Advertisement

Cellular and Molecular Life Sciences

, Volume 75, Issue 11, pp 1909–1927 | Cite as

Lipids in the cell: organisation regulates function

  • Ana L. Santos
  • Giulio PretaEmail author
Review

Abstract

Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.

Keywords

Lipid rafts Raft-like microdomains Oxidative stress Cell signalling Lipophagy 

Abbreviations

ATP

Adenosine triphosphate

Cav-1

Caveolin-1

CDP-DAG

Cytidine diphosphate-diacylglycerol

CL

Cardiolipin

CMA

Chaperone-mediated autophagy

ER

Endoplasmic reticulum

FCS

Fluorescence correlation spectroscopy

FMM

Functional membrane microdomains

FRET

Förster resonance energy transfer

GSH

Reduced glutathione

GSSG

Oxidised glutathione

GP

Glutathione peroxidase

Hsp70

Heat shock protein 70

LDs

Lipid droplets

MT

Metallothionein

mTOR

Mammalian target of rapamycin

NADP+

Oxidised nicotinamide adenine dinucleotide phosphate

NADPH

Reduced nicotinamide adenine dinucleotide phosphate

NO

Nitric oxide

NOS

Nitric oxide synthase

PA

Phosphatidic acid

PC

Phosphatidylcholine

PE

Phosphatidylethanolamine

PG

Phosphatidylglycerol

PI

Phosphatidylinositol

PI3P

Phosphatidylinositol-3-phosphate

PI-PLC

Phosphatidylinositol-specific phospholipase C

PLEP

Phospholipid exchange protein

PLTP

Phospholipid transfer protein

PrPc

Cellular prion protein

PS

Phosphatidylserine

ROS

Reactive oxygen species

S1P

Sphingosine-1-phosphate

SCP

Sterol carrier protein

SOD

Superoxide dismutase

SMase

Sphingomyelinase

SPH

Sphingosine

TNFR1

Tumour necrosis factor receptor 1

Notes

Compliance with ethical standards

Conflict of interest

I am unaware of any potential conflict of interest, including professional or financial affiliations that might be perceived as biasing the manuscript.

