. Comput. Phys. 227, 5492–5512 (2008)

    ADS  MathSciNet  Google Scholar 

  13. Constantin, A., Ivanov, R.: On an integrable two-component Camassa–Holm shallow water system. Phys. Lett. A 372, 7129–7132 (2008)

    ADS  MathSciNet  CAS  Google Scholar 

  14. Danchin, R.: A note on well-posedness for Camassa–Holm equation. J. Differ. Equ. 192, 429–444 (2003)

    ADS  MathSciNet  Google Scholar 

  15. David, C., Brynjulf, O., Xavier, R.: Multi-symplectic integration of the Camassa–Holm equation. J. Comput. Phys. 227, 5492–5512 (2008)

    MathSciNet  Google Scholar 

  16. Duchĕne, V.: Many models for water waves: a unified theoretical approach. Université de Rennes 1 (2021)

  17. Fan, E., Yuen, M.: Peakon weak solutions for the rotation-two-component Camassa–Holm system. Appl. Math. Lett. 97, 53–59 (2019)

    MathSciNet  Google Scholar 

  18. Fan, L., Gao, H., Liu, Y.: On the rotation-two-component Camassa–Holm system modelling the equatorial water waves. Adv. Math. 291, 59–89 (2016)

    MathSciNet  Google Scholar 

  19. Feng, K., Qin, M.: Hamiltonian algorithms for Hamiltonian dynamical systems. Prog. Nat. Sci. 1(2), 105–116 (1991)

    MathSciNet  Google Scholar 

  20. Fuchssteinert, B., Fokas, A.: Symplectic structures, their backlund transformations and hereditary symmetries. Physics D. 4, 47–66 (1981)

    ADS  Google Scholar 

  21. Galtung, S.T., Grunert, K.: A numerical study of variational discretizations of the Camassa–Holm equation. BIT Numer. Math. 61, 1271–1309 (2021)

    MathSciNet  Google Scholar 

  22. Geng, X., Xue, B.: A three-component generalization of Camassa–Holm equation with \(N\)-peakon solutions. Adv. Math. 226, 827–839 (2011)

    MathSciNet  Google Scholar 

  23. Guan, C., Yin, Z.: Global weak solutions for a two-component Camassa–Holm shallow water system. J. Funct. Anal. 260, 1132–1154 (2011)

    MathSciNet  Google Scholar 

  24. Gui, G., Liu, Y.: On the Cauchy problem for the two-component Camassa–Holm system. Math. Z. 268, 45–66 (2011)

    MathSciNet  Google Scholar 

  25. Guo, B.: A class of difference scheme for two-dimensional vorticity equations with viscous fluids. Acta Math. Sin. 17, 242–258 (1974)

    MathSciNet  Google Scholar 

  26. Han, Y., Guo, F., Gao, H.: On solitary waves and wave-breaking phenomena for a generalized two-component integrable Dullin–Gottwald–Holm system. J. Nonlinear Sci. 23, 617–656 (2013)

    ADS  MathSciNet  Google Scholar 

  27. Hesthaven, J.S., Pagliantini, C., Rozza, G.: Reduced basis methods for time-dependent problems. Acta. Numer. 31, 265–345 (2022)

    MathSciNet  Google Scholar 

  28. Henry, D.: Infinite propagation speed for a two component Camassa–Holm equation. Discrete Contin. Dyn. Syst. Ser. B 12, 597–606 (2009)

    MathSciNet  Google Scholar 

  29. Holden, H., Raynaud, X.: A convergent numerical scheme for the Camassa–Holm equation based on multipeakons. Discrete Cont. Dyn. A 14, 505–523 (2006)

    MathSciNet  Google Scholar 

  30. Holden, H., Raynaud, X.: Convergence of a finite difference scheme for the Camassa–Holm equation. SIAM J. Numer. Anal. 44, 1655–1680 (2006)

    MathSciNet  Google Scholar 

  31. Holden, H., Raynaud, X.: Periodic conservative solutions of the Camassa–Holm equation. Ann. Inst. Fourier (Grenoble) 58, 945–988 (2008)

    MathSciNet  Google Scholar 

  32. Holm, D., Ivanov, R.: Multi-component generalizations of the CH equation: geometrical aspects, peakons and numerical examples. J. Phys. A 43, 492001 (2010)

    MathSciNet  Google Scholar 

  33. Ivanov, R.: Two-component integrable systems modelling shallow water waves: the constant vorticity case. Wave Motion 46, 389–396 (2009)

    ADS  MathSciNet  Google Scholar 

  34. Jiang, C., Gong, Y., Cai, W., Wang, Y.: A linearly implicit structure-preserving scheme for the Camassa–Holm equation based on multiple scalar auxiliary variables approach. J. Sci. Comput. 83, 1–20 (2020)

    MathSciNet  Google Scholar 

  35. Jiang, C., Wang, Y., Gong, Y.: Arbitrarily high-order energy-preserving schemes for the Camassa–Holm equation. Appl. Numer. Math. 151, 85–97 (2020)

    MathSciNet  Google Scholar 

  36. Kalisch, H., Raynaud, X.: Convergence of a spectral projection of the Camassa–Holm equation. Numer. Methods Part. Differ. Equ. 22, 1197–1215 (2006)

    MathSciNet  Google Scholar 

  37. Kang, J., Liu, X., Qu, C.: On an integrable multi-component Camassa–Holm system arising from Möbius geometry. Proc. Roy. Soc. A Math. Phys. (2021). https://doi.org/10.1098/rspa.2021.0164

    Article  Google Scholar 

  38. Kuo, P., Sanz-Serna, J.M.: Convergence of methods for the numerical solution of the Korteweg–de Vries equation. IMA J. Numer. Anal. 1, 215–221 (1981)

