Skip to main content
Log in

A survey of substrate specificity among Auxiliary Activity Family 5 copper radical oxidases 

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

There is significant contemporary interest in the application of enzymes to replace or augment chemical reagents toward the development of more environmentally sound and sustainable processes. In particular, copper radical oxidases (CRO) from Auxiliary Activity Family 5 Subfamily 2 (AA5_2) are attractive, organic cofactor-free catalysts for the chemoselective oxidation of alcohols to the corresponding aldehydes. These enzymes were first defined by the archetypal galactose-6-oxidase (GalOx, EC 1.1.3.13) from the fungus Fusarium graminearum. The recent discovery of specific alcohol oxidases (EC 1.1.3.7) and aryl alcohol oxidases (EC 1.1.3.47) within AA5_2 has indicated a potentially broad substrate scope among fungal CROs. However, only relatively few AA5_2 members have been characterized to date. Guided by sequence similarity network and phylogenetic analysis, twelve AA5_2 homologs have been recombinantly produced and biochemically characterized in the present study. As defined by their predominant activities, these comprise four galactose 6-oxidases, two raffinose oxidases, four broad-specificity primary alcohol oxidases, and two non-carbohydrate alcohol oxidases. Of particular relevance to applications in biomass valorization, detailed product analysis revealed that two CROs produce the bioplastics monomer furan-2,5-dicarboxylic acid (FDCA) directly from 5-hydroxymethylfurfural (HMF). Furthermore, several CROs could desymmetrize glycerol (a by-product of the biodiesel industry) to d- or l-glyceraldehyde. This study furthers our understanding of CROs by doubling the number of characterized AA5_2 members, which may find future applications as biocatalysts in diverse processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files. All nucleotide sequence, protein sequence, and protein structural information used in this work were extracted from existing accessions in public databases, i.e., GenBank, Joint Genome Institute MycoCosm portal, and the Protein Data Bank.

References

  1. Cook J, Oreskes N, Doran P, Anderegg W, Verheggen B, Maibach E, Carlton J, Lewandowsky S, Skuce A, Green S, Nuccitelli D, Jacobs P, Richardson M, Winkler B, Painting R, Rice K (2016) Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. Environ Res Lett 11:048002. https://doi.org/10.1088/1748-9326/11/4/048002

    Article  Google Scholar 

  2. Tollefson J (2018) Can the world kick its fossil-fuel addiction fast enough? Nature 7702:422–425. https://doi.org/10.1038/d41586-018-04931-6

    Article  CAS  Google Scholar 

  3. Fabian N (2015) Economics: Support low-carbon investment. Nature 519:27–29. https://doi.org/10.1038/519027a

    Article  CAS  PubMed  Google Scholar 

  4. Zhang YHP (2011) What is vital (and not vital) to advance economically-competitive biofuels production. Process Biochem 46(11):2091–2110. https://doi.org/10.1016/j.procbio.2011.08.005

    Article  CAS  Google Scholar 

  5. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renewable Sustainable Energy Rev 14(2):578–597. https://doi.org/10.1016/j.rser.2009.10.003

    Article  CAS  Google Scholar 

  6. Hayes DJM (2013) Second-generation biofuels: Why they are taking so long. WIREs Energy Environ 2(3):304–334. https://doi.org/10.1002/wene.59

    Article  CAS  Google Scholar 

  7. Bender TA, Dabrowski JA, Gagné MR (2018) Homogeneous catalysis for the production of low-volume, high-value chemicals from biomass. Nat Rev Chem 2(5):35–46. https://doi.org/10.1038/s41570-018-0005-y

    Article  CAS  Google Scholar 

  8. Fatih DM (2009) Biorefineries for biofuel upgrading: a critical review. Appl Energy 86(Supplement 1):S151–S161. https://doi.org/10.1016/j.apenergy.2009.04.043

    Article  CAS  Google Scholar 

  9. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489. https://doi.org/10.1126/science.1114736

    Article  CAS  PubMed  Google Scholar 

  10. Dessbesell L, Xu C, Pulkki R, Leitch M, Mahmood N (2017) Forest biomass supply chain optimization for a biorefinery aiming to produce high-value bio-based materials and chemicals from lignin and forestry residues: a review of literature. Can J For Res 47(3):277–288. https://doi.org/10.1139/cjfr-2016-0336