References

  1. 1.
    Muro E, Atilla-Gokcumen GE, Eggert US (2014) Lipids in cell biology: how can we understand them better? Mol Biol Cell 25:1819–1823PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Klose C, Surma MA, Simons K (2013) Organellar lipidomics—background and perspectives. Curr Opin Cell Biol 25:406–413PubMedCrossRefGoogle Scholar
  3. 3.
    Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9:162–176PubMedCrossRefGoogle Scholar
  4. 4.
    Das A, Brown MS, Anderson DD et al (2014) Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. Elife 3:e02882PubMedCentralCrossRefGoogle Scholar
  5. 5.
    Sarkar S, Carroll B, Buganim Y et al (2013) Impaired autophagy in the lipid-storage disorder Niemann–Pick type C1 disease. Cell Rep 5:1302–1315PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Maxfield FR, Tabas I (2005) Role of cholesterol and lipid organization in disease. Nature 438:612–621PubMedCrossRefGoogle Scholar
  7. 7.
    Cascianelli G, Villani M, Tosti M et al (2008) Lipid microdomains in cell nucleus. Mol Biol Cell 19:5289–5295PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Albi E, Villani M (2009) Nuclear lipid microdomains regulate cell function. Commun Integr Biol 2:23–24PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Garofalo T, Manganelli V, Grasso M et al (2015) Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis. Apoptosis 20:621–634PubMedCrossRefGoogle Scholar
  10. 10.
    Sorice M, Mattei V, Matarrese P et al (2012) Dynamics of mitochondrial raft-like microdomains in cell life and death. Commun Integr Biol 5:217–219PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ilangumaran S, Hoessli DC (1998) Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem J 335(Pt 2):433–440PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Vilimanovich U, Bosnjak M, Bogdanovic A et al (2015) Statin-mediated inhibition of cholesterol synthesis induces cytoprotective autophagy in human leukemic cells. Eur J Pharmacol 765:415–428PubMedCrossRefGoogle Scholar
  13. 13.
    Stancu C, Sima A (2001) Statins: mechanism of action and effects. J Cell Mol Med 5:378–387PubMedCrossRefGoogle Scholar
  14. 14.
    Mahammad S, Parmryd I (2015) Cholesterol depletion using methyl-beta-cyclodextrin. Methods Mol Biol 1232:91–102PubMedCrossRefGoogle Scholar
  15. 15.
    Bramkamp M, Lopez D (2015) Exploring the existence of lipid rafts in bacteria. Microbiol Mol Biol Rev 79:81–100PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Barak I, Muchova K (2013) The role of lipid domains in bacterial cell processes. Int J Mol Sci 14:4050–4065PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Lopez D, Kolter R (2010) Functional microdomains in bacterial membranes. Genes Dev 24:1893–1902PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Lopez D, Koch G (2017) Exploring functional membrane microdomains in bacteria: an overview. Curr Opin Microbiol 36:76–84PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    LaRocca TJ, Pathak P, Chiantia S et al (2013) Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts. PLoS Pathog 9:e1003353PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572PubMedCrossRefGoogle Scholar
  21. 21.
    Gupta N, Wollscheid B, Watts JD et al (2006) Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics. Nat Immunol 7:625–633PubMedCrossRefGoogle Scholar
  22. 22.
    Foster LJ, De Hoog CL, Mann M (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci USA 100:5813–5818PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Yamada E (1955) The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1:445–458PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Cohen AW, Park DS, Woodman SE et al (2003) Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol 284:C457–C474PubMedCrossRefGoogle Scholar
  25. 25.
    Park DS, Cohen AW, Frank PG et al (2003) Caveolin-1 null (−/−) mice show dramatic reductions in life span. Biochemistry 42:15124–15131PubMedCrossRefGoogle Scholar
  26. 26.
    Razani B, Engelman JA, Wang XB et al (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276:38121–38138PubMedCrossRefGoogle Scholar
  27. 27.
    Chang S-H, Feng D, Nagy JA et al (2009) Vascular permeability and pathological angiogenesis in caveolin-1-null mice. Am J Pathol 175:1768–1776PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Wang XM, Zhang Y, Kim HP et al (2006) Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis. J Exp Med 203:2895–2906PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Hino M, Doihara H, Kobayashi K et al (2003) Caveolin-1 as tumor suppressor gene in breast cancer. Surg Today 33:486–490PubMedGoogle Scholar
  30. 30.
