Skip to main content

Advertisement

Log in

Research progress of ferroptosis and inflammatory bowel disease

  • Review
  • Published:
BioMetals Aims and scope Submit manuscript

A Correction to this article was published on 24 May 2024

This article has been updated

Abstract

Inflammatory bowel disease (IBD) is a non-specific chronic inflammatory disorder of the gastrointestinal tract, imposing significant burdens on both society and individuals. As a new type of regulated cell death (RCD), ferroptosis is different from classic RCDs such as apoptosis and necrosis in cell morphology, biochemistry and genetics. The main molecular mechanisms of ferroptosis include dysregulation of iron metabolism, impaired antioxidant capacity, mitochondrial dysfunction, accumulation of lipid-associated super-oxides, and membrane disruption. In recent years, increasing evidence has shown that ferroptosis is involved in the pathophysiology of inflammatory bowel disease. However, the exact roles and underlying molecular mechanisms have not been fully elucidated. This article reviews the mechanism of ferroptosis in the occurrence and development of inflammatory bowel disease, in order to provide new ideas for the pathophysiological research of inflammatory bowel disease. Additionally, we discuss potential strategies for the prevention and treatment of inflammatory bowel disease by targeting ferroptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Change history

References

  • Aamodt GJ, Jorgen Bengtson M-B, M, Bjorn Vatn, H M, (2008a) Geographic distribution and ecological studies of inflammatory bowel disease in southeastern Norway in 1990–1993. Inflamm Bowel Dis 14(7):984–991

    Article  PubMed  Google Scholar 

  • Aamodt GB, Jahnsen G, Moum J, Bjørn Vatn HM (2008b) The Association Between Water Supply and Inflammatory Bowel Disease Based on a 1990–1993 Cohort Study in Southeastern Norway. Am J Epidemiol 168(9):1065–1072

    Article  PubMed  Google Scholar 

  • Abreu MT, Rowbotham DS, Danese S, Sandborn WJ, Miao Y, Zhang H, Tikhonov I, Panaccione R, Hisamatsu T, Scherl EJ, Leong RW, Arasaradnam RP, Afif W, Peyrin-Biroulet L, Sands BE, Marano C (2022) Efficacy and Safety of Maintenance Ustekinumab for Ulcerative Colitis Through 3 Years: UNIFI Long-term Extension. J Crohns Colitis 16(8):1222–1234

    Article  PubMed  PubMed Central  Google Scholar 

  • Adham AN, Abdelfatah S, Naqishbandi AM, Mahmoud N, Efferth T (2021) Cytotoxicity of apigenin toward multiple myeloma cell lines and suppression of iNOS and COX-2 expression in STAT1-transfected HEK293 cells. Phytomedicine 80:153371

    Article  CAS  PubMed  Google Scholar 

  • Ahmad T, Fau MS, Jewell -, D, Jewell D, (2006) Genetics of inflammatory bowel disease: the role of the HLA complex. World J Gastroenterol 12(23):3628–3635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alhobayb T, Ciorba MA (2023) Clostridium difficile in inflammatory bowel disease. Curr Opin Gastroen 39(4):257–262

    Article  CAS  Google Scholar 

  • Alsharie AM, Rafiee F, Rezaeimanesh N, Moghadasi AN, Sahraian MA, Eskandarieh S (2021) Stressful life events and the risk of primary progressive multiple sclerosis: A population-based case-control study. Mult Scler Relat Dis 51(1):102937

    Article  CAS  Google Scholar 

  • Ananthakrishnan AN (2015) Epidemiology and risk factors for IBD. Nat Rev Gastro Hepat 12(4):205–217

    Article  Google Scholar 

  • Angeli J, Conrad M (2018) Selenium and GPX4, a vital symbiosis. Free Radical Bio Med 127:153–159

    Article  Google Scholar 

  • Arie L, Rotem Sigall B, Eytan W (2018) Evolving role of diet in the pathogenesis and treatment of inflammatory bowel diseases. Gut 67(9):1726–1738

    Article  Google Scholar 

  • Barclay AR, Russell RK, Wilson ML, Gilmour WH, Satsangi J, Wilson DC (2009) Systematic Review: The Role of Breastfeeding in the Development of Pediatric Inflammatory Bowel Disease. J Pediatr 155(3):421–426

    Article  PubMed  Google Scholar 

  • Barnich N, Darfeuille-Michaud A (2007) Adherent-invasive Escherichia coli and Crohn’s disease. Curr Opin Gastroen 23(1):16–20

    Article  Google Scholar 

  • Bateman L (1954) Olefin oxidation. Quart Rev Chem Soc 8(2):147–167

    Article  CAS  Google Scholar 

  • Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, Bassik MC, Nomura DK, Dixon SJ, Olzmann JA (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575(7784):688–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bieri JG (1959) An Effect of Selenium and Cystine on Lipide Peroxidation in Tissues Deficient in Vitamin E. Nature 184(4693):1148–1149

    Article  CAS  Google Scholar 

  • Bilski J, Mazur-Bialy A, Brzozowski B, Magierowski M, Zahradnik-Bilska J, Wójcik D, Magierowska K, Kwiecien S, Mach T, Brzozowski T (2016) Can exercise affect the course of inflammatory bowel disease? Exp Clin Evid Pharmacol Rep 68(4):827–836

    Google Scholar 

  • Bogacz M, Krauth-Siegel RL (2018) Tryparedoxin peroxidase-deficiency commits trypanosomes to ferroptosis-type cell death. eLife Sciences 7:e37503

    Article  Google Scholar 

  • Bolukcu S, Hakyemez IN, Gultepe BS, Okay G, Durdu B, Koc MM, Aslan T (2019) Clostridium difficile infection: Is there a change in the underlying factors? Inflammatory bowel disease and: Clostridium difficile. Saudi J Gastroentero 25(6):384–389

    Article  Google Scholar 

  • Breton J, Tanes C, Tu V, Albenberg L, Rowley S, Devas N, Hwang R, Kachelries K, Wu GD, Baldassano RN, Bittinger K, Mattei P (2022) A Microbial Signature for Paediatric Perianal Crohn’s Disease. J Crohns Colitis 16(8):1281–1292

    Article  PubMed  Google Scholar 

  • Bridges RJ, Natale NR, Patel SA (2012) System Xc- cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Brit J Pharmacol 165(1):20–34

    Article  CAS  Google Scholar 

  • Chaudhary G, Mahajan UB, Goyal SN, Ojha S, Patil CR, Subramanya SB (2017) Protective effect of Lagerstroemia speciosa against dextran sulfate sodium induced ulcerative colitis in C57BL/6 mice. Am J Transl Res 9(4):1792–1800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Wang Y, Shen J (2019) Role of environmental factors in the pathogenesis of Crohn’s disease: a critical review. Int J Colorectal Dis 34(12):2023–2034

    Article  PubMed  Google Scholar 

  • Chen Y, Zhang P, Chen W, Chen G (2020a) Ferroptosis mediated DSS-induced ulcerative colitis associated with Nrf2/HO-1 signaling pathway. Immunol Lett 225:9–15