    Article  CAS  Google Scholar 

  11. Allais F, Coqueret X, Farmer T, Raverty W, Rémond C, Paës G (2020) Editorial: From biomass to advanced bio-based chemicals & materials: a multidisciplinary perspective. Front Chem 8(131). https://doi.org/10.3389/fchem.2020.00131

  12. Goswami P, Chinnadayyala SSR, Chakraborty M, Kumar AK, Kakoti A (2013) An overview on alcohol oxidases and their potential applications. Appl Microbiol Biotechnol 97(10):4259–4275. https://doi.org/10.1007/s00253-013-4842-9

    Article  CAS  PubMed  Google Scholar 

  13. Hernández-Ortega A, Ferreira P, Martínez AT (2012) Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation. Appl Microbiol Biotechnol 93(4):1395–1410. https://doi.org/10.1007/s00253-011-3836-8

    Article  CAS  PubMed  Google Scholar 

  14. Hollmann F, Arends IWCE, Buehler K, Schallmey A, Bühler B (2011) Enzyme-mediated oxidations for the chemist. Green Chem 13(2):226–265. https://doi.org/10.1039/C0GC00595A

    Article  CAS  Google Scholar 

  15. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5(1):45. https://doi.org/10.1186/1754-6834-5-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johansen KS (2016) Discovery and industrial applications of lytic polysaccharide mono-oxygenases. Biochem Soc Trans 44(1):143–149. https://doi.org/10.1042/BST20150204

    Article  CAS  PubMed  Google Scholar 

  17. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6(1):41. https://doi.org/10.1186/1754-6834-6-41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2013) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(D1):D490–D495. https://doi.org/10.1093/nar/gkt1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Artzi L, Bayer EA, Moraïs S (2017) Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol 15(2):83–95. https://doi.org/10.1038/nrmicro.2016.164

    Article  CAS  PubMed  Google Scholar 

  20. Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT (2015) Fungal cellulases. Chem Rev 115(3):1308–1448. https://doi.org/10.1021/cr500351c

    Article  CAS  PubMed  Google Scholar 

  21. Murphy C, Powlowski J, Wu M, Butler G, Tsang A (2011) Curation of characterized glycoside hydrolases of fungal origin. Database 2011:bar020. https://doi.org/10.1093/database/bar020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Basit A, Liu J, Rahim K, Jiang W, Lou H (2018) Thermophilic xylanases: from bench to bottle. Crit Rev Biotechnol 38(7):989–1002. https://doi.org/10.1080/07388551.2018.1425662

    Article  CAS  PubMed  Google Scholar 

  23. Ryu DDY, Mandels M (1980) Cellulases: biosynthesis and applications. Enzyme Microb Technol 2(2):91–102. https://doi.org/10.1016/0141-0229(80)90063-0

    Article  CAS  Google Scholar 

  24. Tomme P, Warren RAJ, Gilkes NR (1995) Cellulose Hydrolysis by Bacteria and Fungi. In: Poole RK (eds) Advances in microbial physiology. Academic Press, pp 1–81. https://doi.org/10.1016/S0065-2911(08)60143-5

  25. Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3(9):853–859. https://doi.org/10.1016/S0969-2126(01)00220-9

    Article  CAS  PubMed  Google Scholar 

  26. Møller MS, Svensson B (2016) Structural biology of starch-degrading enzymes and their regulation. Curr Opin Struct Biol 40:33–42. https://doi.org/10.1016/j.sbi.2016.07.006

    Article  CAS  PubMed  Google Scholar 

  27. Knob A, Terrasan CRF, Carmona EC (2010) β-Xylosidases from filamentous fungi: an overview. World J Microbiol Biotechnol 26(3):389–407. https://doi.org/10.1007/s11274-009-0190-4

    Article  CAS  Google Scholar 

  28. Juturu V, Wu JC (2012) Microbial xylanases: engineering, production and industrial applications. Biotechnol Adv 30(6):1219–1227. https://doi.org/10.1016/j.biotechadv.2011.11.006

    Article  CAS  PubMed  Google Scholar 

  29. Friedl A (2012) Bioethanol from starch. In: Meyers RA (ed) Encyclopedia of sustainability science and technology. Springer, New York, NY, pp 987–1001. https://doi.org/10.1007/978-1-4419-0851-3_432