    Engelman JA, Zhang XL, Razani B et al (1999) p42/44 MAP kinase-dependent and -independent signaling pathways regulate caveolin-1 gene expression. Activation of Ras-MAP kinase and protein kinase a signaling cascades transcriptionally down-regulates caveolin-1 promoter activity. J Biol Chem 274:32333–32341PubMedCrossRefGoogle Scholar
  31. 31.
    Rimessi A, Marchi S, Patergnani S, Pinton P (2014) H-Ras-driven tumoral maintenance is sustained through caveolin-1-dependent alterations in calcium signaling. Oncogene 33:2329–2340PubMedCrossRefGoogle Scholar
  32. 32.
    Li S, Couet J, Lisanti MP (1996) Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271:29182–29190PubMedCrossRefGoogle Scholar
  33. 33.
    Li S, Seitz R, Lisanti MP (1996) Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem 271:3863–3868PubMedCrossRefGoogle Scholar
  34. 34.
    Gottlieb-Abraham E, Shvartsman DE, Donaldson JC et al (2013) Src-mediated caveolin-1 phosphorylation affects the targeting of active Src to specific membrane sites. Mol Biol Cell 24:3881–3895PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Chatterjee M, Ben-Josef E, Thomas DG et al (2015) Caveolin-1 is associated with tumor progression and confers a multi-modality resistance phenotype in pancreatic cancer. Sci Rep 5:10867PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Arpaia E, Blaser H, Quintela-Fandino M et al (2012) The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk. Oncogene 31:884–896PubMedCrossRefGoogle Scholar
  37. 37.
    Thomas S, Overdevest JB, Nitz MD et al (2011) Src and caveolin-1 reciprocally regulate metastasis via a common downstream signaling pathway in bladder cancer. Cancer Res 71:832–841PubMedCrossRefGoogle Scholar
  38. 38.
    Lee H, Park DS, Razani B et al (2002) Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (−/−) null mice show mammary epithelial cell hyperplasia. Am J Pathol 161:1357–1369PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Wiechen K, Diatchenko L, Agoulnik A et al (2001) Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am J Pathol 159:1635–1643PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Racine C, Belanger M, Hirabayashi H et al (1999) Reduction of caveolin 1 gene expression in lung carcinoma cell lines. Biochem Biophys Res Commun 255:580–586PubMedCrossRefGoogle Scholar
  41. 41.
    Bender FC, Reymond MA, Bron C, Quest AF (2000) Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Res 60:5870–5878PubMedGoogle Scholar
  42. 42.
    Polyak E, Boopathi E, Mohanan S et al (2009) Alterations in caveolin expression and ultrastructure after bladder smooth muscle hypertrophy. J Urol 182:2497–2503PubMedCrossRefGoogle Scholar
  43. 43.
    Kato K, Hida Y, Miyamoto M et al (2002) Overexpression of caveolin-1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Cancer 94:929–933PubMedCrossRefGoogle Scholar
  44. 44.
    Ito Y, Yoshida H, Nakano K et al (2002) Caveolin-1 overexpression is an early event in the progression of papillary carcinoma of the thyroid. Br J Cancer 86:912–916PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Tahir SA, Ren C, Timme TL et al (2003) Development of an immunoassay for serum caveolin-1: a novel biomarker for prostate cancer. Clin Cancer Res 9:3653–3659PubMedGoogle Scholar
  46. 46.
    Allen JA, Halverson-Tamboli RA, Rasenick MM (2007) Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 8:128–140PubMedCrossRefGoogle Scholar
  47. 47.
    Staubach S, Hanisch F-G (2011) Lipid rafts: signaling and sorting platforms of cells and their roles in cancer. Expert Rev Proteom 8:263–277CrossRefGoogle Scholar
  48. 48.
    Stuermer CAO (2010) The reggie/flotillin connection to growth. Trends Cell Biol 20:6–13PubMedCrossRefGoogle Scholar
  49. 49.
    Stuermer CAO (2011) Reggie/flotillin and the targeted delivery of cargo. J Neurochem 116:708–713PubMedCrossRefGoogle Scholar
  50. 50.
    Babuke T, Tikkanen R (2007) Dissecting the molecular function of reggie/flotillin proteins. Eur J Cell Biol 86:525–532PubMedCrossRefGoogle Scholar
  51. 51.
    Patel HH, Insel PA (2009) Lipid rafts and caveolae and their role in compartmentation of redox signaling. Antioxid Redox Signal 11:1357–1372PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Li P-L, Gulbins E (2007) Lipid rafts and redox signaling. Antioxid Redox Signal 9:1411–1415PubMedCrossRefGoogle Scholar
  53. 53.
    Catalgol B, Kartal Ozer N (2010) Lipid rafts and redox regulation of cellular signaling in cholesterol induced atherosclerosis. Curr Cardiol Rev 6:309–324PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Guichard C, Pedruzzi E, Dewas C et al (2005) Interleukin-8-induced priming of neutrophil oxidative burst requires sequential recruitment of NADPH oxidase components into lipid rafts. J Biol Chem 280:37021–37032PubMedCrossRefGoogle Scholar