    Article  CAS  PubMed  Google Scholar 

  • Chen G-Q, Benthani FA, Wu J, Liang D, Bian Z-X, Jiang X (2020b) Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ 27(1):242–254

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wang J, Li J, Zhu J, Wang R, Xi Q, Wu H, Shi T, Chen W (2021a) Astragalus polysaccharide prevents ferroptosis in a murine model of experimental colitis and human Caco-2 cells via inhibiting NRF2/HO-1 pathway. Eur J Pharmacol 911:174518

  • Chen D, Chu B, Yang X, Liu Z, Jin Y, Kon N, Rabadan R, Jiang X, Stockwell BR, Gu W (2021b) iPLA2β-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4. Nat Commun 12(1):3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Yan W, Chen Y, Zhu J, Wang J, Jin H, Wu H, Zhang G, Zhan S, Xi Q, Shi T, Chen W (2022a) SLC6A14 facilitates epithelial cell ferroptosis via the C/EBPβ-PAK6 axis in ulcerative colitis. Cell Mol Life Sci 79(11):563

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Yi X, Huo B, He Y, Guo X, Zhang Z, Zhong X, Feng X, Fang Z-M, Zhu X-H, Wei X, Jiang D-S (2022b) BRD4770 functions as a novel ferroptosis inhibitor to protect against aortic dissection. Pharmacol Res 177:106122

    Article  CAS  PubMed  Google Scholar 

  • Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, Song S, Tavana O, Gu W (2019) ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol 21(5):579–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad M (2019) The chemical basis of ferroptosis. Nat Chem Biol 15(12):1137–1147

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, Attucks OC, Franklin S, Levonen A-L, Kensler TW, Dinkova-Kostova AT (2019) Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov 18(4):295–317

    Article  CAS  PubMed  Google Scholar 

  • De Souza HSP (2017) Etiopathogenesis of inflammatory bowel disease: today and tomorrow. Curr Opin Gastroen 33(4):222–229

    Article  Google Scholar 

  • De Souza HSP, Fiocchi C (2016) Immunopathogenesis of IBD: current state of the art. Nat Rev Gastro Hepat 13(1):13–27

    Article  Google Scholar 

  • De Musis C, Granata L, Dallio M, Miranda A, Gravina GA, Romano M (2020) Inflammatory Bowel Diseases: The Role of Gut Microbiota. Curr Pharm Design 26(25):2951–2961

    Article  Google Scholar 

  • Distéfano AM, Martin MV, Córdoba JP, Bellido AM, D’ippólito S, Colman SL, Soto D, Roldán JA, Bartoli CG, Zabaleta EJ (2017) Heat stress induces ferroptosis-like cell death in plants. J Cell Biol 216(2):463–476

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon SJ (2019) Exogenous Monounsaturated Fatty Acids Promote a Ferroptosis-Resistant Cell State. Cell Chem Biol 26(3):420–432

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon S, Lemberg K, Lamprecht M, Skouta R, Zaitsev E, Gleason C, Patel D, Bauer A, Cantley A, Yang W (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon SJ, Patel DN, Matthew W, Rachid S, Lee ED, Miki H, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS (2014) Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 3:e02523

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M, Superti-Furga G, Stockwell BR (2015) Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death. ACS Chem Biol 10(7):1604–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, Prokisch H, Trümbach D, Mao G, Qu F, Bayir H, Füllekrug J, Scheel CH, Wurst W, Schick JA, Kagan VE, Angeli JPF, Conrad M (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13(1):91–98

    Article  CAS  PubMed  Google Scholar 

  • Doll S, Freitas FP, Shah R, Aldrovandi M, Conrad M (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575:693–698

    Article  CAS  PubMed  Google Scholar 

  • Dolma S, Lessnick SL, Hahn WC, Stockwell BR (2003) Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3(3):285–296

    Article  CAS  PubMed  Google Scholar 

  • Dong S, Lu Y, Peng G, Li J, Zhao Q (2021) Furin inhibits epithelial cell injury and alleviates experimental colitis by activating the Nrf2-Gpx4 signaling pathway. Digest Liver Dis 53(10):1276–1285

    Article  CAS  Google Scholar 

  • Dong L, Xie J, Wang Y, Jiang H, Chen K, Li D, Wang J, Liu Y, He J, Zhou J, Zhang L, Lu X, Zou X, Wang X-Y, Wang Q, Chen Z, Zuo D (2022) Mannose ameliorates experimental colitis by protecting intestinal barrier integrity. Nat Commun 13(1):4804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duerr RH, Taylor Kd, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, Abraham C, Regueiro M, Griffiths A, Dassopoulos T, Bitton A, Yang H, Targan S, Datta LW, Kistner EO, Schumm LP, Lee AT, Gregersen PK, Barmada MM, Rotter JI, Nicolae DL, Cho JH (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314(5804):1461–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellinghaus D, Ellinghaus E, Nair Rajan P, Philipe S, Esko T, Metspalu A, Debrus S, Raelson John V, Tejasvi T, Belouchi M, West Sarah L, Barker Jonathan N, Kõks S, Kingo K, Balschun T, Palmieri O, Annese V, Gieger C, Wichmann HE, Kabesch M, Trembath Richard C, Mathew Christopher G, Abecasis Gonçalo R, Weidinger S, Nikolaus S, Schreiber S, Elder James T, Weichenthal M, Nothnagel M, Franke A (2012) Combined Analysis of Genome-wide Association Studies for Crohn Disease and Psoriasis Identifies Seven Shared Susceptibility Loci. Am J Human Gen 90(4):636–647

    Article  CAS  Google Scholar 

  • Fang Y, Chen X, Tan Q, Zhou H, Xu J, Gu Q (2021) Inhibiting Ferroptosis through Disrupting the NCOA4–FTH1 Interaction: A New Mechanism of Action. ACS Cent Sci 7(6):980–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fantini MC, Monteleone G (2017) Update on the Therapeutic Efficacy of Tregs in IBD: Thumbs up or Thumbs down? Inflamm Bowel Dis 23(10):1682–1688

    Article  PubMed  Google Scholar 

  • Fernando MM, Stevens CR, Walsh EC, De Jager PL, Goyette P, Plenge RM, Vyse TJ, Rioux JD (2008) Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet 4(4):e1000024

    Article  PubMed  PubMed Central  Google Scholar 

  • Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D’angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin K-M, Deberardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, Macfarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine J-C, Martin SJ, Martinou J-C, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon H-U, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25(3):486–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Guan Q (2019) A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J Immunol Res 2019(1):7247238

    PubMed  PubMed Central  Google Scholar 

  • Halme L, Paavola-Sakki P, Turunen U, Lappalainen M, Färkkilä M, Kontula K (2006) Family and twin studies in inflammatory bowel disease. World J Gastroenterol 12(23):3668–3672

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassannia B, Wiernicki B, Ingold I, Qu F, Berghe TV (2018) Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest 128(8):3341–3355