    Chapter  Google Scholar 

  30. Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the myths–biocatalysis in industrial synthesis. Science 299(5613):1694–1697. https://doi.org/10.1126/science.1079237

    Article  CAS  PubMed  Google Scholar 

  31. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485(7397):185–194. https://doi.org/10.1038/nature11117

    Article  CAS  PubMed  Google Scholar 

  32. Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT (2021) Biocatalysis: enzymatic synthesis for industrial applications. Angew Chem Int Ed 60(1):88–119. https://doi.org/10.1002/anie.202006648

    Article  CAS  Google Scholar 

  33. Whittaker JW (2003) Free radical catalysis by galactose oxidase. Chem Rev 103(6):2347–2364. https://doi.org/10.1021/cr020425z

    Article  CAS  PubMed  Google Scholar 

  34. Kersten P, Cullen D (2014) Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes. Fungal Genet Biol 72:124–130. https://doi.org/10.1016/j.fgb.2014.05.011

    Article  CAS  PubMed  Google Scholar 

  35. Whittaker MM, Kersten PJ, Nakamura N, Sanders-Loehr J, Schweizer ES, Whittaker JW (1996) Glyoxal oxidase from Phanerochaete chrysosporium is a new radical-copper oxidase. J Biol Chem 271(2):681–687. https://doi.org/10.1074/jbc.271.2.681

    Article  CAS  PubMed  Google Scholar 

  36. Ito N, Phillips SEV, Stevens C, Ogel ZB, McPherson MJ, Keen JN, Yadav KDS, Knowles PF (1991) Novel thioether bond revealed by a 1.7 Å crystal structure of galactose oxidase. Nature 350(6313):87–90. https://doi.org/10.1038/350087a0

    Article  CAS  PubMed  Google Scholar 

  37. Yin D, Urresti S, Lafond M, Johnston EM, Derikvand F, Ciano L, Berrin J-G, Henrissat B, Walton PH, Davies GJ, Brumer H (2015) Structure–function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family. Nat Commun 6(1):10197. https://doi.org/10.1038/ncomms10197

    Article  CAS  PubMed  Google Scholar 

  38. Oide S, Tanaka Y, Watanabe A, Inui M (2019) Carbohydrate-binding property of a cell wall integrity and stress response component (WSC) domain of an alcohol oxidase from the rice blast pathogen Pyricularia oryzae. Enzyme Microb Technol 125:13–20. https://doi.org/10.1016/j.enzmictec.2019.02.009

    Article  CAS  PubMed  Google Scholar 

  39. Mathieu Y, Offen WA, Forget SM, Ciano L, Viborg AH, Blagova E, Henrissat B, Walton PH, Davies GJ, Brumer H (2020) Discovery of a fungal copper radical oxidase with high catalytic efficiency toward 5-hydroxymethylfurfural and benzyl alcohols for bioprocessing. ACS Catal 10(5):3042–3058. https://doi.org/10.1021/acscatal.9b04727

    Article  CAS  Google Scholar 

  40. Cleveland M, Lafond M, Xia FR, Chung R, Mulyk P, Hein JE, Brumer H (2021) Two Fusarium copper radical oxidases with high activity on aryl alcohols. Biotechnol Biofuels 14(1):138. https://doi.org/10.1186/s13068-021-01984-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bissaro B, Kodama S, Hage H, Ribeaucourt D, Haon M, Grisel S, Simaan A, Beisson F, Forget S, Brumer H, Rosso M-N, O’Connell R, Lafond M, Kubo Y, Berrin J-G (2021) Unravelling the role of alcohol copper radical oxidases in fungal plant pathogens. https://doi.org/10.21203/rs.3.rs-493001/v1

  42. Roberts GP, Gupta SK (1965) Use of galactose oxidase in the histochemical examination of mucus-secreting cells. Nature 207(4995):425–426. https://doi.org/10.1038/207425a0

    Article  CAS  PubMed  Google Scholar 

  43. Heitzmann H, Richards FM (1974) Use of the avidin-biotin complex for specific staining of biological membranes in electron microscopy. Proc Natl Acad Sci USA 71(9):3537–3541. https://doi.org/10.1073/pnas.71.9.3537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wilchek M, Spiegel S, Spiegel Y (1980) Fluorescent reagents for the labeling of glycoconjugates in solution and on cell surfaces. Biochem Biophys Res Commun 92(4):1215–1222. https://doi.org/10.1016/0006-291X(80)90416-7