  55. 55.
    Shao D, Segal AW, Dekker LV (2003) Lipid rafts determine efficiency of NADPH oxidase activation in neutrophils. FEBS Lett 550:101–106PubMedCrossRefGoogle Scholar
  56. 56.
    Li J-M, Shah AM (2003) ROS generation by nonphagocytic NADPH oxidase: potential relevance in diabetic nephropathy. J Am Soc Nephrol 14:S221–S226PubMedCrossRefGoogle Scholar
  57. 57.
    Yang H-C, Cheng M-L, Ho H-Y, Chiu DT-Y (2011) The microbicidal and cytoregulatory roles of NADPH oxidases. Microbes Infect 13:109–120PubMedCrossRefGoogle Scholar
  58. 58.
    Oakley FD, Abbott D, Li Q, Engelhardt JF (2009) Signaling components of redox active endosomes: the redoxosomes. Antioxid Redox Signal 11:1313–1333PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Vilhardt F, van Deurs B (2004) The phagocyte NADPH oxidase depends on cholesterol-enriched membrane microdomains for assembly. EMBO J 23:739–748PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Beneteau M, Pizon M, Chaigne-Delalande B et al (2008) Localization of Fas/CD95 into the lipid rafts on down-modulation of the phosphatidylinositol 3-kinase signaling pathway. Mol Cancer Res 6:604–613PubMedCrossRefGoogle Scholar
  61. 61.
    Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3:a004697PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Scheel-Toellner D, Wang K, Singh R et al (2002) The death-inducing signalling complex is recruited to lipid rafts in Fas-induced apoptosis. Biochem Biophys Res Commun 297:876–879PubMedCrossRefGoogle Scholar
  63. 63.
    Gajate C, Mollinedo F (2011) Lipid rafts and Fas/CD95 signaling in cancer chemotherapy. Recent Pat Anticancer Drug Discov 6:274–283PubMedCrossRefGoogle Scholar
  64. 64.
    Smith EL, Schuchman EH (2008) The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases. FASEB J Off Publ Fed Am Soc Exp Biol 22:3419–3431Google Scholar
  65. 65.
    Zhang AY, Yi F, Jin S et al (2007) Acid sphingomyelinase and its redox amplification in formation of lipid raft redox signaling platforms in endothelial cells. Antioxid Redox Signal 9:817–828PubMedCrossRefGoogle Scholar
  66. 66.
    Yi F, Zhang AY, Janscha JL et al (2004) Homocysteine activates NADH/NADPH oxidase through ceramide-stimulated Rac GTPase activity in rat mesangial cells. Kidney Int 66:1977–1987PubMedCrossRefGoogle Scholar
  67. 67.
    Yang B, Oo TN, Rizzo V (2006) Lipid rafts mediate H2O2 prosurvival effects in cultured endothelial cells. FASEB J Off Publ Fed Am Soc Exp Biol 20:1501–1503Google Scholar
  68. 68.
    Rosenberger CM, Brumell JH, Finlay BB (2000) Microbial pathogenesis: lipid rafts as pathogen portals. Curr Biol 10:R823–R825PubMedCrossRefGoogle Scholar
  69. 69.
    Manes S, del Real G, Martinez-A C (2003) Pathogens: raft hijackers. Nat Rev Immunol 3:557–568PubMedCrossRefGoogle Scholar
  70. 70.
    Le Bouguenec C (2005) Adhesins and invasins of pathogenic Escherichia coli. Int J Med Microbiol 295:471–478PubMedCrossRefGoogle Scholar
  71. 71.
    Preta G, Lotti V, Cronin JG, Sheldon IM (2015) Protective role of the dynamin inhibitor Dynasore against the cholesterol-dependent cytolysin of Trueperella pyogenes. FASEB J Off Publ Fed Am Soc Exp Biol 29:1516–1528Google Scholar
  72. 72.
    Taylor SD, Sanders ME, Tullos NA et al (2013) The cholesterol-dependent cytolysin pneumolysin from Streptococcus pneumoniae binds to lipid raft microdomains in human corneal epithelial cells. PLoS One 8:e61300PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Gekara NO, Jacobs T, Chakraborty T, Weiss S (2005) The cholesterol-dependent cytolysin listeriolysin O aggregates rafts via oligomerization. Cell Microbiol 7:1345–1356PubMedCrossRefGoogle Scholar
  74. 74.
    Gatfield J, Pieters J (2000) Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288:1647–1650PubMedCrossRefGoogle Scholar
  75. 75.
    Norkin LC (1999) Simian virus 40 infection via MHC class I molecules and caveolae. Immunol Rev 168:13–22PubMedCrossRefGoogle Scholar
  76. 76.
    Bavari S, Bosio CM, Wiegand E et al (2002) Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med 195:593–602PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Mikulak J, Singhal PC (2010) HIV-1 entry into human podocytes is mediated through lipid rafts. Kidney Int 77:72–74PubMedCrossRefGoogle Scholar
  78. 78.
    Campbell SM, Crowe SM, Mak J (2001) Lipid rafts and HIV-1: from viral entry to assembly of progeny virions. J Clin Virol 22:217–227PubMedCrossRefGoogle Scholar
  79. 79.
    Lorizate M, Sachsenheimer T, Glass B et al (2013) Comparative lipidomics analysis of HIV-1 particles and their producer cell membrane in different cell lines. Cell Microbiol 15:292–304PubMedCrossRefGoogle Scholar