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39(4):199–218

    Article  CAS  PubMed  Google Scholar 

  • Hodson R (2016) Inflammatory bowel disease. Nature 540(7634):S97

    Article  CAS  PubMed  Google Scholar 

  • Horowitz A, Chanez-Paredes SD, Haest X, Turner JR (2023) Paracellular permeability and tight junction regulation in gut health and disease. Nat Rev Gastro Hepat 20(7):417–432

    Article  Google Scholar 

  • Hosooka T, Hosokawa Y, Matsugi K, Shinohara M, Senga Y, Tamori Y, Aoki C, Matsui S, Sasaki T, Kitamura T (2020) The PDK1-FoxO1 signaling in adipocytes controls systemic insulin sensitivity through the 5-lipoxygenase-leukotriene B4 axis. P Natl A Sci 117(21):11674–11684

    Article  CAS  Google Scholar 

  • Hou JK, Abraham B, El-Serag H (2011) Dietary Intake and Risk of Developing Inflammatory Bowel Disease: A Systematic Review of the Literature. Am J Gastroenterol 106(4):563–573

    Article  CAS  PubMed  Google Scholar 

  • Huang F, Zhang S, Li X, Huang Y, He S, Luo L (2022a) STAT3-mediated ferroptosis is involved in ulcerative colitis. Free Radical Bio Med 188:375–385

    Article  CAS  Google Scholar 

  • Huang F, Pang J, Xu L, Niu W, Zhang Y, Li S, Li X (2022b) Hedyotis diffusa injection induces ferroptosis via the Bax/Bcl2/VDAC2/3 axis in lung adenocarcinoma. Phytomedicine 104:154319

    Article  CAS  PubMed  Google Scholar 

  • Imai T, Inoue R, Kawada Y, Morita Y, Inatomi O, Nishida A, Bamba S, Kawahara M, Andoh A (2019) Characterization of fungal dysbiosis in Japanese patients with inflammatory bowel disease. J Gastroenterol 54(2):149–159

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru N, Yamada A, Kohashi M, Arakaki R, Takahashi T, Izumi K, Hayashi Y (2008) Development of Inflammatory Bowel Disease in Long-Evans Cinnamon Rats Based on CD4+CD25+Foxp3+ Regulatory T Cell Dysfunction1. J Immunol 180(10):6997–7008

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Ma S, Sun X, Yu D, Song Y, Li R (2022) Analysis of ferroptosis-associated genes in Crohn’s disease based on bioinformatics. Front Med (lausanne) 9(1):1–11

    Google Scholar 

  • Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22(4):266–282

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi S, Agarwal S, Panjla A, Valiyaveettil S, Ganesh S, Verma S (2022) Inhibiting Erastin-Induced Ferroptotic Cell Death by Purine-Based Chelators. ChemBioChem 23(9):e202100654

    Article  CAS  PubMed  Google Scholar 

  • Jostins L, Ripke SF, Weersma RK, Duerr RH, Mcgovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, Essers J, Mitrovic M, Ning K, Cleynen I, Theatre E, Spain SL, Raychaudhuri S, Goyette P, Wei Z, Abraham C, Achkar JP, Ahmad T, Amininejad L, Ananthakrishnan AN, Andersen V, Andrews JM, Baidoo L, Balschun T, Bampton PA, Bitton A, Boucher G, Brand S, Büning C, Cohain A, Cichon S, Damato M, De Jong D, Devaney KL, Dubinsky M, Edwards C, Ellinghaus D, Ferguson LR, Franchimont D, Fransen K, Gearry R, Georges M, Gieger C, Glas J, Haritunians T, Hart A, Hawkey C, Hedl M, Hu X, Karlsen TH, Kupcinskas L, Kugathasan S, Latiano A, Laukens D, Lawrance IC, Lees CW, Louis E, Mahy G, Mansfield J, Morgan AR, Mowat C, Newman W, Palmieri O, Ponsioen CY, Potocnik U, Prescott NJ, Regueiro M, Rotter JI, Russell RK, Sanderson JD, Sans M, Satsangi J, Schreiber S, Simms LA, Sventoraityte J, Targan SR, Taylor KD, Tremelling M, Verspaget HW, De Vos M, Wijmenga C, Wilson DC, Winkelmann J, Xavier RJ, Zeissig S, Zhang B, Zhang CK, Zhao H, Annese V, Hakonarson H, Brant SR, Radford-Smith G, Mathew CG, Rioux JD, Schadt EE, Daly MJ, Franke A, Parkes M, Vermeire S, Barrett JC, Cho JH (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491(7422):119–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jt A, Tdwb C, Ajnb C, Xlb C (1864) Srb C (2019) iPLA2β and its role in male fertility, neurological disorders, metabolic disorders, and inflammation - ScienceDirect. Biochimica et Biophysica Acta (BBA) - Mol Cell Biol Lipids 6:846–860

    Google Scholar 

  • Kałużna A, Olczyk P, Komosińska-Vassev K (2022) The Role of Innate and Adaptive Immune Cells in the Pathogenesis and Development of the Inflammatory Response in Ulcerative Colitis. J Clin Med 11(2):400

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanapathipillai M (2018) Treating p53 Mutant Aggregation-Associated Cancer. Cancers 10(6):154

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaplan GG, Hubbard J, Korzenik J, Sands BE, Panaccione R, Ghosh S, Wheeler AJ, Villeneuve PJ (2010) The Inflammatory Bowel Diseases and Ambient Air Pollution: A Novel Association. Am J Gastroenterol 105(11):2412–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsarou A (2020) Basics and principles of cellular and systemic iron homeostasis. Mol Asp Med Interdisc Rev J 75(1):100866

    Article  CAS  Google Scholar 

  • Kazan K, Kalaipandian S (2019) Ferroptosis: Yet Another Way to Die. Trends Plant Sci 24(6):479–481

    Article  CAS  PubMed  Google Scholar 

  • Kim J-H (2001) Expression and characterization of recombinant rat Acyl-CoA synthetases 1, 4, and 5. Selective inhibition by triacsin C and thiazolidinediones. J Biol Chem 276(27):24667–24673

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Ohfuji S, Kondo K, Fukushima W, Sasaki S, Kamata N, Yamagami H, Fujiwara Y, Suzuki Y, Hirota Y, Colitis F (2019) Association between dietary iron and zinc intake and development of ulcerative colitis: A case–control study in Japan. J Gastroen Hepatol 34(10):1703–1710

    Article  CAS  Google Scholar 

  • Koppula P, Zhuang L, Gan B (2021) Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 12(8):599–620

    Article  CAS  PubMed  Google Scholar 

  • Kostic AD, Xavier RJ, Gevers D (2014) The Microbiome in Inflammatory Bowel Disease: Current Status and the Future Ahead. Gastroenterology 146(6):1489–1499

    Article  CAS  PubMed  Google Scholar 

  • Kraft V, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kssl J (2019) GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Cent Sci 6(1):41–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhn H, Banthiya S (1851) Leyen K V (2015) Mammalian lipoxygenases and their biological relevance. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 4:308–330

