Skip to main content

Advertisement

Log in

Lipids in the cell: organisation regulates function

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Adapted from Sorice et al. [128]

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

Cav-1:

Caveolin-1

CDP-DAG:

Cytidine diphosphate-diacylglycerol

CL:

Cardiolipin

CMA:

Chaperone-mediated autophagy

ER:

Endoplasmic reticulum

FCS:

Fluorescence correlation spectroscopy

FMM:

Functional membrane microdomains

FRET:

Förster resonance energy transfer

GSH:

Reduced glutathione

GSSG:

Oxidised glutathione

GP:

Glutathione peroxidase

Hsp70:

Heat shock protein 70

LDs:

Lipid droplets

MT:

Metallothionein

mTOR:

Mammalian target of rapamycin

NADP+ :

Oxidised nicotinamide adenine dinucleotide phosphate

NADPH:

Reduced nicotinamide adenine dinucleotide phosphate

NO:

Nitric oxide

NOS:

Nitric oxide synthase

PA:

Phosphatidic acid

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

PI3P:

Phosphatidylinositol-3-phosphate

PI-PLC:

Phosphatidylinositol-specific phospholipase C

PLEP:

Phospholipid exchange protein

PLTP:

Phospholipid transfer protein

PrPc :

Cellular prion protein

PS:

Phosphatidylserine

ROS:

Reactive oxygen species

S1P:

Sphingosine-1-phosphate

SCP:

Sterol carrier protein

SOD:

Superoxide dismutase

SMase:

Sphingomyelinase

SPH:

Sphingosine

TNFR1:

Tumour necrosis factor receptor 1

References

  1. Muro E, Atilla-Gokcumen GE, Eggert US (2014) Lipids in cell biology: how can we understand them better? Mol Biol Cell 25:1819–1823

    Article  PubMed  PubMed Central  Google Scholar 

  2. Klose C, Surma MA, Simons K (2013) Organellar lipidomics—background and perspectives. Curr Opin Cell Biol 25:406–413

    Article  CAS  PubMed  Google Scholar 

  3. Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9:162–176

    Article  CAS  PubMed  Google Scholar 

  4. Das A, Brown MS, Anderson DD et al (2014) Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. Elife 3:e02882

    Article  PubMed Central  CAS  Google Scholar 

  5. Sarkar S, Carroll B, Buganim Y et al (2013) Impaired autophagy in the lipid-storage disorder Niemann–Pick type C1 disease. Cell Rep 5:1302–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maxfield FR, Tabas I (2005) Role of cholesterol and lipid organization in disease. Nature 438:612–621

    Article  CAS  PubMed  Google Scholar 

  7. Cascianelli G, Villani M, Tosti M et al (2008) Lipid microdomains in cell nucleus. Mol Biol Cell 19:5289–5295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Albi E, Villani M (2009) Nuclear lipid microdomains regulate cell function. Commun Integr Biol 2:23–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garofalo T, Manganelli V, Grasso M et al (2015) Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis. Apoptosis 20:621–634

    Article  CAS  PubMed  Google Scholar 

  10. Sorice M, Mattei V, Matarrese P et al (2012) Dynamics of mitochondrial raft-like microdomains in cell life and death. Commun Integr Biol 5:217–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ilangumaran S, Hoessli DC (1998) Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem J 335(Pt 2):433–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vilimanovich U, Bosnjak M, Bogdanovic A et al (2015) Statin-mediated inhibition of cholesterol synthesis induces cytoprotective autophagy in human leukemic cells. Eur J Pharmacol 765:415–428

    Article  CAS  PubMed  Google Scholar 

  13. Stancu C, Sima A (2001) Statins: mechanism of action and effects. J Cell Mol Med 5:378–387

    Article  CAS  PubMed  Google Scholar 

  14. Mahammad S, Parmryd I (2015) Cholesterol depletion using methyl-beta-cyclodextrin. Methods Mol Biol 1232:91–102

    Article  CAS  PubMed  Google Scholar 

  15. Bramkamp M, Lopez D (2015) Exploring the existence of lipid rafts in bacteria. Microbiol Mol Biol Rev 79:81–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barak I, Muchova K (2013) The role of lipid domains in bacterial cell processes. Int J Mol Sci 14:4050–4065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lopez D, Kolter R (2010) Functional microdomains in bacterial membranes. Genes Dev 24:1893–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lopez D, Koch G (2017) Exploring functional membrane microdomains in bacteria: an overview. Curr Opin Microbiol 36:76–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. LaRocca TJ, Pathak P, Chiantia S et al (2013) Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts. PLoS Pathog 9:e1003353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  21. Gupta N, Wollscheid B, Watts JD et al (2006) Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics. Nat Immunol 7:625–633

    Article  CAS  PubMed  Google Scholar 

  22. Foster LJ, De Hoog CL, Mann M (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci USA 100:5813–5818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamada E (1955) The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1:445–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cohen AW, Park DS, Woodman SE et al (2003) Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol 284:C457–C474

    Article  CAS  PubMed  Google Scholar 

  25. Park DS, Cohen AW, Frank PG et al (2003) Caveolin-1 null (−/−) mice show dramatic reductions in life span. Biochemistry 42:15124–15131

    Article  CAS  PubMed  Google Scholar 

  26. Razani B, Engelman JA, Wang XB et al (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276:38121–38138

    Article  CAS  PubMed  Google Scholar 

  27. Chang S-H, Feng D, Nagy JA et al (2009) Vascular permeability and pathological angiogenesis in caveolin-1-null mice. Am J Pathol 175:1768–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang XM, Zhang Y, Kim HP et al (2006) Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis. J Exp Med 203:2895–2906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hino M, Doihara H, Kobayashi K et al (2003) Caveolin-1 as tumor suppressor gene in breast cancer. Surg Today 33:486–490

    CAS  PubMed  Google Scholar 

  30. Engelman JA, Zhang XL, Razani B et al (1999) p42/44 MAP kinase-dependent and -independent signaling pathways regulate caveolin-1 gene expression. Activation of Ras-MAP kinase and protein kinase a signaling cascades transcriptionally down-regulates caveolin-1 promoter activity. J Biol Chem 274:32333–32341

    Article  CAS  PubMed  Google Scholar 

  31. Rimessi A, Marchi S, Patergnani S, Pinton P (2014) H-Ras-driven tumoral maintenance is sustained through caveolin-1-dependent alterations in calcium signaling. Oncogene 33:2329–2340