    MathSciNet  Google Scholar 

  39. Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)

    MathSciNet  Google Scholar 

  40. Li, X., Qian, X., Zhang, B.-Y., Song, S.: A multi-symplectic compact method for the two-component Camassa–Holm equation with singular solutions. Chin. Phys. Lett. 34, 090202 (2017)

    ADS  Google Scholar 

  41. Li, N., Liu, Q., Popowicz, Z.: A four-component Camassa–Holm type hierarchy. J. Geom. Phys. 85, 29–39 (2014)

    ADS  MathSciNet  Google Scholar 

  42. Liu, H., Pendleton, T.: On invariant-preserving finite difference schemes for the Camassa–Holm equation and the two-component Camassa–Holm system. Commun. Comput. Phys. 19, 1015–1041 (2016)

    MathSciNet  Google Scholar 

  43. Liu, H., Xing, Y.: An invariant preserving discontinuous Galerkin method for the Camassa–Holm equation. SIAM J. Sci. Comput. 38, A1919–A1934 (2016)

    MathSciNet  Google Scholar 

  44. Liu, J., Pucci, P., Zhang, Q.: Wave breaking analysis for the periodic rotation-two-component Camassa–Holm system. Nonlinear Anal. 187, 214–228 (2019)

    MathSciNet  Google Scholar 

  45. Moon, B.: On the wave-breaking phenomena and global existence for the periodic rotation-two-component Camassa–Holm system. J. Math. Anal. Appl. 451, 84–101 (2017)

    MathSciNet  Google Scholar 

  46. Olver, P., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E 53, 1900–1906 (1996)

    ADS  MathSciNet  CAS  Google Scholar 

  47. Wang, Z., Xiang, X.: Generalized Laguerre approximations and spectral method for the Camassa–Holm equation. IMA J. Numer. Anal. 35, 1456–1482 (2015)

    MathSciNet  Google Scholar 

  48. Xu, Y., Shu, C.-W.: A local Discontinuous Galerkin method for the Camassa–Holm equation. SIAM J. Numer. Anal. 46, 1998–2021 (2008)

    MathSciNet  Google Scholar 

  49. Yang, M., Li, Y., Qiao, Z.: Persistence properties and wave-breaking criteria for a generalized two-component rotational b-family system. Discrete Contin. Dyn. Syst. A 40, 2475–2493 (2020)

    MathSciNet  Google Scholar 

  50. Yu, C.-H., Feng, B.-F., Sheu, T.W.H.: Numerical solutions to a two-component Camassa–Holm equation. J. Comput. Appl. Math. 336, 317–337 (2018)

    MathSciNet  Google Scholar 

  51. Yu, X., Ye, X., Wang, Z.: A fast solver of Legendre-Laguerre spectral element method for the Camassa–Holm equation. Numer. Algor. 88, 1–23 (2021)

    MathSciNet  Google Scholar 

  52. Zhang, L., Liu, B.: Well-posedness, blow-up criteria and Gevrey regularity for a rotation-two-component Camassa–Holm system. Discrete Contin. Dyn. Syst. A 38, 2655–2685 (2018)

    MathSciNet  Google Scholar 

  53. Zhang, Q., Liu, L.: Convergence and stability in maximum norms of linearized fourth-order conservative compact scheme for Benjamin–Bona–Mahony–Burgers’ equation. J. Sci. Comput. 87, 1–31 (2021)

    MathSciNet  Google Scholar 

  54. Zhang, Q., Liu, L., Zhang, Z.: Linearly implicit invariant-preserving decoupled difference scheme for the rotation-two-component Camassa–Holm system. SIAM J. Sci. Comput. 44, A2226–A2252 (2022)

    MathSciNet  Google Scholar 

  55. Zhang, Q., Yan, T., Gao, G.-h: The energy method for high-order invariants in shallow water wave equations. Appl. Math. Lett. 142, 108626 (2023)

    MathSciNet  Google Scholar 

  56. Zhang, Y.: Wave breaking and global existence for the periodic rotation-Camassa–Holm system. Discrete Contin. Dyn. Syst. A 37, 2243–2257 (2017)

    MathSciNet  Google Scholar 

  57. Zhao, K., Wen, Z.: Effect of the Coriolis force on bounded traveling waves of the rotation-two-component Camassa–Holm system. Appl. Anal. (2021). https://doi.org/10.1080/00036811.2021.1965587

    Article  Google Scholar 

  58. Zhu, H., Song, S., Tang, Y.: Multi-symplectic wavelet collocation method for the nonlinear Schrödinger equation and the Camassa–Holm equation. Comput. Phys. Commun. 182, 616–627 (2011)

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their helpful comments and valuable suggestions, which greatly enrich the content and improve the presentation of the original manuscript. The authors also thank Prof. Zhi-zhong Sun for most helpful discussions and suggestions. Part of the work was finished during Qifeng’s visit in École Polytechnique Fédérale de Lausanne, and he would like to thank Prof. Jan S. Hesthaven for his hospitality throughout 2020–2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qifeng Zhang.

Ethics declarations

Conflict of interest

The authors of this paper have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Qifeng Zhang was supported by Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ23A010007) and the Fundamental Research Funds of Zhejiang Sci-Tech University (Grant No. 23062123-Y). Zhimin Zhang was supported by the National Natural Science Foundation of China (Grant Nos. 12131005 and 11871092).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zhang, J. & Zhang, Z. Error estimates of invariant-preserving difference schemes for the rotation-two-component Camassa–Holm system with small energy. Calcolo 61, 9 (2024). https://doi.org/10.1007/s10092-023-00558-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-023-00558-w

Keywords

Mathematics Subject Classification

Navigation