    Google Scholar 

  • Lachowicz JI, Pichiri G, Piludu M, Fais S, Orrù G, Congiu T, Piras M, Faa G, Fanni D, Dalla Torre G, Lopez X, Chandra K, Szczepski K, Jaremko L, Ghosh M, Emwas A-H, Castagnola M, Jaremko M, Hannappel E, Coni P (2022) Thymosin & beta;4 Is an Endogenous Iron Chelator and Molecular Switcher of Ferroptosis. Int J Mol Sci 23(1):551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakatos PL, Vegh Z, Lovasz BD, David G, Pandur T, Erdelyi Z, Szita I, Mester G, Balogh M, Szipocs I, Molnar C, Komaromi E, Golovics PA, Mandel M, Horvath A, Szathmari M, Kiss LS, Lakatos L (2013) Is Current Smoking Still an Important Environmental Factor in Inflammatory Bowel Diseases? Results from a Population-based Incident Cohort. Inflamm Bowel Dis 19(5):1010–1017

    Article  PubMed  Google Scholar 

  • Lei G, Zhang Y, Koppula P, Liu X, Zhang J, Hlin S, Aajani J, Xiao Q, Liao Z, Wang H (2020) The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res 30:146–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leiria LO, Wang CH, Lynes M, Yang K, Tseng YH (2019) 12-Lipoxygenase Regulates Cold Adaptation and Glucose Metabolism by Producing the Omega-3 Lipid 12-HEPE from Brown Fat. Cell Metab 30(4):768–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian D, Liu D, Zhang F, Ning S, Yao J (2019a) Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ 26(11):2284–2299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian D, Liu D, Zhang F, Ning S, Yao J, Tian X (2019b) Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ 26(11):2284–2299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Cao F, Yin H-L, Huang Z-J, Lin Z-T, Mao N, Sun B, Wang G (2020) Ferroptosis: past, present and future. Cell Death Dis 11(2):88

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Li W, Zhang W, Wang H, Yu L, Yang P, Qin Y, Gan M, Yang X, Huang L, Hao Y, Geng D (2023) Exogenous melatonin ameliorates steroid-induced osteonecrosis of the femoral head by modulating ferroptosis through GDF15-mediated signaling. Stem Cell Res Ther 14(1):171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang D, Minikes AM, Jiang X (2022) Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell 82(12):2215–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang D, Feng Y, Zandkarimi F, Wang H, Zhang Z, Kim J, Cai Y, Gu W, Stockwell BR, Jiang X (2023a) Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 186(13):2748-2764.e2722

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Wei Y, Hou X, Guo Q, Liang H, Zeng K, Tu P, Zhang Q (2023b) Triterpenoids from Uncaria macrophylla as ferroptosis inhibitors. Phytochemistry 206:113530

    Article  CAS  PubMed  Google Scholar 

  • Libertucci J, Dutta U, Kaur S, Jury J, Rossi L, Fontes ME, Shajib MS, Khan WI, Surette MG, Verdu EF, Armstrong D (2018) Inflammation-related differences in mucosa-associated microbiota and intestinal barrier function in colonic Crohn’s disease. Am J Physiol-Gastr L 315(3):G420–G431

    CAS  Google Scholar 

  • Liu J, Sun L, Chen D, Huo X, Tian X, Li J, Liu M, Yu Z, Zhang B, Yang Y, Qiu Y, Liu Y, Guo H, Zhou C, Ma XX, Xiong YO (2022a) Prdx6-induced inhibition of ferroptosis in epithelial cells contributes to liquiritin-exerted alleviation of colitis. Food Funct 13(18):9470–9480

    Article  CAS  PubMed  Google Scholar 

  • Liu J-P, Cen S-Y, Xue Z, Wang T-X, Gao Y, Zheng J, Zhang C, Hu J, Nie S, Xiong Y, Guan K-L, Yuan H-X (2022b) A Class of Disulfide Compounds Suppresses Ferroptosis by Stabilizing GPX4. ACS Chem Biol 17(12):3389–3406

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Zhao J, Ye Y, Feng Z, Wang X, Cao X (2023) OP30 Human umbilical cord mesenchymal stem cells derived exosomes alleviate Ulcerative Colitis by inhibiting macrophage ferroptosis via miR-23b-3p/Nrf2 pathway. J Crohn’s Colitis 17(Supplement_1):i41

    Article  Google Scholar 

  • Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, Andrews E, Ajami NJ, Bonham KS, Brislawn CJ, Casero D, Courtney H, Gonzalez A, Graeber TG, Hall AB, Lake K, Landers CJ, Mallick H, Plichta DR, Prasad M, Rahnavard G, Sauk J, Shungin D, Vázquez-Baeza Y, White RA, Bishai J, Bullock K, Deik A, Dennis C, Kaplan JL, Khalili H, Mciver LJ, Moran CJ, Nguyen L, Pierce KA, Schwager R, Sirota-Madi A, Stevens BW, Tan W, Ten Hoeve JJ, Weingart G, Wilson RG, Yajnik V, Braun J, Denson LA, Jansson JK, Knight R, Kugathasan S, Mcgovern DPB, Petrosino JF, Stappenbeck TS, Winter HS, Clish CB, Franzosa EA, Vlamakis H, Xavier RJ, Huttenhower C, Investigators I (2019) Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569(7758):655–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Gao X, Zou L, Lei M, Feng J, Hu Z (2021) Bavachin Induces Ferroptosis through the STAT3/P53/SLC7A11 Axis in Osteosarcoma Cells. Oxid Med Cell Longev 2021:1783485

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo P, Liu D, Zhang Q, Yang F, Wong YK, Xia F, Zhang J, Chen J, Tian Y, Yang C (2022) Celastrol induces ferroptosis in activated HSCs to ameliorate hepatic fibrosis via targeting peroxiredoxins and HO-1. Acta Pharm Sin B 12(5):2300–2314

    Article  CAS  PubMed  Google Scholar 

  • Luo L, Zhang S, Guo N, Li H, He S (2023) ACSF2-mediated ferroptosis is involved in ulcerative colitis. Life Sci 313:121272

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Zhang X, Yu K, Xu X, Chen T, Shi Y, Wang Y, Qiu S, Guo S, Cui J, Miao Y, Tian X, Du L, Yu Y, Xia J, Wang J (2021) Targeting SLC3A2 subunit of system XC- is essential for m(6)A reader YTHDC2 to be an endogenous ferroptosis inducer in lung adenocarcinoma. Free Radic Biol Med 168:25–43

    Article  CAS  PubMed  Google Scholar 

  • Ma T, Du J, Zhang Y, Wang Y, Wang B, Zhang T (2022) GPX4-independent ferroptosis—a new strategy in disease’s therapy. Cell Death Discov 8(1):434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maaser C, Langholz E, Gordon H, Burisch J, Ellul P, Hernández V, Karakan T, Katsanos KH, Krustins E, Levine A, Mantzaris GJ, O’morain C, Yuksel ES, Strid H, Annese V (2017) DOP001 European Crohn’s and Colitis Organisation topical review on environmental factors in IBD. J Crohn’s Colitis 11(suppl_1):S26