    Article  CAS  PubMed  Google Scholar 

  45. Ramya TNC, Weerapana E, Cravatt BF, Paulson JC (2012) Glycoproteomics enabled by tagging sialic acid- or galactose-terminated glycans. Glycobiology 23(2):211–221. https://doi.org/10.1093/glycob/cws144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Monosik R, Stredansky M, Tkac J, Sturdik E (2012) Application of enzyme biosensors in analysis of food and beverages. Food Anal Methods 5(1):40–53. https://doi.org/10.1007/s12161-011-9222-4

    Article  Google Scholar 

  47. Schoevaart R, Kieboom T (2004) Application of galactose oxidase in chemoenzymatic one-pot cascade reactions without intermediate recovery steps. Top Catal 27(1):3–9. https://doi.org/10.1023/B:TOCA.0000013536.27551.13

    Article  CAS  Google Scholar 

  48. Mikkonen KS, Parikka K, Suuronen J-P, Ghafar A, Serimaa R, Tenkanen M (2014) Enzymatic oxidation as a potential new route to produce polysaccharide aerogels. RSC Adv 4(23):11884–11892. https://doi.org/10.1039/C3RA47440B

    Article  CAS  Google Scholar 

  49. Leppänen A-S, Xu C, Parikka K, Eklund P, Sjöholm R, Brumer H, Tenkanen M, Willför S (2014) Targeted allylation and propargylation of galactose-containing polysaccharides in water. Carbohydr Polym 100:46–54. https://doi.org/10.1016/j.carbpol.2012.11.053

    Article  CAS  PubMed  Google Scholar 

  50. Leppänen A-S, Niittymäki O, Parikka K, Tenkanen M, Eklund P, Sjöholm R, Willför S (2010) Metal-mediated allylation of enzymatically oxidized methyl α-d-galactopyranoside. Carbohydr Res 345(18):2610–2615. https://doi.org/10.1016/j.carres.2010.09.026

    Article  CAS  PubMed  Google Scholar 

  51. Yalpani M, Hall LD (1982) Some chemical and analytical aspects of polysaccharide modifications. II. A high-yielding, specific method for the chemical derivatization of galactose-containing polysaccharides: Oxidation with galactose oxidase followed by reductive amination. J Polym Sci, Polym Chem Ed 20(12):3399–3420. https://doi.org/10.1002/pol.1982.170201213

    Article  CAS  Google Scholar 

  52. Kelleher FM, Bhavanandan VP (1986) Preparation and characterization of beta-d-fructofuranosyl O-(alpha-d-galactopyranosyl uronic acid)-(1–6)-O-alpha-d-glucopyranoside and O-(alpha- d -galactopyranosyl uronic acid)-(1–6)- d-glucose. Carbohydr Res 155:89–97. https://doi.org/10.1016/S0008-6215(00)90135-6

    Article  CAS  PubMed  Google Scholar 

  53. Xu C, Spadiut O, Araújo AC, Nakhai A, Brumer H (2012) Chemo-enzymatic assembly of clickable cellulose surfaces via multivalent polysaccharides. Chemsuschem 5(4):661–665. https://doi.org/10.1002/cssc.201100522

    Article  CAS  PubMed  Google Scholar 

  54. Parikka K, Leppänen A-S, Xu C, Pitkänen L, Eronen P, Österberg M, Brumer H, Willför S, Tenkanen M (2012) Functional and anionic cellulose-interacting polymers by selective chemo-enzymatic carboxylation of galactose-containing polysaccharides. Biomacromol 13(8):2418–2428. https://doi.org/10.1021/bm300679a

    Article  CAS  Google Scholar 

  55. Huffman MA, Fryszkowska A, Alvizo O, Borra-Garske M, Campos KR, Canada KA, Devine PN, Duan D, Forstater JH, Grosser ST, Halsey HM, Hughes GJ, Jo J, Joyce LA, Kolev JN, Liang J, Maloney KM, Mann BF, Marshall NM, McLaughlin M, Moore JC, Murphy GS, Nawrat CC, Nazor J, Novick S, Patel NR, Rodriguez-Granillo A, Robaire SA, Sherer EC, Truppo MD, Whittaker AM, Verma D, Xiao L, Xu Y, Yang H (2019) Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science 366(6470):1255–1259. https://doi.org/10.1126/science.aay8484

