Skip to main content
Log in

SLC6A14 facilitates epithelial cell ferroptosis via the C/EBPβ-PAK6 axis in ulcerative colitis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Emerging evidence suggests that ferroptosis is involved in the pathogenesis of ulcerative colitis (UC). However, the key regulator of this process remains uncertain. In this study, we aimed to explore the roles of solute carrier (SLC) family 6 member 14 (SLC6A14) in regulating ferroptosis in UC. The expression of SLC6A14 was significantly increased and positively associated with that of prostaglandin-endoperoxide synthase 2 (PTGS2) in tissue samples from patients with UC. Moreover, a series of in vitro and in vivo experiments showed that SLC6A14 knockdown markedly suppressed ferroptosis. RNA sequencing revealed that SLC6A14 inhibited the expression of P21 (RAC1)-activated kinase 6 (PAK6) and that PAK6 knockdown abolished the effects of SLC6A14 on RAS-selective lethal 3 (RSL3)-induced ferroptosis in Caco-2 cells. Furthermore, chromatin immunoprecipitation (ChIP) and Western blot analysis demonstrated that SLC6A14 negatively regulated PAK6 expression in a CCAAT enhancer binding protein beta (C/EBPβ)-dependent manner. Collectively, these findings indicate that SLC6A14 facilitates ferroptosis in UC by promoting C/EBPβ expression and binding activity to inhibit PAK6 expression, suggesting that targeting SLC6A14-C/EBPβ-PAK6 axis-mediated ferroptosis may be a promising therapeutic alternative for UC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The microarray datasets analysed during the current study are available in the GEO (GSE134025) repository, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134025.

References

  1. Maennich D (2020) Ulcerative colitis. Nat Rev Dis Primers. https://doi.org/10.1038/s41572-020-00215-4

    Article  Google Scholar 

  2. Ungaro R et al (2017) Ulcerative colitis. Lancet 389(10080):1756–1770. https://doi.org/10.1016/s0140-6736(16)32126-2

    Article  PubMed  Google Scholar 

  3. Dixon SJ et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stockwell BR et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–285. https://doi.org/10.1016/j.cell.2017.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mayr L et al (2020) Dietary lipids fuel GPX4-restricted enteritis resembling Crohn’s disease. Nat Commun 11(1):1775. https://doi.org/10.1038/s41467-020-15646-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu M et al (2020) Ferroptosis involves in intestinal epithelial cell death in ulcerative colitis. Cell Death Dis 11(2):86. https://doi.org/10.1038/s41419-020-2299-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen Y et al (2021) Astragalus polysaccharide prevents ferroptosis in a murine model of experimental colitis and human Caco-2 cells via inhibiting NRF2/HO-1 pathway. Eur J Pharmacol 911:174518. https://doi.org/10.1016/j.ejphar.2021.174518

    Article  CAS  PubMed  Google Scholar 

  8. Xu J et al (2021) Ferrostatin-1 alleviated TNBS induced colitis via the inhibition of ferroptosis. Biochem Biophys Res Commun 573:48–54. https://doi.org/10.1016/j.bbrc.2021.08.018

    Article  CAS  PubMed  Google Scholar 

  9. Chen Y et al (2020) Ferroptosis mediated DSS-induced ulcerative colitis associated with Nrf2/HO-1 signaling pathway. Immunol Lett 225:9–15. https://doi.org/10.1016/j.imlet.2020.06.005

    Article  CAS  PubMed  Google Scholar 

  10. Koppula P, Zhuang L, Gan B (2021) Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 12(8):599–620. https://doi.org/10.1007/s13238-020-00789-5

    Article  CAS  PubMed  Google Scholar 

  11. Ma L et al (2021) Targeting SLC3A2 subunit of system XC(−) is essential for m(6)A reader YTHDC2 to be an endogenous ferroptosis inducer in lung adenocarcinoma. Free Radic Biol Med 168:25–43. https://doi.org/10.1016/j.freeradbiomed.2021.03.023