    Article  CAS  PubMed  Google Scholar 

  32. Li S, Couet J, Lisanti MP (1996) Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271:29182–29190

    Article  CAS  PubMed  Google Scholar 

  33. Li S, Seitz R, Lisanti MP (1996) Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem 271:3863–3868

    Article  CAS  PubMed  Google Scholar 

  34. Gottlieb-Abraham E, Shvartsman DE, Donaldson JC et al (2013) Src-mediated caveolin-1 phosphorylation affects the targeting of active Src to specific membrane sites. Mol Biol Cell 24:3881–3895

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chatterjee M, Ben-Josef E, Thomas DG et al (2015) Caveolin-1 is associated with tumor progression and confers a multi-modality resistance phenotype in pancreatic cancer. Sci Rep 5:10867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Arpaia E, Blaser H, Quintela-Fandino M et al (2012) The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk. Oncogene 31:884–896

    Article  CAS  PubMed  Google Scholar 

  37. Thomas S, Overdevest JB, Nitz MD et al (2011) Src and caveolin-1 reciprocally regulate metastasis via a common downstream signaling pathway in bladder cancer. Cancer Res 71:832–841

    Article  CAS  PubMed  Google Scholar 

  38. Lee H, Park DS, Razani B et al (2002) Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (−/−) null mice show mammary epithelial cell hyperplasia. Am J Pathol 161:1357–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wiechen K, Diatchenko L, Agoulnik A et al (2001) Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am J Pathol 159:1635–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Racine C, Belanger M, Hirabayashi H et al (1999) Reduction of caveolin 1 gene expression in lung carcinoma cell lines. Biochem Biophys Res Commun 255:580–586

    Article  CAS  PubMed  Google Scholar 

  41. Bender FC, Reymond MA, Bron C, Quest AF (2000) Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Res 60:5870–5878

    CAS  PubMed  Google Scholar 

  42. Polyak E, Boopathi E, Mohanan S et al (2009) Alterations in caveolin expression and ultrastructure after bladder smooth muscle hypertrophy. J Urol 182:2497–2503

    Article  CAS  PubMed  Google Scholar 

  43. Kato K, Hida Y, Miyamoto M et al (2002) Overexpression of caveolin-1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Cancer 94:929–933

    Article  CAS  PubMed  Google Scholar 

  44. Ito Y, Yoshida H, Nakano K et al (2002) Caveolin-1 overexpression is an early event in the progression of papillary carcinoma of the thyroid. Br J Cancer 86:912–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tahir SA, Ren C, Timme TL et al (2003) Development of an immunoassay for serum caveolin-1: a novel biomarker for prostate cancer. Clin Cancer Res 9:3653–3659

    CAS  PubMed  Google Scholar 

  46. Allen JA, Halverson-Tamboli RA, Rasenick MM (2007) Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 8:128–140

    Article  CAS  PubMed  Google Scholar 

  47. Staubach S, Hanisch F-G (2011) Lipid rafts: signaling and sorting platforms of cells and their roles in cancer. Expert Rev Proteom 8:263–277

    Article  CAS  Google Scholar 

  48. Stuermer CAO (2010) The reggie/flotillin connection to growth. Trends Cell Biol 20:6–13

    Article  CAS  PubMed  Google Scholar 

  49. Stuermer CAO (2011) Reggie/flotillin and the targeted delivery of cargo. J Neurochem 116:708–713

    Article  CAS  PubMed  Google Scholar 

  50. Babuke T, Tikkanen R (2007) Dissecting the molecular function of reggie/flotillin proteins. Eur J Cell Biol 86:525–532

    Article  CAS  PubMed  Google Scholar 

  51. Patel HH, Insel PA (2009) Lipid rafts and caveolae and their role in compartmentation of redox signaling. Antioxid Redox Signal 11:1357–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li P-L, Gulbins E (2007) Lipid rafts and redox signaling. Antioxid Redox Signal 9:1411–1415

    Article  CAS  PubMed  Google Scholar 

  53. Catalgol B, Kartal Ozer N (2010) Lipid rafts and redox regulation of cellular signaling in cholesterol induced atherosclerosis. Curr Cardiol Rev 6:309–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guichard C, Pedruzzi E, Dewas C et al (2005) Interleukin-8-induced priming of neutrophil oxidative burst requires sequential recruitment of NADPH oxidase components into lipid rafts. J Biol Chem 280:37021–37032

    Article  CAS  PubMed  Google Scholar 

  55. Shao D, Segal AW, Dekker LV (2003) Lipid rafts determine efficiency of NADPH oxidase activation in neutrophils. FEBS Lett 550:101–106

    Article  CAS  PubMed  Google Scholar 

  56. Li J-M, Shah AM (2003) ROS generation by nonphagocytic NADPH oxidase: potential relevance in diabetic nephropathy. J Am Soc Nephrol 14:S221–S226

    Article  CAS  PubMed  Google Scholar 

  57. Yang H-C, Cheng M-L, Ho H-Y, Chiu DT-Y (2011) The microbicidal and cytoregulatory roles of NADPH oxidases. Microbes Infect 13:109–120

    Article  CAS  PubMed  Google Scholar 

  58. Oakley FD, Abbott D, Li Q, Engelhardt JF (2009) Signaling components of redox active endosomes: the redoxosomes. Antioxid Redox Signal 11:1313–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vilhardt F, van Deurs B (2004) The phagocyte NADPH oxidase depends on cholesterol-enriched membrane microdomains for assembly. EMBO J 23:739–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Beneteau M, Pizon M, Chaigne-Delalande B et al (2008) Localization of Fas/CD95 into the lipid rafts on down-modulation of the phosphatidylinositol 3-kinase signaling pathway. Mol Cancer Res 6:604–613

    Article  CAS  PubMed  Google Scholar 

  61. Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3:a004697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Scheel-Toellner D, Wang K, Singh R et al (2002) The death-inducing signalling complex is recruited to lipid rafts in Fas-induced apoptosis. Biochem Biophys Res Commun 297:876–879

    Article  CAS  PubMed  Google Scholar 

  63. Gajate C, Mollinedo F (2011) Lipid rafts and Fas/CD95 signaling in cancer chemotherapy. Recent Pat Anticancer Drug Discov 6:274–283

    Article  CAS  PubMed  Google Scholar 

  64. Smith EL, Schuchman EH (2008) The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases. FASEB J Off Publ Fed Am Soc Exp Biol 22:3419–3431