    Article  CAS  PubMed  Google Scholar 

  56. Ribeaucourt D, Bissaro B, Guallar V, Yemloul M, Haon M, Grisel S, Alphand V, Brumer H, Lambert F, Berrin J-G, Lafond M (2021) Comprehensive insights into the production of long chain aliphatic aldehydes using a copper-radical alcohol oxidase as biocatalyst. ACS Sustainable Chem Eng 9(12):4411–4421. https://doi.org/10.1021/acssuschemeng.0c07406

    Article  CAS  Google Scholar 

  57. Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13(4):754–793. https://doi.org/10.1039/C0GC00401D

    Article  CAS  Google Scholar 

  58. Sousa AF, Vilela C, Fonseca AC, Matos M, Freire CSR, Gruter G-JM, Coelho JFJ, Silvestre AJD (2015) Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polym Chem 6(33):5961–5983. https://doi.org/10.1039/C5PY00686D

    Article  CAS  Google Scholar 

  59. Siebum A, van Wijk A, Schoevaart R, Kieboom T (2006) Galactose oxidase and alcohol oxidase: scope and limitations for the enzymatic synthesis of aldehydes. J Mol Catal B: Enzym 41(3):141–145. https://doi.org/10.1016/j.molcatb.2006.04.003

    Article  CAS  Google Scholar 

  60. Ribeaucourt D, Bissaro B, Lambert F, Lafond M, Berrin J-G (2021) Biocatalytic oxidation of fatty alcohols into aldehydes for the flavors and fragrances industry. Biotechnol Adv 107787. https://doi.org/10.1016/j.biotechadv.2021.107787

  61. Mollerup F, Aumala V, Parikka K, Mathieu Y, Brumer H, Tenkanen M, Master E (2019) A family AA5_2 carbohydrate oxidase from Penicillium rubens displays functional overlap across the AA5 family. PLoS One 14(5). https://doi.org/10.1371/journal.pone.0216546

  62. Andberg M, Mollerup F, Parikka K, Koutaniemi S, Boer H, Juvonen M, Master E, Tenkanen M, Kruus K (2017) A novel Colletotrichum graminicola raffinose oxidase in the AA5 Family. Appl Environ Microbiol 83(20):e01383–e1417. https://doi.org/10.1128/AEM.01383-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Faria CB, de Castro FF, Martim DB, Abe CAL, Prates KV, de Oliveira MAS, Barbosa-Tessmann IP (2019) Production of galactose oxidase inside the Fusarium fujikuroi species complex and recombinant expression and characterization of the galactose oxidase GaoA protein from Fusarium subglutinans. Mol Biotechnol 61(9):633–649. https://doi.org/10.1007/s12033-019-00190-6

    Article  CAS  PubMed  Google Scholar 

  64. Paukner R, Staudigl P, Choosri W, Haltrich D, Leitner C (2015) Expression, purification, and characterization of galactose oxidase of Fusarium sambucinum in E. coli. Protein Expression Purif 108:73–79. https://doi.org/10.1016/j.pep.2014.12.010

    Article  CAS  Google Scholar 

  65. Paukner R, Staudigl P, Choosri W, Sygmund C, Halada P, Haltrich D, Leitner C (2014) Galactose oxidase from Fusarium oxysporum - expression in E. coli and P. pastoris and biochemical characterization. PLoS One 9(6):e100116. https://doi.org/10.1371/journal.pone.0100116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Whittaker JW (2005) The radical chemistry of galactose oxidase. Arch Biochem Biophys 433(1):227–239. https://doi.org/10.1016/j.abb.2004.08.034

    Article  CAS  PubMed  Google Scholar 

  67. Leuthner B, Aichinger C, Oehmen E, Koopmann E, Müller O, Müller P, Kahmann R, Bölker M, Schreier PH (2005) A H2O2-producing glyoxal oxidase is required for filamentous growth and pathogenicity in Ustilago maydis. Mol Genet Genomics 272(6):639–650. https://doi.org/10.1007/s00438-004-1085-6