    Article  Google Scholar 

  • Mahmoudi H, Hossainpour H (2023) Application and development of fecal microbiota transplantation in the treatment of gastrointestinal and metabolic diseases: A review. Saudi J Gastroentero 29(1):3–11

    Article  Google Scholar 

  • Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC (2014) Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509(7498):105–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauriz Barreiro MV, Ruano-Ravina A, Ferreiro-Iglesias R, Baston-Rey I, Porto-Silva S, Nieto-Garcia L, Martinez-Seara X, Martin-Gisbert L, Dominguez-Munoz JE, Barreiro-De Acosta M (2023) P881 Is occupation a risk factor for developing Inflammatory Bowel Disease? A case-control study. J Crohn’s Colitis 17(Supplement_1):i998–i999

    Article  Google Scholar 

  • Mayr L, Grabherr F, Schwärzler J, Reitmeier I, Sommer F, Gehmacher T, Niederreiter L, He G-W, Ruder B, Kunz KTR, Tymoszuk P, Hilbe R, Haschka D, Feistritzer C, Gerner RR, Enrich B, Przysiecki N, Seifert M, Keller MA, Oberhuber G, Sprung S, Ran Q, Koch R, Effenberger M, Tancevski I, Zoller H, Moschen AR, Weiss G, Becker C, Rosenstiel P, Kaser A, Tilg H, Adolph TE (2020) Dietary lipids fuel GPX4-restricted enteritis resembling Crohn’s disease. Nat Commun 11(1):1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michielan A (2015) D’incà R (2015) Intestinal Permeability in Inflammatory Bowel Disease: Pathogenesis, Clinical Evaluation, and Therapy of Leaky Gut. Mediat Inflamm 1:628157

    Google Scholar 

  • Millar AD, Rampton DS, Blake DR (2000) Effects of iron and iron chelation in vitro on mucosal oxidant activity in ulcerative colitis. Aliment Pharmacol Ther 14(9):1163–1168

    Article  CAS  PubMed  Google Scholar 

  • Minaiyan M, Mostaghel E, Mahzouni P (2012) Preventive Therapy of Experimental Colitis with Selected iron Chelators and Anti-oxidants. Int J Prev Med 3(Suppl1):S162–S169

    PubMed  PubMed Central  Google Scholar 

  • Mirkov MU, Verstockt B, Cleynen I (2017) Genetics of inflammatory bowel disease: beyond NOD2. Lancet Gastroenterol Hepatol 2(3):224–234

    Article  PubMed  Google Scholar 

  • Moein S, Vaghari-Tabari M, Qujeq D, Majidinia M, Nabavi SM, Yousefi B (2019) MiRNAs and inflammatory bowel disease: An interesting new story. J Cell Physiol 234(4):3277–3293

    Article  CAS  PubMed  Google Scholar 

  • Moller FT, Andersen V, Wohlfahrt J, Jess T (2015) Familial Risk of Inflammatory Bowel Disease: A Population-Based Cohort Study 1977–2011. Off J Am Coll Gastroenterol 110(4):564–571

    Article  Google Scholar 

  • Molodecky NA, Soon S, Rabi DM, Ghali WA, Ferris M, Chernoff G, Benchimol EI, Panaccione R, Ghosh S, Barkema HW (2012) Increasing incidence and prevalence of the inflammatory bowel diseases with time based on systematic review. Gastroenterology 142(1):46–54

    Article  PubMed  Google Scholar 

  • Mourio M, Balsalobre C, Madrid C, Nieto JMA, Juárez A (1982) Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim Biophys Acta 710(2):197–211

    Article  Google Scholar 

  • Ng SC, Zeng Z, Niewiadomski O, Tang W, Bell S, Kamm MA, Hu P, De Silva HJ, Niriella MA, Udara WY, Ong D, Ling KL, Ooi CJ, Hilmi I, Lee Goh K, Ouyang Q, Wang YF, Wu K, Wang X, Pisespongsa P, Manatsathit S, Aniwan S, Limsrivilai J, Gunawan J, Simadibrata M, Abdullah M, Tsang SWC, Lo FH, Hui AJ, Chow CM, Yu HH, Li MF, Ng KK, Ching JYL, Chan V, Wu JCY, Chan FKL, Chen M, Sung JJY (2016) Early Course of Inflammatory Bowel Disease in a Population-Based Inception Cohort Study From 8 Countries in Asia and Australia. Gastroenterology 150(1):86-95.e83

    Article  PubMed  Google Scholar 

  • Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, Panaccione R, Ghosh S, Wu JCY, Chan FKL, Sung JJY, Kaplan GG (2017) Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. The Lancet 390(10114):2769–2778

    Article  Google Scholar 

  • Ni J, Zhang L, Feng G, Bao W, Wang Y, Huang Y, Chen T, Chen J, Cao X, You K, Tan S, Efferth T, Li H, Li B, Shen X, You Y (2024) Vanillic acid restores homeostasis of intestinal epithelium in colitis through inhibiting CA9/STIM1-mediated ferroptosis. Pharmacol Res 202:107128

    Article  CAS  PubMed  Google Scholar 

  • Nikolakis D, De Voogd F, a E, Pruijt M J, Grootjans J, Van De Sande M G, D’haens G R, (2022) The Role of the Lymphatic System in the Pathogenesis and Treatment of Inflammatory Bowel Disease. Int J Mol Sci 23(3):1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norman Jason M, Handley Scott A, Baldridge Megan T, Droit L, Liu Catherine Y, Keller Brian C, Kambal A, Monaco Cynthia L, Zhao G, Fleshner P, Stappenbeck Thaddeus S, Mcgovern Dermot PB, Keshavarzian A, Mutlu Ece A, Sauk J, Gevers D, Xavier Ramnik J, Wang D, Parkes M, Virgin Herbert W (2015) Disease-Specific Alterations in the Enteric Virome in Inflammatory Bowel Disease. Cell 160(3):447–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohiro Y, Garkavtsev I, Kobayashi S, Sreekumar KR, Nantz R, Higashikubo BT, Duffy SL, Higashikubo R, Usheva A, Gius D (2002) A novel p53-inducible apoptogenic gene, PRG3, encodes a homologue of the apoptosis-inducing factor (AIF). FEBS Lett 524(3):163–171

    Article  CAS  PubMed  Google Scholar 

  • Orholm M, Binder V, Sørensen TI, Rasmussen LP, Kyvik KO (2000) Concordance of inflammatory bowel disease among Danish twins. Results of a nationwide study. Scand J Gastroenterol 35(10):1075–1081

    Article  CAS  PubMed  Google Scholar 

  • Ouyang S, Li H, Lou L, Huang Q, Zhang Z, Mo J, Li M, Lu J, Zhu K, Chu Y, Ding W, Zhu J, Lin Z, Zhong L, Wang J, Yue P, Turkson J, Liu P, Wang Y, Zhang X (2022) Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer. Redox Biol 52:102317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panaccione R (2013) Mechanisms of inflammatory bowel disease. Gastroenterol Hepatol (n y) 9(8):529–532