    CAS  Google Scholar 

  65. Zhang AY, Yi F, Jin S et al (2007) Acid sphingomyelinase and its redox amplification in formation of lipid raft redox signaling platforms in endothelial cells. Antioxid Redox Signal 9:817–828

    Article  CAS  PubMed  Google Scholar 

  66. Yi F, Zhang AY, Janscha JL et al (2004) Homocysteine activates NADH/NADPH oxidase through ceramide-stimulated Rac GTPase activity in rat mesangial cells. Kidney Int 66:1977–1987

    Article  CAS  PubMed  Google Scholar 

  67. Yang B, Oo TN, Rizzo V (2006) Lipid rafts mediate H2O2 prosurvival effects in cultured endothelial cells. FASEB J Off Publ Fed Am Soc Exp Biol 20:1501–1503

    CAS  Google Scholar 

  68. Rosenberger CM, Brumell JH, Finlay BB (2000) Microbial pathogenesis: lipid rafts as pathogen portals. Curr Biol 10:R823–R825

    Article  CAS  PubMed  Google Scholar 

  69. Manes S, del Real G, Martinez-A C (2003) Pathogens: raft hijackers. Nat Rev Immunol 3:557–568

    Article  CAS  PubMed  Google Scholar 

  70. Le Bouguenec C (2005) Adhesins and invasins of pathogenic Escherichia coli. Int J Med Microbiol 295:471–478

    Article  PubMed  CAS  Google Scholar 

  71. Preta G, Lotti V, Cronin JG, Sheldon IM (2015) Protective role of the dynamin inhibitor Dynasore against the cholesterol-dependent cytolysin of Trueperella pyogenes. FASEB J Off Publ Fed Am Soc Exp Biol 29:1516–1528

    CAS  Google Scholar 

  72. Taylor SD, Sanders ME, Tullos NA et al (2013) The cholesterol-dependent cytolysin pneumolysin from Streptococcus pneumoniae binds to lipid raft microdomains in human corneal epithelial cells. PLoS One 8:e61300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gekara NO, Jacobs T, Chakraborty T, Weiss S (2005) The cholesterol-dependent cytolysin listeriolysin O aggregates rafts via oligomerization. Cell Microbiol 7:1345–1356

    Article  CAS  PubMed  Google Scholar 

  74. Gatfield J, Pieters J (2000) Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288:1647–1650

    Article  CAS  PubMed  Google Scholar 

  75. Norkin LC (1999) Simian virus 40 infection via MHC class I molecules and caveolae. Immunol Rev 168:13–22

    Article  CAS  PubMed  Google Scholar 

  76. Bavari S, Bosio CM, Wiegand E et al (2002) Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med 195:593–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mikulak J, Singhal PC (2010) HIV-1 entry into human podocytes is mediated through lipid rafts. Kidney Int 77:72–74

    Article  CAS  PubMed  Google Scholar 

  78. Campbell SM, Crowe SM, Mak J (2001) Lipid rafts and HIV-1: from viral entry to assembly of progeny virions. J Clin Virol 22:217–227

    Article  CAS  PubMed  Google Scholar 

  79. Lorizate M, Sachsenheimer T, Glass B et al (2013) Comparative lipidomics analysis of HIV-1 particles and their producer cell membrane in different cell lines. Cell Microbiol 15:292–304

    Article  CAS  PubMed  Google Scholar 

  80. Olliaro P, Castelli F (1997) Plasmodium falciparum: an electron microscopy study of caveolae and trafficking between the parasite and the extracellular medium. Int J Parasitol 27:1007–1012

    Article  CAS  PubMed  Google Scholar 

  81. Yu J, Fischman DA, Steck TL (1973) Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct 1:233–248

    Article  CAS  PubMed  Google Scholar 

  82. Schuck S, Honsho M, Ekroos K et al (2003) Resistance of cell membranes to different detergents. Proc Natl Acad Sci USA 100:5795–5800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Drab M, Verkade P, Elger M et al (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452

    Article  CAS  PubMed  Google Scholar 

  84. Schubert W, Frank PG, Woodman SE et al (2002) Microvascular hyperpermeability in caveolin-1 (−/−) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem 277:40091–40098

    Article  CAS  PubMed  Google Scholar 

  85. Deng C, Zhang P, Harper JW et al (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–684

    Article  CAS  PubMed  Google Scholar 

  86. Zidovetzki R, Levitan I (2007) Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta 1768:1311–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bonifacio A, Cervo S, Sergo V (2015) Label-free surface-enhanced Raman spectroscopy of biofluids: fundamental aspects and diagnostic applications. Anal Bioanal Chem 407:8265–8277

    Article  CAS  PubMed  Google Scholar 

  88. Suga K, Yoshida T, Ishii H, Okamoto Y, Nagao D, Konno M, Umakoshi H (2015) Membrane surface-enhanced raman spectroscopy for sensitive detection of molecular behavior of lipid assemblies. Anal Chem 87(9):4772–4780

    Article  CAS  PubMed  Google Scholar 

  89. Shin D-M, Yang C-S, Lee J-Y et al (2008) Mycobacterium tuberculosis lipoprotein-induced association of TLR2 with protein kinase C zeta in lipid rafts contributes to reactive oxygen species-dependent inflammatory signalling in macrophages. Cell Microbiol 10:1893–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Vieira FS, Correa G, Einicker-Lamas M, Coutinho-Silva R (2010) Host-cell lipid rafts: a safe door for micro-organisms? Biol Cell 102:391–407

    Article  CAS  PubMed  Google Scholar 

  91. Seveau S, Bierne H, Giroux S et al (2004) Role of lipid rafts in E-cadherin- and HGF-R/Met-mediated entry of Listeria monocytogenes into host cells. J Cell Biol 166:743–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cruz KD, Cruz TA, Veras de Moraes G et al (2014) Disruption of lipid rafts interferes with the interaction of Toxoplasma gondii with macrophages and epithelial cells. Biomed Res Int 2014:687835

    PubMed  PubMed Central  Google Scholar 

  93. Li YC, Park MJ, Ye S-K et al (2006) Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol 168:1105–1107

    Google Scholar 

  94. Onodera R, Motoyama K, Okamatsu A et al (2013) Involvement of cholesterol depletion from lipid rafts in apoptosis induced by methyl-beta-cyclodextrin. Int J Pharm 452:116–123