    Article  CAS  PubMed  Google Scholar 

  68. Kersten PJ, Cullen D (1993) Cloning and characterization of cDNA encoding glyoxal oxidase, a H2O2-producing enzyme from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Proc Natl Acad Sci U S A 90(15):7411–7413. https://doi.org/10.1073/pnas.90.15.7411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sun L, Bulter T, Alcalde M, Petrounia IP, Arnold FH (2002) Modification of galactose oxidase to introduce glucose 6-oxidase activity. ChemBioChem 3(8):781–783. https://doi.org/10.1002/1439-7633(20020802)3:8%3c781::AID-CBIC781%3e3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  70. Sun L, Petrounia IP, Yagasaki M, Bandara G, Arnold FH (2001) Expression and stabilization of galactose oxidase in Escherichia coli by directed evolution. Protein Eng, Des Sel 14(9):699–704. https://doi.org/10.1093/protein/14.9.699

    Article  CAS  Google Scholar 

  71. Deacon SE, McPherson MJ (2011) Enhanced expression and purification of fungal galactose oxidase in Escherichia coli and use for analysis of a saturation mutagenesis library. ChemBioChem 12(4):593–601. https://doi.org/10.1002/cbic.201000634

    Article  CAS  PubMed  Google Scholar 

  72. Deacon SE, Mahmoud K, Spooner RK, Firbank SJ, Knowles PF, Phillips SEV, McPherson MJ (2004) Enhanced fructose oxidase activity in a galactose oxidase variant. ChemBioChem 5(7):972–979. https://doi.org/10.1002/cbic.200300810

    Article  CAS  PubMed  Google Scholar 

  73. Rogers MS, Tyler EM, Akyumani N, Kurtis CR, Spooner RK, Deacon SE, Tamber S, Firbank SJ, Mahmoud K, Knowles PF, Phillips SEV, McPherson MJ, Dooley DM (2007) The stacking tryptophan of galactose oxidase: a second-coordination sphere residue that has profound effects on tyrosyl radical behavior and enzyme catalysis. Biochemistry 46(15):4606–4618. https://doi.org/10.1021/bi062139d

    Article  CAS  PubMed  Google Scholar 

  74. Wilkinson D, Akumanyi N, Hurtado-Guerrero R, Dawkes H, Knowles PF, Phillips SEV, McPherson MJ (2004) Structural and kinetic studies of a series of mutants of galactose oxidase identified by directed evolution. Protein Eng, Des Sel 17(2):141–148. https://doi.org/10.1093/protein/gzh018

    Article  CAS  Google Scholar 

  75. Escalettes F, Turner NJ (2008) Directed evolution of galactose oxidase: generation of enantioselective secondary alcohol oxidases. ChemBioChem 9(6):857–860. https://doi.org/10.1002/cbic.200700689

    Article  CAS  PubMed  Google Scholar 

  76. Rannes JB, Ioannou A, Willies SC, Grogan G, Behrens C, Flitsch SL, Turner NJ (2011) Glycoprotein labeling using engineered variants of galactose oxidase obtained by directed evolution. J Am Chem Soc 133(22):8436–8439. https://doi.org/10.1021/ja2018477

    Article  CAS  PubMed  Google Scholar 

  77. Lippow SM, Moon TS, Basu S, Yoon S-H, Li X, Chapman BA, Robison K, Lipovšek D, Prather KLJ (2010) Engineering enzyme specificity using computational design of a defined-sequence library. Chem Biol 17(12):1306–1315. https://doi.org/10.1016/j.chembiol.2010.10.012

    Article  CAS  PubMed  Google Scholar 

  78. Gilbert HJ, Knox JP, Boraston AB (2013) Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules. Curr Opin Struct Biol 23(5):669–677. https://doi.org/10.1016/j.sbi.2013.05.005

    Article  CAS  PubMed  Google Scholar 

  79. Spadiut O, Olsson L, Brumer H (2010) A comparative summary of expression systems for the recombinant production of galactose oxidase. Microb Cell Fact 9(1):68. https://doi.org/10.1186/1475-2859-9-68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Whittaker MM, Ballou DP, Whittaker JW (1998) Kinetic isotope effects as probes of the mechanism of galactose oxidase. Biochemistry 37(23):8426–8436. https://doi.org/10.1021/bi980328t

    Article  CAS  PubMed  Google Scholar 

  81. Avigad G, Amaral D, Asensio C, Horecker BL (1962) The D-galactose oxidase of Polyporus circinatus. J Biol Chem 237(9):2736–2743. https://doi.org/10.1016/S0021-9258(18)60220-0