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Z et al (2020) The BRD7-P53-SLC25A28 axis regulates ferroptosis in hepatic stellate cells. Redox Biol 36:101619. https://doi.org/10.1016/j.redox.2020.101619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ruffin M et al (2020) Update on SLC6A14 in lung and gastrointestinal physiology and physiopathology: focus on cystic fibrosis. Cell Mol Life Sci 77(17):3311–3323. https://doi.org/10.1007/s00018-020-03487-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pabla BS, Schwartz DA (2020) Assessing severity of disease in patients with ulcerative colitis. Gastroenterol Clin N Am 49(4):671–688. https://doi.org/10.1016/j.gtc.2020.08.003

    Article  Google Scholar 

  15. Wirtz S et al (2017) Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc 12(7):1295–1309. https://doi.org/10.1038/nprot.2017.044

    Article  CAS  PubMed  Google Scholar 

  16. Camuesco D et al (2004) The intestinal anti-inflammatory effect of quercitrin is associated with an inhibition in iNOS expression. Br J Pharmacol 143(7):908–918. https://doi.org/10.1038/sj.bjp.0705941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Obermeier F et al (1999) Interferon-gamma (IFN-gamma)- and tumour necrosis factor (TNF)-induced nitric oxide as toxic effector molecule in chronic dextran sulphate sodium (DSS)-induced colitis in mice. Clin Exp Immunol 116(2):238–245. https://doi.org/10.1046/j.1365-2249.1999.00878.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Specht E et al (2015) Comparison of immunoreactive score, HER2/neu score and H score for the immunohistochemical evaluation of somatostatin receptors in bronchopulmonary neuroendocrine neoplasms. Histopathology 67(3):368–377. https://doi.org/10.1111/his.12662

    Article  PubMed  Google Scholar 

  19. Bardou P et al (2014) jvenn: an interactive Venn diagram viewer. BMC Bioinformatics 15(1):293. https://doi.org/10.1186/1471-2105-15-293

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xie Y et al (2016) Ferroptosis: process and function. Cell Death Differ 23(3):369–379. https://doi.org/10.1038/cdd.2015.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li T et al (2020) Mitochondrial PAK6 inhibits prostate cancer cell apoptosis via the PAK6-SIRT4-ANT2 complex. Theranostics 10(6):2571–2586. https://doi.org/10.7150/thno.42874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin H et al (2020) The miR-185/PAK6 axis predicts therapy response and regulates survival of drug-resistant leukemic stem cells in CML. Blood 136(5):596–609. https://doi.org/10.1182/blood.2019003636

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang S et al (2020) Curculigoside inhibits ferroptosis in ulcerative colitis through the induction of GPX4. Life Sci 259:118356. https://doi.org/10.1016/j.lfs.2020.118356

    Article  CAS  PubMed  Google Scholar 

  24. Bröer S, Gether U (2012) The solute carrier 6 family of transporters. Br J Pharmacol 167(2):256–278. https://doi.org/10.1111/j.1476-5381.2012.01975.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sikder MOF et al (2017) The Na(+)/Cl(−)-coupled, broad-specific, amino acid transporter SLC6A14 (ATB(0,+)): emerging roles in multiple diseases and therapeutic potential for treatment and diagnosis. AAPS J 20(1):12. https://doi.org/10.1208/s12248-017-0164-7

    Article  CAS  PubMed  Google Scholar 

  26. Flach CF et al (2006) Detection of elafin as a candidate biomarker for ulcerative colitis by whole-genome microarray screening. Inflamm Bowel Dis 12(9):837–842. https://doi.org/10.1097/01.mib.0000232469.23574.11

    Article  PubMed  Google Scholar 

  27. Basit F et al (2017) Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis 8(3):e2716. https://doi.org/10.1038/cddis.2017.133

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wei S et al (2020) Arsenic induces pancreatic dysfunction and ferroptosis via mitochondrial ROS-autophagy-lysosomal pathway. J Hazard Mater 384:121390. https://doi.org/10.1016/j.jhazmat.2019.121390