    Article  CAS  PubMed  Google Scholar 

  95. Heung LJ, Luberto C, Del Poeta M (2006) Role of sphingolipids in microbial pathogenesis. Infect Immun 74:28–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gulbins E, Dreschers S, Wilker B, Grassme H (2004) Ceramide, membrane rafts and infections. J Mol Med (Berl) 82:357–363

    Article  CAS  Google Scholar 

  97. Bagam P, Singh DP, Inda ME, Batra S (2017) Unraveling the role of membrane microdomains during microbial infections. Cell Biol Toxicol 33:429–455

    Article  PubMed  Google Scholar 

  98. McConnell HM, Tamm LK, Weis RM (1984) Periodic structures in lipid monolayer phase transitions. Proc Natl Acad Sci USA 81:3249–3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Simon A, Girard-Egrot A, Sauter F et al (2007) Formation and stability of a suspended biomimetic lipid bilayer on silicon submicrometer-sized pores. J Colloid Interface Sci 308:337–343

    Article  CAS  PubMed  Google Scholar 

  100. Heitz BA, Xu J, Jones IW et al (2011) Polymerized planar suspended lipid bilayers for single ion channel recordings: comparison of several dienoyl lipids. Langmuir 27:1882–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tamm LK, McConnell HM (1985) Supported phospholipid bilayers. Biophys J 47:105–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Budvytyte R, Valincius G, Niaura G et al (2013) Structure and properties of tethered bilayer lipid membranes with unsaturated anchor molecules. Langmuir 29:8645–8656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cranfield C, Carne S, Martinac B, Cornell B (2015) The assembly and use of tethered bilayer lipid membranes (tBLMs). Methods Mol Biol 1232:45–53

    Article  CAS  PubMed  Google Scholar 

  104. Preta G, Jankunec M, Heinrich F et al (2016) Tethered bilayer membranes as a complementary tool for functional and structural studies: the pyolysin case. Biochim Biophys Acta 1858:2070–2080

    Article  CAS  PubMed  Google Scholar 

  105. Kahya N, Brown DA, Schwille P (2005) Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles. Biochemistry 44:7479–7489

    Article  CAS  PubMed  Google Scholar 

  106. Veatch SL, Keller SL (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys J 85:3074–3083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Simons K, Vaz WLC (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–295

    Article  CAS  PubMed  Google Scholar 

  108. Dietrich C, Bagatolli LA, Volovyk ZN et al (2001) Lipid rafts reconstituted in model membranes. Biophys J 80:1417–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dupuy AD, Engelman DM (2008) Protein area occupancy at the center of the red blood cell membrane. Proc Natl Acad Sci USA 105:2848–2852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Levental KR, Levental I (2015) Giant plasma membrane vesicles: models for understanding membrane organization. Curr Top Membr 75:25–57

    Article  PubMed  Google Scholar 

  111. Levental I, Byfield FJ, Chowdhury P et al (2009) Cholesterol-dependent phase separation in cell-derived giant plasma-membrane vesicles. Biochem J 424:163–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sezgin E, Kaiser H-J, Baumgart T et al (2012) Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat Protoc 7:1042–1051

    Article  CAS  PubMed  Google Scholar 

  113. Ray S, Taylor M, Banerjee T et al (2012) Lipid rafts alter the stability and activity of the cholera toxin A1 subunit. J Biol Chem 287:30395–30405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gupta N, DeFranco AL (2003) Visualizing lipid raft dynamics and early signaling events during antigen receptor-mediated B-lymphocyte activation. Mol Biol Cell 14:432–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pathak P, London E (2015) The effect of membrane lipid composition on the formation of lipid ultrananodomains. Biophys J 109:1630–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Engel S, Scolari S, Thaa B et al (2010) FLIM-FRET and FRAP reveal association of influenza virus haemagglutinin with membrane rafts. Biochem J 425:567–573

    Article  CAS  PubMed  Google Scholar 

  117. Sachl R, Johansson LB-A, Hof M (2012) Forster resonance energy transfer (FRET) between heterogeneously distributed probes: application to lipid nanodomains and pores. Int J Mol Sci 13:16141–16156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rao M, Mayor S (2005) Use of Forster’s resonance energy transfer microscopy to study lipid rafts. Biochim Biophys Acta 1746:221–233

    Article  CAS  PubMed  Google Scholar 

  119. Loura L, Prieto M (2011) FRET in membrane biophysics: an overview. Front Physiol 2:82. https://doi.org/10.3389/fphys.2011.00082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chiantia S, Ries J, Schwille P (2009) Fluorescence correlation spectroscopy in membrane structure elucidation. Biochim Biophys Acta 1788:225–233

    Article  CAS  PubMed  Google Scholar 

  121. Kahya N, Schwille P (2006) Fluorescence correlation studies of lipid domains in model membranes. Mol Membr Biol 23:29–39

    Article  CAS  PubMed  Google Scholar 

  122. He H-T, Marguet D (2011) Detecting nanodomains in living cell membrane by fluorescence correlation spectroscopy. Annu Rev Phys Chem 62:417–436

    Article  CAS  PubMed  Google Scholar 

  123. Sezgin E, Levental I, Mayor S, Eggeling C (2017) The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 18:361–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sezgin E, Levental I, Grzybek M et al (2012) Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim Biophys Acta 1818:1777–1784

    Article  CAS  PubMed  Google Scholar 

  125. Kinoshita M, Suzuki KGN, Matsumori N et al (2017) Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs. J Cell Biol 216:1183–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kraft ML (2016) Sphingolipid organization in the plasma membrane and the mechanisms that influence it. Front cell Dev Biol 4:154

    PubMed  Google Scholar 

  127. Boslem E, Weir JM, MacIntosh G et al (2013) Alteration of endoplasmic reticulum lipid rafts contributes to lipotoxicity in pancreatic beta-cells. J Biol Chem 288:26569–26582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sorice M, Manganelli V, Matarrese P et al (2009) Cardiolipin-enriched raft-like microdomains are essential activating platforms for apoptotic signals on mitochondria. FEBS Lett 583:2447–2450

    Article  CAS  PubMed  Google Scholar 

  129. Scorrano L (2008) Caspase-8 goes cardiolipin: a new platform to provide mitochondria with microdomains of apoptotic signals? J Cell Biol 183:579–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. El Khoury M, Swain J, Sautrey G et al (2017) Targeting bacterial cardiolipin enriched microdomains: an antimicrobial strategy used by amphiphilic aminoglycoside antibiotics. Sci Rep 7:10697

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ciarlo L, Manganelli V, Garofalo T et al (2010) Association of fission proteins with mitochondrial raft-like domains. Cell Death Differ 17:1047–1058