    Article  CAS  PubMed  Google Scholar 

  82. Cooper JAD, Smith W, Bacila M, Medina H (1959) Galactose oxidase from Polyporus circinatus, Fr. J Biol Chem 234(3):445–448. https://doi.org/10.1016/S0021-9258(18)70223-8

    Article  CAS  PubMed  Google Scholar 

  83. Whittaker MM, Whittaker JW (1988) The active site of galactose oxidase. J Biol Chem 263(13):6074–6080. https://doi.org/10.1016/S0021-9258(18)68751-4

    Article  CAS  PubMed  Google Scholar 

  84. Xu F, Golightly EJ, Schneider P, Berka RM, Brown KM, Johnstone JA, Baker DH, Fuglsang CC, Brown SH, Svendsen A, Klotz AV (2000) Expression and characterization of a recombinant Fusarium spp. galactose oxidase. Appl Biochem Biotechnol 88(1):23. https://doi.org/10.1385/ABAB:88:1-3:023

    Article  CAS  Google Scholar 

  85. Henrissat B, Teeri TT, Warren RA (1998) A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett 425(2):352–354. https://doi.org/10.1016/S0014-5793(98)00265-8

    Article  CAS  PubMed  Google Scholar 

  86. Whittaker MM, Whittaker JW (2001) Catalytic reaction profile for alcohol oxidation by galactose oxidase. Biochemistry 40(24):7140–7148. https://doi.org/10.1021/bi010303l

    Article  CAS  PubMed  Google Scholar 

  87. Carro J, Ferreira P, Rodríguez L, Prieto A, Serrano A, Balcells B, Ardá A, Jiménez-Barbero J, Gutiérrez A, Ullrich R, Hofrichter M, Martínez AT (2015) 5-hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase. FEBS J 282(16):3218–3229. https://doi.org/10.1111/febs.13177

    Article  CAS  PubMed  Google Scholar 

  88. Forget SM, Xia F, Hein JE, Brumer H (2020) Determination of biocatalytic parameters of a copper radical oxidase using real-time reaction progress monitoring. Org Biomol Chem 18(11):2076–2084. https://doi.org/10.1039/C9OB02757B

    Article  CAS  PubMed  Google Scholar 

  89. Toftgaard Pedersen A, Birmingham WR, Rehn G, Charnock SJ, Turner NJ, Woodley JM (2015) Process requirements of galactose oxidase catalyzed oxidation of alcohols. Org Process Res Dev 19(11):1580–1589. https://doi.org/10.1021/acs.oprd.5b00278

    Article  CAS  Google Scholar 

  90. Pagliaro M, Rossi M (2010) Glycerol: Properties and production. The Future of Glycerol. Royal Society of Chemistry’s, Cambridge, UK. https://doi.org/10.1039/9781849731089

  91. Klibanov AM, Alberti BN, Marletta MA (1982) Stereospecific oxidation of aliphatic alcohols catalyzed by galactose oxidase. Biochem Biophys Res Commun 108(2):804–808. https://doi.org/10.1016/0006-291X(82)90900-7

    Article  CAS  PubMed  Google Scholar 

  92. Ito N, Phillips SEV, Yadav KDS, Knowles PF (1994) Crystal structure of a free radical enzyme, Galactose Oxidase. J Mol Biol 238(5):794–814. https://doi.org/10.1006/jmbi.1994.1335

    Article  CAS  PubMed  Google Scholar 

  93. Chaplin AK, Petrus MLC, Mangiameli G, Hough MA, Svistunenko DA, Nicholls P, Claessen D, Vijgenboom E, Worrall JAR (2015) GlxA is a new structural member of the radical copper oxidase family and is required for glycan deposition at hyphal tips and morphogenesis of Streptomyces lividans. Biochem J 469(3):433–444. https://doi.org/10.1042/bj20150190

    Article  CAS  PubMed  Google Scholar 

  94. Chaplin AK, Svistunenko DA, Hough MA, Wilson MT, Vijgenboom E, Worrall JA (2017) Active-site maturation and activity of the copper-radical oxidase GlxA are governed by a tryptophan residue. Biochem J 474(5):809–825. https://doi.org/10.1042/bcj20160968