    Article  CAS  PubMed  Google Scholar 

  29. Wang H et al (2020) Mitochondria regulation in ferroptosis. Eur J Cell Biol 99(1):151058. https://doi.org/10.1016/j.ejcb.2019.151058

    Article  CAS  PubMed  Google Scholar 

  30. Yang Q et al (2020) PAK6 promotes cervical cancer progression through activation of the Wnt/beta-catenin signaling pathway. Oncol Lett 20(3):2387–2395. https://doi.org/10.3892/ol.2020.11797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schrantz N et al (2004) Mechanism of p21-activated kinase 6-mediated inhibition of androgen receptor signaling. J Biol Chem 279(3):1922–1931. https://doi.org/10.1074/jbc.M311145200

    Article  CAS  PubMed  Google Scholar 

  32. Chen X et al (2021) Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol 18(5):280–296. https://doi.org/10.1038/s41571-020-00462-0

    Article  CAS  PubMed  Google Scholar 

  33. Ndoja A et al (2020) Ubiquitin ligase COP1 suppresses neuroinflammation by degrading c/EBPbeta in microglia. Cell 182(5):1156-1169.e12. https://doi.org/10.1016/j.cell.2020.07.011

    Article  CAS  PubMed  Google Scholar 

  34. Worm J et al (2009) Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF. Nucleic Acids Res 37(17):5784–5792. https://doi.org/10.1093/nar/gkp577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo L, Li X, Tang QQ (2015) Transcriptional regulation of adipocyte differentiation: a central role for CCAAT/enhancer-binding protein (C/EBP) β. J Biol Chem 290(2):755–761. https://doi.org/10.1074/jbc.R114.619957

    Article  CAS  PubMed  Google Scholar 

  36. Galleggiante V et al (2019) Quercetin-induced miR-369-3p suppresses chronic inflammatory response targeting C/EBP-β. Mol Nutr Food Res 63(19):e1801390. https://doi.org/10.1002/mnfr.201801390

    Article  CAS  PubMed  Google Scholar 

  37. Degagne E et al (2012) P2Y(2) receptor expression is regulated by C/EBPbeta during inflammation in intestinal epithelial cells. FEBS J 279(16):2957–2965. https://doi.org/10.1111/j.1742-4658.2012.08676.x

    Article  CAS  PubMed  Google Scholar 

  38. Lu J et al (2013) Troxerutin counteracts domoic acid-induced memory deficits in mice by inhibiting CCAAT/enhancer binding protein beta-mediated inflammatory response and oxidative stress. J Immunol 190(7):3466–3479. https://doi.org/10.4049/jimmunol.1202862

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by The National Natural Science Foundation of China [Grant numbers 82073156, 81802843]; The Natural Science Foundation of the Jiangsu Higher Education Institutions of China [Grant number 20KJA310005]; Key Project of Medical Research of Jiangsu Commission of Health [Grant number ZDA2020008]; and Graduate Research & Practice Innovation Program of Jiangsu Province [Grant number KYCX21_2970].

Author information

Authors and Affiliations

Authors

Contributions

YJC, TGS, and WCC contributed to the study conception and design. Material preparation, data collection, and analysis were performed by YJC, WYY, JYW, YQC, JHZ, HYJ, HYW, GBZ, TGS, QHX, and SHZ. The first draft of the manuscript was written by YJC and TGS, and all authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Tongguo Shi or Weichang Chen.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

All animal procedures were performed in line with the principles of the Ethics Committee of Soochow University (reference number: SUDA20210918A01). All studies for human tissue samples complied the Ethics Committee of the First Affiliated Hospital of Soochow University (reference number: 2021-325).

Consent to participate

Written informed consent was obtained from the parents.

Consent for publication

The authors affirm that human research participants provided informed consent for publication of the images in Figs. 1B, 4B, and S1B.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yan, W., Chen, Y. et al. SLC6A14 facilitates epithelial cell ferroptosis via the C/EBPβ-PAK6 axis in ulcerative colitis. Cell. Mol. Life Sci. 79, 563 (2022). https://doi.org/10.1007/s00018-022-04594-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04594-7

Keywords

Navigation