    Article  CAS  PubMed  Google Scholar 

  132. Ziolkowski W, Szkatula M, Nurczyk A et al (2010) Methyl-beta-cyclodextrin induces mitochondrial cholesterol depletion and alters the mitochondrial structure and bioenergetics. FEBS Lett 584:4606–4610

    Article  CAS  PubMed  Google Scholar 

  133. Krols M, van Isterdael G, Asselbergh B et al (2016) Mitochondria-associated membranes as hubs for neurodegeneration. Acta Neuropathol 131:505–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ciarlo L, Manganelli V, Matarrese P et al (2012) Raft-like microdomains play a key role in mitochondrial impairment in lymphoid cells from patients with Huntington’s disease. J Lipid Res 53:2057–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sorice M, Garofalo T, Misasi R et al (2012) Ganglioside GD3 as a raft component in cell death regulation. Anticancer Agents Med Chem 12:376–382

    Article  CAS  PubMed  Google Scholar 

  136. Mattei V, Matarrese P, Garofalo T et al (2011) Recruitment of cellular prion protein to mitochondrial raft-like microdomains contributes to apoptosis execution. Mol Biol Cell 22:4842–4853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sorice M, Mattei V, Tasciotti V et al (2012) Trafficking of PrPc to mitochondrial raft-like microdomains during cell apoptosis. Prion 6:354–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Faris R, Moore RA, Ward A et al (2017) Cellular prion protein is present in mitochondria of healthy mice. Sci Rep 7:41556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Thanan R, Oikawa S, Hiraku Y et al (2014) Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci 16:193–217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Guo C, Sun L, Chen X, Zhang D (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8:2003–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Di Carlo M, Giacomazza D, Picone P et al (2012) Are oxidative stress and mitochondrial dysfunction the key players in the neurodegenerative diseases? Free Radic Res 46:1327–1338

    Article  PubMed  CAS  Google Scholar 

  142. Schuessel K, Frey C, Jourdan C et al (2006) Aging sensitizes toward ROS formation and lipid peroxidation in PS1M146L transgenic mice. Free Radic Biol Med 40:850–862

    Article  CAS  PubMed  Google Scholar 

  143. Gueraud F, Atalay M, Bresgen N et al (2010) Chemistry and biochemistry of lipid peroxidation products. Free Radic Res 44:1098–1124

    Article  CAS  PubMed  Google Scholar 

  144. Okayasu T, Curtis MT, Farber JL (1985) Structural alterations of the inner mitochondrial membrane in ischemic liver cell injury. Arch Biochem Biophys 236:638–645

    Article  CAS  PubMed  Google Scholar 

  145. Paradies G, Ruggiero FM, Petrosillo G, Quagliariello E (1997) Age-dependent decline in the cytochrome c oxidase activity in rat heart mitochondria: role of cardiolipin. FEBS Lett 406:136–138

    Article  CAS  PubMed  Google Scholar 

  146. Ha EE-J, Frohman MA (2014) Regulation of mitochondrial morphology by lipids. BioFactors 40:419–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nakamura K, Nemani VM, Azarbal F et al (2011) Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. J Biol Chem 286:20710–20726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chan EYL, McQuibban GA (2012) Phosphatidylserine decarboxylase 1 (Psd1) promotes mitochondrial fusion by regulating the biophysical properties of the mitochondrial membrane and alternative topogenesis of mitochondrial genome maintenance protein 1 (Mgm1). J Biol Chem 287:40131–40139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20:460–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Dall’Armi C, Devereaux KA, Di Paolo G (2013) The role of lipids in the control of autophagy. Curr Biol 23:R33–R45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Wu Y, Cheng S, Zhao H et al (2014) PI3P phosphatase activity is required for autophagosome maturation and autolysosome formation. EMBO Rep 15:973–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hao F, Itoh T, Morita E et al (2016) The PtdIns3-phosphatase MTMR3 interacts with mTORC1 and suppresses its activity. FEBS Lett 590:161–173

    Article  CAS  PubMed  Google Scholar 

  154. Kumar A, Baycin-Hizal D, Zhang Y et al (2015) Cellular traffic cops: the interplay between lipids and proteins regulates vesicular formation, trafficking, and signaling in mammalian cells. Curr Opin Biotechnol 36:215–221

    Article  CAS  PubMed  Google Scholar 

  155. Czubowicz K, Strosznajder R (2014) Ceramide in the molecular mechanisms of neuronal cell death. The role of sphingosine-1-phosphate. Mol Neurobiol 50:26–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pelled D, Raveh T, Riebeling C et al (2002) Death-associated protein (DAP) kinase plays a central role in ceramide-induced apoptosis in cultured hippocampal neurons. J Biol Chem 277:1957–1961

    Article  CAS  PubMed  Google Scholar 

  157. Widau RC, Jin Y, Dixon SA et al (2010) Protein phosphatase 2A (PP2A) holoenzymes regulate death-associated protein kinase (DAPK) in ceramide-induced anoikis. J Biol Chem 285:13827–13838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Cuervo AM (2010) Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol Metab 21:142–150

    Article  CAS  PubMed  Google Scholar 

  159. Rodriguez-Navarro JA, Kaushik S, Koga H et al (2012) Inhibitory effect of dietary lipids on chaperone-mediated autophagy. Proc Natl Acad Sci USA 109:E705–E714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Toops KA, Tan LX, Jiang Z et al (2015) Cholesterol-mediated activation of acid sphingomyelinase disrupts autophagy in the retinal pigment epithelium. Mol Biol Cell 26:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  161. King MA, Ganley IG, Flemington V (2016) Inhibition of cholesterol metabolism underlies synergy between mTOR pathway inhibition and chloroquine in bladder cancer cells. Oncogene 35:4518–4528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Singh R, Cuervo AM (2012) Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol 2012:282041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Dong H, Czaja MJ (2011) Regulation of lipid droplets by autophagy. Trends Endocrinol Metab 22:234–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Liu K, Czaja MJ (2013) Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ 20:3–11

    Article  PubMed  CAS  Google Scholar 

  165. Wang C-W (2016) Lipid droplets, lipophagy, and beyond. Biochim Biophys Acta 1861:793–805

    Article  CAS  PubMed  Google Scholar 

  166. Ravikumar B, Sarkar S, Davies JE et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435

    Article  CAS  PubMed  Google Scholar 

  167. Ward C, Martinez-Lopez N, Otten EG et al (2016) Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim Biophys Acta 1861:269–284