    Article  CAS  PubMed  Google Scholar 

  95. Dijkman WP, Fraaije MW (2014) Discovery and Characterization of a 5-Hydroxymethylfurfural Oxidase from Methylovorus sp. Strain MP688. Appl Environ Microbiol 80(3):1082–1090. https://doi.org/10.1128/AEM.03740-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kadowaki MAS, Godoy MOd, Kumagai PS, Costa-Filho AJd, Mort A, Prade RA, Polikarpov I (2018) Characterization of a new glyoxal oxidase from the thermophilic fungus Myceliophthora thermophila M77: Hydrogen peroxide production retained in 5-Hydroxymethylfurfural oxidation. Catalysts 8(10):476. https://doi.org/10.3390/catal8100476

    Article  CAS  Google Scholar 

  97. Daou M, Yassine B, Wikee S, Record E, Duprat F, Bertrand E, Faulds CB (2019) Pycnoporus cinnabarinus glyoxal oxidases display differential catalytic efficiencies on 5-hydroxymethylfurfural and its oxidized derivatives. Fungal Biol Biotechnol 6(1):4. https://doi.org/10.1186/s40694-019-0067-8

    Article  PubMed  PubMed Central  Google Scholar 

  98. Grigoriev IV, Cullen D, Goodwin SB, Hibbett D, Jeffries TW, Kubicek CP, Kuske C, Magnuson JK, Martin F, Spatafora JW, Tsang A, Baker SE (2011) Fueling the future with fungal genomics. Mycology 2(3):192–209. https://doi.org/10.1080/21501203.2011.584577

    Article  Google Scholar 

  99. Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I (2013) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42(D1):D699–D704. https://doi.org/10.1093/nar/gkt1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE). https://doi.org/10.1109/GCE.2010.5676129.

  102. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinf 10(1):421. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  Google Scholar 

  104. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858. https://doi.org/10.1038/nprot.2015.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Haon M, Grisel S, Navarro D, Gruet A, Berrin J-G, Bignon C (2015) Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris. Front Microbiol 6(1002). https://doi.org/10.3389/fmicb.2015.01002

  107. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med 26(9):1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  CAS  Google Scholar 

  108. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  109. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Daou M, Piumi F, Cullen D, Record E, Faulds CB (2016) Heterologous production and characterization of two glyoxal oxidases from Pycnoporus cinnabarinus. Appl Environ Microbiol 82(16):4867–4875. https://doi.org/10.1128/AEM.00304-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cordeiro FA, Faria CB, Barbosa-Tessmann IP (2010) Identification of new galactose oxidase genes in Fusarium spp. J Basic Microbiol 50(6):527–537. https://doi.org/10.1002/jobm.201000078

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Maria Ezhova and Dr. Zhicheng (Paul) Xia (UBC Department of Chemistry) for support with NMR data acquisition.

Funding

Funding is gratefully acknowledged from: The Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants RGPIN 435223-13 and RGPIN-2018–03892; NSERC Strategic Partnership Grant NETGP 451431-13 for the “NSERC Industrial Biocatalysis Network”; NSERC Strategic Partnership Grant (STPGP 493781–16) and joint Agence Nationale de la Recherche grant (ANR-17-CE07-0047), “FUNTASTIC—Fungal copper radical oxidases as new biocatalysts for the valorization of biomass carbohydrates and alcohols”; and Genome Canada/Genome BC/Ontario Genomics/Genome Quebec for the Large-Scale Applied Research Project (LSARP, project #10405), “SYNBIOMICS—Functional genomics and techno-economic models for advanced biopolymer synthesis”).

Author information

Authors and Affiliations

Authors

Contributions

MC performed enzyme cloning, biochemistry, enzyme kinetic and product analysis, all corresponding data analysis, and drafted the manuscript; YM performed sequence analysis, bioinformatics, and enzyme cloning, wrote portions of manuscript, and revised the manuscript; DR and MH performed recombinant protein production and initial kinetic measurements; PM and JH assisted with the glycerol oxidation experiments; ML and JGB assisted with data analysis; and HB coordinated research, analyzed data, and revised the manuscript with input from all the authors.

Corresponding author

Correspondence to Harry Brumer.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 8025 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cleveland, M.E., Mathieu, Y., Ribeaucourt, D. et al. A survey of substrate specificity among Auxiliary Activity Family 5 copper radical oxidases . Cell. Mol. Life Sci. 78, 8187–8208 (2021). https://doi.org/10.1007/s00018-021-03981-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03981-w

Keywords

Navigation