    PubMed  Google Scholar 

  • Pei Z, Liu Y, Liu S, Jin W, Luo Y, Sun M, Duan Y, Ajoolabady A, Sowers JR, Fang Y (2021) FUNDC1 insufficiency sensitizes high fat diet intake-induced cardiac remodeling and contractile anomaly through ACSL4-mediated ferroptosis. Metabolism 122:154840

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Brocal V, García-López R, Vázquez-Castellanos JF, Nos P, Beltrán B, Latorre A, Moya A (2013) Study of the Viral and Microbial Communities Associated With Crohn’s Disease: A Metagenomic Approach. Clin Transl Gastroen 4(6):e36

    Article  Google Scholar 

  • Perez-Sanchez C, Barbera Betancourt A, Lyons PA, Zhang Z, Suo C, Lee JC, Mckinney EF, Modis LK, Ellson C, Smith KGC (2022) miR-374a-5p regulates inflammatory genes and monocyte function in patients with inflammatory bowel disease. J Exp Med 219(5):e20211366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piovani D, Danese S, Peyrin-Biroulet L, Nikolopoulos GK, Lytras T, Bonovas S (2019) Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-analyses. Gastroenterology 157(3):647-659.e644

    Article  PubMed  Google Scholar 

  • Pu S, Li Y, Liu Q, Zhang X, He J (2021) Inhibition of 5-Lipoxygenase in Hepatic Stellate Cells Alleviates Liver Fibrosis. Front Pharmacol 12:628583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quaglio AEV, Grillo TG, De Oliveira ECS, Di Stasi LC, Sassaki LY (2022) Gut microbiota, inflammatory bowel disease and colorectal cancer. World J Gastroenterol 28(30):4053–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramagopalan SV, Kondo K, Ohfuji S, Watanabe K, Yamagami H, Fukushima W, Ito K, Suzuki Y, Hirota Y (2019) The association between environmental factors and the development of Crohn’s disease with focusing on passive smoking: A multicenter case-control study in Japan. PLoS ONE 14(6):e0216429

    Article  Google Scholar 

  • Reinhardt C (1866) Giuseppenedara, Kenzaedwards, Ruairidhbrenner, Catherinetokatlidis, Kostasmodjtahedi, Nazanine (2020) AIF meets the CHCHD4/Mia40-dependent mitochondrial import pathway. Biochimica et biophysica acta. Mol Basis Dis: BBA 6:165746

    Google Scholar 

  • Sabapathy K, Lane DP (2019) Understanding p53 functions through p53 antibodies. J Mol Cell Biol 11(4):317–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos MPC, Gomes C, Torres J (2018) Familial and ethnic risk in inflammatory bowel disease. Ann Gastroenterol 31(1):14–23

    PubMed  Google Scholar 

  • Schirmer M, Garner A, Vlamakis H, Xavier RJ (2019) Microbial genes and pathways in inflammatory bowel disease. Nat Rev Microbiol 17(8):497–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz K, Foltz CM (1999) Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. Nutrition 15(3):254–256

    Google Scholar 

  • Seiler A, Schneider M, Förster H, Roth S, Wirth EK, Culmsee C, Plesnila N, Kremmer E, Rådmark O, Wurst W (2008) Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab 8(3):237–248

    Article  CAS  PubMed  Google Scholar 

  • Seril DN, Liao J, Ho K-LK, Warsi A, Yang CS, Yang G-Y (2002) Dietary Iron Supplementation Enhances DSS-Induced Colitis and Associated Colorectal Carcinoma Development in Mice. Digest Dis Sci 47(6):1266–1278

    Article  CAS  PubMed  Google Scholar 

  • Sewell GW, Kaser A (2022) Interleukin-23 in the Pathogenesis of Inflammatory Bowel Disease and Implications for Therapeutic Intervention. J Crohn’s Colitis 16(Supplement_2):ii3–ii19

    Article  Google Scholar 

  • Shan Y, Lee M, Chang EB (2022) The Gut Microbiome and Inflammatory Bowel Diseases. Annu Rev Med 73(1):455–468

    Article  CAS  PubMed  Google Scholar 

  • Shao C, Yuan J, Liu Y, Qin Y, Qian Y (2020) Epileptic brain fluorescent imaging reveals apigenin can relieve the myeloperoxidase-mediated oxidative stress and inhibit ferroptosis. P Natl A Sci 117(19):10155–10164

    Article  CAS  Google Scholar 

  • Shen Q, Liang M, Yang F, Deng YZ, Naqvi NI (2020) Ferroptosis contributes to developmental cell death in rice blast. Cold Spring Harbor Lab 227(6):1831–1846

    CAS  Google Scholar 

  • Sivanesan D, Beauchamp C, Quinou C, Lee J, Lesage S, Chemtob S, Rioux JD, Michnick SW (2016) IL23R (Interleukin 23 Receptor) Variants Protective against Inflammatory Bowel Diseases (IBD) Display Loss of Function due to Impaired Protein Stability and Intracellular Trafficking. J Biol Chem 291(16):8673–8685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran L, Gratadoux J, Blugeon S, Bridonneau C, Furet J, Corthier G (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. P Natl Acad Sci USA 105(43):16731–16736

    Article  CAS  Google Scholar 

  • Song X, Long D (2020) Nrf2 and Ferroptosis: A New Research Direction for Neurodegenerative Diseases. Front Neurosci-Switz 14:267

    Article  Google Scholar 

  • Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, Molina H, Garcia-Bermudez J, Pratt DA, Birsoy K (2020) Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol 16(12):1351–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Ou, Xie K, Fan N, Wang C, Tang, (2015) HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene 34:5617–5625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundin J, Aziz I, Nordlander S, Polster A, Hu YO, Hugerth LW, Pennhag AL, Engstrand L, Törnblom H, Simrén M, Ohman L (2020) Evidence of altered mucosa-associated and fecal microbiota composition in patients with Irritable Bowel Syndrome. Sci Rep-Uk 10(1):593

    Article  CAS  Google Scholar 

  • Suzuki T, Yoshinaga N, Tanabe S (2011) Interleukin-6 (IL-6) Regulates Claudin-2 Expression and Tight Junction Permeability in Intestinal Epithelium. J Biol Chem 286(36):31263–31271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taku Kobayashi BS, Le Berre C, Wei SC, Ferrante M, Shen Bo, Bernstein CN, Danese S, Peyrin-Biroulet L, Hibi T (2020) Ulcerative colitis. Nat Rev Dis Primers 6(1):73

    Article  Google Scholar 

  • Tang B, Zhu J, Fang S, Wang Y, Vinothkumar R, Li M, Weng Q, Zheng L, Yang Y, Qiu R, Xu M, Zhao Z, Ji J (2021) Pharmacological inhibition of MELK restricts ferroptosis and the inflammatory response in colitis and colitis-propelled carcinogenesis. Free Radical Bio Med 172:312–329

    Article  CAS  Google Scholar 

  • Tesfay L, Paul BT, Konstorum A, Deng Z, Torti SV (2019) Steroyl-CoA Desaturase 1 (SCD1) protects ovarian cancer cells from ferroptotic cell death. Cancer Res 79(18):5355–5366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson NP, Driscoll R, Pounder RE, Wakefield AJ (1996) Genetics versus environment in inflammatory bowel disease: results of a British twin study. BMJ 312(7023):95–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres J, Mehandru S, Colombel J-F, Peyrin-Biroulet L (2017a) Crohn’s disease. The Lancet 389(10080):1741–1755