    Article  CAS  PubMed  Google Scholar 

  168. Albi E, Viola Magni MP (2004) The role of intranuclear lipids. Biol Cell 96:657–667

    Article  CAS  PubMed  Google Scholar 

  169. Albi E, Lazzarini A, Lazzarini R et al (2013) Nuclear lipid microdomain as place of interaction between sphingomyelin and DNA during liver regeneration. Int J Mol Sci 14:6529–6541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Irvine RF (2003) Nuclear lipid signalling. Nat Rev Mol Cell Biol 4:349–360

    Article  CAS  PubMed  Google Scholar 

  171. Terry LJ, Shows EB, Wente SR (2007) Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318:1412–1416

    Article  CAS  PubMed  Google Scholar 

  172. Albi E (2011) Role of intranuclear lipids in health and disease. Clin Lipidol 6:59–69

    Article  CAS  Google Scholar 

  173. Cocco L, Faenza I, Fiume R et al (2006) Phosphoinositide-specific phospholipase C (PI-PLC) beta1 and nuclear lipid-dependent signaling. Biochim Biophys Acta 1761:509–521

    Article  CAS  PubMed  Google Scholar 

  174. Lin H, Choi JH, Hasek J et al (2000) Phospholipase C is involved in kinetochore function in Saccharomyces cerevisiae. Mol Cell Biol 20:3597–3607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Cerbon J, Falcon A, Hernandez-Luna C, Segura-Cobos D (2005) Inositol phosphoceramide synthase is a regulator of intracellular levels of diacylglycerol and ceramide during the G1 to S transition in Saccharomyces cerevisiae. Biochem J 388:169–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ibarguren M, Bomans PHH, Frederik PM et al (2010) End-products diacylglycerol and ceramide modulate membrane fusion induced by a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa. Biochim Biophys Acta 1798:59–64

    Article  CAS  PubMed  Google Scholar 

  177. Ruvolo PP (2001) Ceramide regulates cellular homeostasis via diverse stress signaling pathways. Leukemia 15:1153–1160

    Article  CAS  PubMed  Google Scholar 

  178. Hertz R, Magenheim J, Berman I, Bar-Tana J (1998) Fatty acyl-CoA thioesters are ligands of hepatic nuclear factor-4alpha. Nature 392:512–516

    Article  CAS  PubMed  Google Scholar 

  179. Shoji-Kawaguchi M, Izuta S, Tamiya-Koizumi K et al (1995) Selective inhibition of DNA polymerase epsilon by phosphatidylinositol. J Biochem 117:1095–1099

    Article  CAS  PubMed  Google Scholar 

  180. Tamiya-Koizumi K (2002) Nuclear lipid metabolism and signaling. J Biochem 132:13–22

    Article  CAS  PubMed  Google Scholar 

  181. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Sleight RG (1987) Intracellular lipid transport in eukaryotes. Annu Rev Physiol 49:193–208

    Article  CAS  PubMed  Google Scholar 

  183. Rueckert DG, Schmidt K (1990) Lipid transfer proteins. Chem Phys Lipids 56:1–20

    Article  CAS  PubMed  Google Scholar 

  184. Holthuis JCM, van Meer G, Huitema K (2003) Lipid microdomains, lipid translocation and the organization of intracellular membrane transport (Review). Mol Membr Biol 20:231–241

    Article  CAS  PubMed  Google Scholar 

  185. Bittman R, Clejan S, Robinson BP, Witzke NM (1985) Kinetics of cholesterol and phospholipid exchange from membranes containing cross-linked proteins or cross-linked phosphatidylethanolamines. Biochemistry 24:1403–1409

    Article  CAS  PubMed  Google Scholar 

  186. Vahouny GV, Chanderbhan R, Kharroubi A et al (1987) Sterol carrier and lipid transfer proteins. Adv Lipid Res 22:83–113

    Article  CAS  PubMed  Google Scholar 

  187. Lidstrom-Olsson B, Wikvall K (1986) The role of sterol carrier protein2 and other hepatic lipid-binding proteins in bile-acid biosynthesis. Biochem J 238:879–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Stolowich NJ, Petrescu AD, Huang H et al (2002) Sterol carrier protein-2: structure reveals function. Cell Mol Life Sci 59:193–212

    Article  CAS  PubMed  Google Scholar 

  189. Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–47

    Article  CAS  PubMed  Google Scholar 

  190. Trapani L, Segatto M, Pallottini V (2012) Regulation and deregulation of cholesterol homeostasis: the liver as a metabolic “power station”. World J Hepatol 4:184–190

    Article  PubMed  PubMed Central  Google Scholar 

  191. Baur JA, Chen D, Chini EN et al (2010) Dietary restriction: standing up for sirtuins. Science 329:1012–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Girard E, Paul JL, Fournier N et al (2011) The dynamin chemical inhibitor dynasore impairs cholesterol trafficking and sterol-sensitive genes transcription in human HeLa cells and macrophages. PLoS One 6:e29042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Preta G, Cronin JG, Sheldon IM (2015) Dynasore—not just a dynamin inhibitor. Cell Commun Signal 13:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Sturbois B, Moreau P, Maneta-Peyret L et al (1994) Cell-free transfer of phospholipids between the endoplasmic reticulum and the Golgi apparatus of leek seedlings. Biochim Biophys Acta 1189:31–37

    Article  CAS  PubMed  Google Scholar 

  195. Moreau P, Rodriguez M, Cassagne C et al (1991) Trafficking of lipids from the endoplasmic reticulum to the Golgi apparatus in a cell-free system from rat liver. J Biol Chem 266:4322–4328

    CAS  PubMed  Google Scholar 

  196. Fukasawa M, Nishijima M, Hanada K (1999) Genetic evidence for ATP-dependent endoplasmic reticulum-to-Golgi apparatus trafficking of ceramide for sphingomyelin synthesis in Chinese hamster ovary cells. J Cell Biol 144:673–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Tatsuta T, Scharwey M, Langer T (2014) Mitochondrial lipid trafficking. Trends Cell Biol 24:44–52

    Article  CAS  PubMed  Google Scholar 

  198. Yang X, Yu Y, Wang D, Qin S (2017) Overexpressed PLTP in macrophage may promote cholesterol accumulation by prolonged endoplasmic reticulum stress. Med Hypotheses 98:45–48