    Article  Google Scholar 

  • Torres J, Mehandru S, Colombel JF, Peyrin-Biroulet L (2017b) Crohn’s disease. Lancet 389(10080):1741–1755

    Article  PubMed  Google Scholar 

  • Toyokuni S, Ito F, Yamashita K, Okazaki Y, Akatsuka S (2017) Iron and thiol redox signaling in cancer: An exquisite balance to escape ferroptosis. Free Radical Bio Med 108(3):610–626

    Article  CAS  Google Scholar 

  • Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel JF (2017) Ulcerative colitis. Lancet 389(10080):1756–1770

    Article  PubMed  Google Scholar 

  • Uritski R, Barshack I, Bilkis I, Ghebremeskel K, Reifen R (2004) Dietary Iron Affects Inflammatory Status in a Rat Model of Colitis. J Nutr 134(9):2251–2255

    Article  CAS  PubMed  Google Scholar 

  • Ursini F, Maiorino M, Gregolin C (1985) The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochimica et Biophysica Acta (BBA) - Gen Sub 839(1):62–70

    Article  CAS  Google Scholar 

  • Vaghari-Tabari M, Targhazeh N, Moein S, Qujeq D, Alemi F, Majidina M, Younesi S, Asemi Z, Yousefi B (2022) From inflammatory bowel disease to colorectal cancer: what’s the role of miRNAs? Cancer Cell Int 22(1):146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Der Sjoerd P, Karolina SJ, George B, Liisa A, Noreen A, Henrik S, Malin EVJ, Gunnar CH (2019) Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut 68(12):2142

    Article  Google Scholar 

  • Varankaan A, Fnqu J, Sasando C, Hadrhussandar V, Vadmrrov A (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13:81–90

    Article  Google Scholar 

  • Vara-Pérez M, Rossi M, Haute C, Maes H, Agostinis P (2021) BNIP3 promotes HIF-1α-driven melanoma growth by curbing intracellular iron homeostasis. EMBO J 40(10):e106214

    Article  PubMed  PubMed Central  Google Scholar 

  • Vavricka SR, Schoepfer A, Scharl M, Lakatos PL, Navarini A, Rogler G (2015) Extraintestinal Manifestations of Inflammatory Bowel Disease. Inflamm Bowel Dis 21(8):1982–1992

    Article  PubMed  Google Scholar 

  • Verstockt S, Machiels K, Dehairs J, Rems K, De Greef I, Jans D, Sabino J, Ferrante M, Vermeire S, Verstockt B (2023) OP01 Sequencing-based gene network analysis reveals a profound role for ferroptosis key gene GPX4 in post-operative endoscopic recurrence in Crohn’s disease. Journal of Crohn’s and Colitis 17(Supplement_1):i1–i3

    Article  Google Scholar 

  • Vich Vila A, Imhann F, Collij V, Jankipersadsing SA, Gurry T, Mujagic Z, Kurilshikov A, Bonder MJ, Jiang X, Tigchelaar EF, Dekens J, Peters V, Voskuil MD, Visschedijk MC, Van Dullemen HM, Keszthelyi D, Swertz MA, Franke L, Alberts R, Festen EM, Dijkstra G, Masclee AM, Hofker MH, Xavier RJ, Alm EJ, Fu J, Wijmenga C, Jonkers D, Zhernakova A, Weersma RK (2018) Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci Transl Med 10(472):eaap8914

    Article  PubMed  Google Scholar 

  • Vieira-Silva S, Sabino J, Valles-Colomer M, Falony G, Kathagen G, Caenepeel C, Cleynen I, Van Der Merwe S, Vermeire S, Raes J (2019) Quantitative microbiome profiling disentangles inflammation- and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses. Nature Microbiol 4(11):1826–1831

    Article  CAS  Google Scholar 

  • Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ, Viswanathan SR, Shrikanta C, Pablo T, Wan SY, Matthew GR, Sixun C, Zarko VB, Sarah J, Cherrie H, Xiaoyun W, Yuen-Yi T, Elisabeth MR, Dong G, James MC, Brian MW, Jill PM, Daniel AH, Jeffrey AE, Jesse SB, Joanne DK, Cindy SH, Yu C, William CH, Mitchell PL, John GD, Michael EB, Alykhan FS, Paul AC, Brent RS, Stuart LS (2017) Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547(1):453–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S-J, Jiang Le, Tongyuan T, Kon N, Wei B (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Fan X, Deng H, Zhang X, Zhang K, Xu J, Li N, Han Q, Liu Z (2019) Use of oral contraceptives and risk of ulcerative colitis – A systematic review and meta-analysis. Pharmacol Res 139(9):367–374

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Liu W, Wang J, Bai X (2020) Curculigoside inhibits ferroptosis in ulcerative colitis through the induction of GPX4. Life Sci 259:118356

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yu R, Wu L, Yang G (2021a) Hydrogen sulfide guards myoblasts from ferroptosis by inhibiting ALOX12 acetylation. Cell Signal 78(96):109870

    Article  CAS  PubMed  Google Scholar 

  • Wang ZX, Ma J, Li XY, Wu Y, Shi H, Chen Y, Lu G, Shen HM, Lu GD, Zhou J (2021b) Quercetin induces p53-independent cancer cell death through lysosome activation by the transcription factor EB and Reactive Oxygen Species-dependent ferroptosis. Brit J Pharmacol 178(5):1133–1148

    Article  CAS  Google Scholar 

  • Wei R, Zhao Y, Wang J, Yang X, Li S, Wang Y, Yang X, Fei J, Hao X, Zhao Y, Gui L, Ding X (2021) Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells. Int J Biol Sci 17(11):2703–2717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu M (2002) AMID, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. J Biol Chem 277(28):25617–25623

    Article  CAS  PubMed  Google Scholar 

  • Wu Y-T, Zhong L-S, Huang C, Guo Y-Y, Jin F-J, Hu Y-Z, Zhao Z-B, Ren Z, Wang Y-F (2022) β-Caryophyllene Acts as a Ferroptosis Inhibitor to Ameliorate Experimental Colitis. Int J Mol Sci 23(24):16055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Gao G, Wang H, Li E, Chen H (2020) Dehydroabietic acid alleviates high fat diet-induced insulin resistance and hepatic steatosis through dual activation of PPAR-γ and PPAR-α. Biomed Pharmacother 127:110155

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Tao J, Yang Y, Tan S, Liu H, Jiang J, Zheng F, Wu B (2020) Ferroptosis involves in intestinal epithelial cell death in ulcerative colitis. Cell Death Dis 11(2):86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Liu S, Cui Z, Wang X, Ning T, Wang T, Zhang N, Xie S, Min L, Zhang S, Liang C, Zhu S (2021) Ferrostatin-1 alleviated TNBS induced colitis via the inhibition of ferroptosis. Biochem Biophy Res Co 573:48–54