    Article  CAS  PubMed  Google Scholar 

  199. Vuletic S, Dong W, Wolfbauer G et al (2009) PLTP is present in the nucleus, and its nuclear export is CRM1-dependent. Biochim Biophys Acta 1793:584–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ferkingstad E, Frigessi A, Lyng H (2008) Indirect genomic effects on survival from gene expression data. Genome Biol 9(3):R58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Cronan JE (2003) Bacterial membrane lipids: where do we stand? Annu Rev Microbiol 57:203–224

    Article  CAS  PubMed  Google Scholar 

  202. Kaiser H-J, Surma MA, Mayer F et al (2011) Molecular convergence of bacterial and eukaryotic surface order. J Biol Chem 286:40631–40637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lopez D (2015) Molecular composition of functional microdomains in bacterial membranes. Chem Phys Lipids 192:3–11

    Article  CAS  PubMed  Google Scholar 

  204. Cybulski LE, Martin M, Mansilla MC et al (2010) Membrane thickness cue for cold sensing in a bacterium. Curr Biol 20:1539–1544

    Article  CAS  PubMed  Google Scholar 

  205. Good MC, Zalatan JG, Lim WA (2011) Scaffold proteins: hubs for controlling the flow of cellular information. Science 332:680–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Arendt W, Hebecker S, Jager S et al (2012) Resistance phenotypes mediated by aminoacyl-phosphatidylglycerol synthases. J Bacteriol 194:1401–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Sohlenkamp C, Geiger O (2016) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40:133–159

    Article  CAS  PubMed  Google Scholar 

  208. Mizoguchi T, Harada J, Yoshitomi T, Tamiaki H (2013) A variety of glycolipids in green photosynthetic bacteria. Photosynth Res 114:179–188

    Article  CAS  PubMed  Google Scholar 

  209. Mansilla MC, Cybulski LE, Albanesi D, de Mendoza D (2004) Control of membrane lipid fluidity by molecular thermosensors. J Bacteriol 186:6681–6688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Donovan C, Bramkamp M (2009) Characterization and subcellular localization of a bacterial flotillin homologue. Microbiology 155:1786–1799

    Article  CAS  PubMed  Google Scholar 

  211. Devi SN, Vishnoi M, Kiehler B et al (2015) In vivo functional characterization of the transmembrane histidine kinase KinC in Bacillus subtilis. Microbiology 161:1092–1104

    Article  CAS  PubMed  Google Scholar 

  212. Dempwolff F, Schmidt FK, Hervas AB et al (2016) Super resolution fluorescence microscopy and tracking of bacterial flotillin (Reggie) paralogs provide evidence for defined-sized protein microdomains within the bacterial membrane but absence of clusters containing detergent-resistant proteins. PLoS Genet 12:e1006116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Schneider J, Klein T, Mielich-Suss B et al (2015) Spatio-temporal remodeling of functional membrane microdomains organizes the signaling networks of a bacterium. PLoS Genet 11:e1005140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Daum G, Lees ND, Bard M, Dickson R (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14:1471–1510

    Article  CAS  PubMed  Google Scholar 

  215. Hoekstra D, van Ijzendoorn SCD (2003) In search of lipid translocases and their biological functions. Dev Cell 4:8–9

    Article  CAS  PubMed  Google Scholar 

  216. Ikeda M, Kihara A, Igarashi Y (2006) Lipid asymmetry of the eukaryotic plasma membrane: functions and related enzymes. Biol Pharm Bull 29:1542–1546

    Article  CAS  PubMed  Google Scholar 

  217. Henderson CM, Block DE (2014) Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae. Appl Environ Microbiol 80:2966–2972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Henderson CM, Lozada-Contreras M, Naravane Y et al (2011) Analysis of major phospholipid species and ergosterol in fermenting industrial yeast strains using atmospheric pressure ionization ion-trap mass spectrometry. J Agric Food Chem 59:12761–12770

    Article  CAS  PubMed  Google Scholar 

  219. Vanegas JM, Contreras MF, Faller R, Longo ML (2012) Role of unsaturated lipid and ergosterol in ethanol tolerance of model yeast biomembranes. Biophys J 102:507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Laurinyecz B, Peter M, Vedelek V et al (2016) Reduced expression of CDP-DAG synthase changes lipid composition and leads to male sterility in Drosophila. Open Biol 6:50169

    Article  PubMed  CAS  Google Scholar 

  221. Guan XL, Cestra G, Shui G et al (2013) Biochemical membrane lipidomics during Drosophila development. Dev Cell 24:98–111

    Article  CAS  PubMed  Google Scholar 

  222. Ghosh A, Kling T, Snaidero N et al (2013) A global in vivo Drosophila RNAi screen identifies a key role of ceramide phosphoethanolamine for glial ensheathment of axons. PLoS Genet 9:e1003980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Fan W, Lam SM, Xin J et al (2017) Drosophila TRF2 and TAF9 regulate lipid droplet size and phospholipid fatty acid composition. PLoS Genet 13:e1006664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Wahlby C, Conery AL, Bray M-A et al (2014) High- and low-throughput scoring of fat mass and body fat distribution in C. elegans. Methods 68:492–499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Yen K, Le TT, Bansal A et al (2010) A comparative study of fat storage quantitation in nematode Caenorhabditis elegans using label and label-free methods. PLoS One 5:e12810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Zhang P, Na H, Liu Z et al (2012) Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets. Mol Cell Proteom 11:317–328

    Article  CAS  Google Scholar 

  227. Mullaney BC, Ashrafi K (2009) C. elegans fat storage and metabolic regulation. Biochim Biophys Acta 1791:474–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. McKay RM, McKay JP, Avery L, Graff JM (2003) C elegans: a model for exploring the genetics of fat storage. Dev Cell 4:131–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Hirsch D, Stahl A, Lodish HF (1998) A family of fatty acid transporters conserved from mycobacterium to man. Proc Natl Acad Sci USA 95:8625–8629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  PubMed  Google Scholar 

  231. Galbiati F, Razani B, Lisanti MP (2001) Emerging themes in lipid rafts and caveolae. Cell 106:403–411

    Article  CAS  PubMed  Google Scholar 

  232. Oakley FD, Smith RL, Engelhardt JF (2009) Lipid rafts and caveolin-1 coordinate interleukin-1beta (IL-1beta)-dependent activation of NFkappaB by controlling endocytosis of Nox2 and IL-1beta receptor 1 from the plasma membrane. J Biol Chem 284:33255–33264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Ikeguchi M, Makino M, Kaibara N (2001) Clinical significance of E-cadherin-catenin complex expression in metastatic foci of colorectal carcinoma. J Surg Oncol 77:201–207