    Article  CAS  Google Scholar 

  • Yan H-F, Zou T, Tuo Q-Z, Xu S, Li H, Belaidi AA, Lei P (2021) Ferroptosis: mechanisms and links with diseases. Signal Transduct Tar 6(1):49

    Article  CAS  Google Scholar 

  • Yang WS, Stockwell BR (2008) Synthetic Lethal Screening Identifies Compounds Activating Iron-Dependent, Nonapoptotic Cell Death in Oncogenic-RAS-Harboring Cancer Cells. Chem Biol 15(3):234–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WS, SriRamaratnam R, Welsch ME, Shimada K (2014) Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell Cambridge Ma 156(1):317–331

    CAS  Google Scholar 

  • Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR (2016) Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. P Natl A Sci 113(34):E4966–E4975

    Article  CAS  Google Scholar 

  • Yang W, Mu B, You J, Tian C, Bin H, Xu Z, Zhang L, Ma R, Wu M, Zhang G, Huang C, Li L, Shao Z, Dai L, Désaubry L, Yang S (2022) Non-classical ferroptosis inhibition by a small molecule targeting PHB2. Nat Commun 13(1):7473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yangchun X, Song X, Sun X, Lotze MT, Zeh HJ III, Kang R, Tang D (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12(8):1425–1428

    Article  Google Scholar 

  • Yeon-Soon A, Jin-Ha Y, Jeong-Ha L (2019) P.1.01A nationwide, longitudinal study of crohn’s disease among korean workers exposed to toluene. Occup Environ Med 76(1):77

    Google Scholar 

  • Yilmaz B, Juillerat P, Yas O, Ramon C, Bravo FD, Franc Y, Fournier N, Michetti P, Mueller C, Geuking M, Pittet VEH, Maillard MH, Rogler G, Abdelrahman K, Ademi G, Aepli P, Thomas A, Anderegg C, Antonino A-T, Archanioti E, Arrigoni E, Bakker De Jong D, Balsiger B, Bastürk P, Bauerfeind P, Becocci A, Belli D, Bengoa JM, Biedermann L, Binek J, Blattmann M, Boehm S, Boldanova T, Borovicka J, Braegger CP, Brand S, Brügger L, Brunner S, Bühr P, Burnand B, Burk S, Burri E, Buyse S, Cao D-T, Carstens O, Criblez DH, Cunningham S, D’angelo F, De Saussure P, Degen L, Delarive J, Doerig C, Dora B, Drerup S, Egger M, El-Wafa A, Engelmann M, Ezri J, Felley C, Fliegner M, Fournier N, Fraga M, Franc Y, Frei P, Frei R, Fried M, Froehlich F, Furlano RI, Garzoni L, Geyer M, Girard L, Girardin M, Golay D, Good I, Graf Bigler U, Gysi B, Haarer J, Halama M, Haldemann J, Heer P, Heimgartner B, Helbling B, Hengstler P, Herzog D, Hess C, Hessler R, Heyland K, Hinterleitner T, Hirschi C, Hruz P, Juillerat P, Khalid-De Bakker C, Kayser S, Keller C, Knellwolf C, Knoblauch C, Köhler H, Koller R, Krieger C, Künzler P, Kusche R, Lehmann FS, Macpherson AJ, Maillard MH, Manz M, Marot A, Meier R, Meyenberger C, Meyer P, Michetti P, Misselwitz B, Mosler P, Mottet C, Müller C, Müllhaupt B, Musso L, Neagu M, Nichita C, Niess J, Nydegger A, Obialo N, Ollo D, Oropesa C, Peter U, Peternac D, Petit LM, Pittet V, Pohl D, Porzner M, Preissler C, Raschle N, Rentsch R, Restellini A, Restellini S, Richterich J-P, Ris F, Risti B, Ritz MA, Rogler G, Röhrich N, Rossel J-B, Rueger V, Rusticeanu M, Sagmeister M, Saner G, Sauter B, Sawatzki M, Scharl M, Schelling M, Schibli S, Schlauri H, Schluckebier D, Schmid D, Schmid S, Schnegg J-F, Schoepfer A, Seematter V, Seibold F, Seirafi M, Semadeni G-M, Senning A, Sokollik C, Sommer J, Spalinger J, Spangenberger H, Stadler P, Staub P, Staudenmann D, Stenz V, Steuerwald M, Straumann A, Strebel B, Stulz A, Sulz M, Tatu A, Tempia-Caliera M, Thorens J, Truninger K, Tutuian R, Urfer P, Vavricka S, Viani F, Vögtlin J, Von Känel R, Vouillamoz D, Vulliamy R, Wiesel P, Wiest R, Wöhrle S, Zamora S, Zander S, Wylie T, Zeitz J, Zimmermann D, Wiest R, Stelling J, Macpherson AJ, Swiss IBDCI (2019) Microbial network disturbances in relapsing refractory Crohn’s disease. Nat Med 25(2):323–336

    Article  CAS  PubMed  Google Scholar 

  • Zaidi D, Wine E (2018) Regulation of Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-κβ) in Inflammatory Bowel Diseases. Front Pediatr 6(1):317

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Guo M, Shen M, Kong D, Zhang F, Shao J, Tan S, Wang S, Chen A, Cao P, Zheng S (2020) The BRD7-P53-SLC25A28 axis regulates ferroptosis in hepatic stellate cells. Redox Biol 36:101619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Jia X, Lin D, Ma J (2023) Melatonin and ferroptosis: Mechanisms and therapeutic implications. Biochem Pharmacol 218:115909

    Article  CAS  PubMed  Google Scholar 

  • Zhang YZ, Li YY, Pathophysiology DO, Tongji University School Of M (2014) Inflammatory bowel disease:Pathogenesis. World J Gastroenterol 20(1):91–99

    Article  Google Scholar 

  • Zhao J, Dar HH, Deng Y, Croix CMS, Wenzel SE (2020) PEBP1 acts as a rheostat between prosurvival autophagy and ferroptotic death in asthmatic epithelial cells. P Natl A Sci 117(25):14376–14385

    Article  CAS  Google Scholar 

  • Zhu L, Yang F, Wang L, Dong L, Huang Z, Wang G, Chen G, Li QO (2021) Identification the ferroptosis-related gene signature in patients with esophageal adenocarcinoma. Cancer Cell Int 21(1):124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Y, Palte MJ, Deik AA, Li H, Schreiber SL (2019) A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun 10(1):1617

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financially supported by grants from the National Natural Science Foundation of China (81803800), the Natural Science Foundation of Chongqing, China (cstc2018jcyjAX0529 and CSTB2023NSCQ-MSX0469).

Author information

Authors and Affiliations

Authors

Contributions

H and A conducted a data search and M wrote the main manuscript text and Z provided the funding. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yonglan Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article has been revised: A grant number in the Funding section has been corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Hu, X., Ai, X. et al. Research progress of ferroptosis and inflammatory bowel disease. Biometals (2024). https://doi.org/10.1007/s10534-024-00604-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10534-024-00604-2

Keywords

Navigation