    Article  CAS  PubMed  Google Scholar 

  234. Jiang WG, Mansel RE (2000) E-cadherin complex and its abnormalities in human breast cancer. Surg Oncol 9:151–171

    Article  CAS  PubMed  Google Scholar 

  235. Mollinedo F, Gajate C (2006) Fas/CD95 death receptor and lipid rafts: new targets for apoptosis-directed cancer therapy. Drug Resist Updat 9:51–73

    Article  CAS  PubMed  Google Scholar 

  236. Simpson-Holley M, Ellis D, Fisher D et al (2002) A functional link between the actin cytoskeleton and lipid rafts during budding of filamentous influenza virions. Virology 301:212–225

    Article  CAS  PubMed  Google Scholar 

  237. Lin S-L, Chien C-W, Han C-L et al (2010) Temporal proteomics profiling of lipid rafts in CCR6-activated T cells reveals the integration of actin cytoskeleton dynamics. J Proteome Res 9:283–297

    Article  CAS  PubMed  Google Scholar 

  238. Shimizu Y (2001) Moving Ras in and out of lipid rafts. Trends Immunol 22:352

    Article  CAS  PubMed  Google Scholar 

  239. Parton RG, Hancock JF (2004) Lipid rafts and plasma membrane microorganization: insights from Ras. Trends Cell Biol 14:141–147

    Article  CAS  PubMed  Google Scholar 

  240. Del Pozo MA (2004) Integrin signaling and lipid rafts. Cell Cycle 3:725–728

    Article  PubMed  Google Scholar 

  241. Leitinger B, Hogg N (2002) The involvement of lipid rafts in the regulation of integrin function. J Cell Sci 115:963–972

    CAS  PubMed  Google Scholar 

  242. Vassilieva EV, Gerner-Smidt K, Ivanov AI, Nusrat A (2008) Lipid rafts mediate internalization of beta1-integrin in migrating intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 295:G965–G976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Wang C, Yoo Y, Fan H et al (2010) Regulation of Integrin beta 1 recycling to lipid rafts by Rab1a to promote cell migration. J Biol Chem 285:29398–29405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Lee J-L, Wang M-J, Sudhir P-R, Chen J-Y (2008) CD44 engagement promotes matrix-derived survival through the CD44-SRC-integrin axis in lipid rafts. Mol Cell Biol 28:5710–5723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Oliferenko S, Paiha K, Harder T et al (1999) Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. J Cell Biol 146:843–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Qian H, Xia L, Ling P et al (2012) CD44 ligation with A3D8 antibody induces apoptosis in acute myeloid leukemia cells through binding to CD44s and clustering lipid rafts. Cancer Biol Ther 13:1276–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Singleton PA, Bourguignon LYW (2004) CD44 interaction with ankyrin and IP3 receptor in lipid rafts promotes hyaluronan-mediated Ca2+ signaling leading to nitric oxide production and endothelial cell adhesion and proliferation. Exp Cell Res 295:102–118

    Article  CAS  PubMed  Google Scholar 

  248. Nishikawa M, Nojima S, Akiyama T et al (1984) Interaction of digitonin and its analogs with membrane cholesterol. J Biochem 96:1231–1239

    Article  CAS  PubMed  Google Scholar 

  249. Gardner JA, Gainsborough H, Murray R (1938) Studies in the cholesterol content of normal human plasma: an improved macromethod for the estimation of cholesterol by digitonin. Biochem J 32:15–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Bittman R, Blau L, Clejan S, Rottem S (1981) Determination of cholesterol asymmetry by rapid kinetics of filipin-cholesterol association: effect of modification in lipids and proteins. Biochemistry 20:2425–2432

    Article  CAS  PubMed  Google Scholar 

  251. Behnke O, Tranum-Jensen J, van Deurs B (1984) Filipin as a cholesterol probe. II. Filipin-cholesterol interaction in red blood cell membranes. Eur J Cell Biol 35:200–215

    CAS  PubMed  Google Scholar 

  252. Singer MA (1975) Interaction of amphotericin B and nystatin with phospholipid bilayer membranes: effect of cholesterol. Can J Physiol Pharmacol 53:1072–1079

    Article  CAS  PubMed  Google Scholar 

  253. Kuipers HF, van den Elsen PJ (2007) Immunomodulation by statins: inhibition of cholesterol vs. isoprenoid biosynthesis. Biomed Pharmacother 61:400–407

    Article  CAS  PubMed  Google Scholar 

  254. Griffin S, Preta G, Sheldon IM (2017) Inhibiting mevalonate pathway enzymes increases stromal cell resilience to a cholesterol-dependent cytolysin. Sci Rep 7(1):17050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Marasas WFO, Riley RT, Hendricks KA et al (2004) Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutr 134:711–716

    Article  CAS  PubMed  Google Scholar 

  256. Merrill AHJ, Sullards MC, Wang E et al (2001) Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins. Environ Health Perspect 109(Suppl):283–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Lee Y-S, Choi K-M, Lee S et al (2012) Myriocin, a serine palmitoyltransferase inhibitor, suppresses tumor growth in a murine melanoma model by inhibiting de novo sphingolipid synthesis. Cancer Biol Ther 13:92–100

    Article  CAS  PubMed  Google Scholar 

  258. Delgado A, Casas J, Llebaria A et al (2006) Inhibitors of sphingolipid metabolism enzymes. Biochim Biophys Acta 1758:1957–1977

    Article  CAS  PubMed  Google Scholar 

  259. Megha London E (2004) Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J Biol Chem 279:9997–10004

    Article  CAS  PubMed  Google Scholar 

  260. Yu C, Alterman M, Dobrowsky RT (2005) Ceramide displaces cholesterol from lipid rafts and decreases the association of the cholesterol binding protein caveolin-1. J Lipid Res 46:1678–1691

    Article  CAS  PubMed  Google Scholar 

  261. Cremesti AE, Goni FM, Kolesnick R (2002) Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett 531:47–53

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Preta.

Ethics declarations

Conflict of interest

I am unaware of any potential conflict of interest, including professional or financial affiliations that might be perceived as biasing the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, A.L., Preta, G. Lipids in the cell: organisation regulates function. Cell. Mol. Life Sci. 75, 1909–1927 (2018). https://doi.org/10.1007/s00018-018-2765-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2765-4

Keywords

Navigation