  80. 80.
    Olliaro P, Castelli F (1997) Plasmodium falciparum: an electron microscopy study of caveolae and trafficking between the parasite and the extracellular medium. Int J Parasitol 27:1007–1012PubMedCrossRefGoogle Scholar
  81. 81.
    Yu J, Fischman DA, Steck TL (1973) Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct 1:233–248PubMedCrossRefGoogle Scholar
  82. 82.
    Schuck S, Honsho M, Ekroos K et al (2003) Resistance of cell membranes to different detergents. Proc Natl Acad Sci USA 100:5795–5800PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Drab M, Verkade P, Elger M et al (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452PubMedCrossRefGoogle Scholar
  84. 84.
    Schubert W, Frank PG, Woodman SE et al (2002) Microvascular hyperpermeability in caveolin-1 (−/−) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem 277:40091–40098PubMedCrossRefGoogle Scholar
  85. 85.
    Deng C, Zhang P, Harper JW et al (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–684PubMedCrossRefGoogle Scholar
  86. 86.
    Zidovetzki R, Levitan I (2007) Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta 1768:1311–1324PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Bonifacio A, Cervo S, Sergo V (2015) Label-free surface-enhanced Raman spectroscopy of biofluids: fundamental aspects and diagnostic applications. Anal Bioanal Chem 407:8265–8277PubMedCrossRefGoogle Scholar
  88. 88.
    Suga K, Yoshida T, Ishii H, Okamoto Y, Nagao D, Konno M, Umakoshi H (2015) Membrane surface-enhanced raman spectroscopy for sensitive detection of molecular behavior of lipid assemblies. Anal Chem 87(9):4772–4780PubMedCrossRefGoogle Scholar
  89. 89.
    Shin D-M, Yang C-S, Lee J-Y et al (2008) Mycobacterium tuberculosis lipoprotein-induced association of TLR2 with protein kinase C zeta in lipid rafts contributes to reactive oxygen species-dependent inflammatory signalling in macrophages. Cell Microbiol 10:1893–1905PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Vieira FS, Correa G, Einicker-Lamas M, Coutinho-Silva R (2010) Host-cell lipid rafts: a safe door for micro-organisms? Biol Cell 102:391–407PubMedCrossRefGoogle Scholar
  91. 91.
    Seveau S, Bierne H, Giroux S et al (2004) Role of lipid rafts in E-cadherin- and HGF-R/Met-mediated entry of Listeria monocytogenes into host cells. J Cell Biol 166:743–753PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Cruz KD, Cruz TA, Veras de Moraes G et al (2014) Disruption of lipid rafts interferes with the interaction of Toxoplasma gondii with macrophages and epithelial cells. Biomed Res Int 2014:687835PubMedPubMedCentralGoogle Scholar
  93. 93.
    Li YC, Park MJ, Ye S-K et al (2006) Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol 168:1105–1107Google Scholar
  94. 94.
    Onodera R, Motoyama K, Okamatsu A et al (2013) Involvement of cholesterol depletion from lipid rafts in apoptosis induced by methyl-beta-cyclodextrin. Int J Pharm 452:116–123PubMedCrossRefGoogle Scholar
  95. 95.
    Heung LJ, Luberto C, Del Poeta M (2006) Role of sphingolipids in microbial pathogenesis. Infect Immun 74:28–39PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Gulbins E, Dreschers S, Wilker B, Grassme H (2004) Ceramide, membrane rafts and infections. J Mol Med (Berl) 82:357–363CrossRefGoogle Scholar
  97. 97.
    Bagam P, Singh DP, Inda ME, Batra S (2017) Unraveling the role of membrane microdomains during microbial infections. Cell Biol Toxicol 33:429–455PubMedCrossRefGoogle Scholar
  98. 98.
    McConnell HM, Tamm LK, Weis RM (1984) Periodic structures in lipid monolayer phase transitions. Proc Natl Acad Sci USA 81:3249–3253PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Simon A, Girard-Egrot A, Sauter F et al (2007) Formation and stability of a suspended biomimetic lipid bilayer on silicon submicrometer-sized pores. J Colloid Interface Sci 308:337–343PubMedCrossRefGoogle Scholar
  100. 100.
    Heitz BA, Xu J, Jones IW et al (2011) Polymerized planar suspended lipid bilayers for single ion channel recordings: comparison of several dienoyl lipids. Langmuir 27:1882–1890PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Tamm LK, McConnell HM (1985) Supported phospholipid bilayers. Biophys J 47:105–113PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Budvytyte R, Valincius G, Niaura G et al (2013) Structure and properties of tethered bilayer lipid membranes with unsaturated anchor molecules. Langmuir 29:8645–8656PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Cranfield C, Carne S, Martinac B, Cornell B (2015) The assembly and use of tethered bilayer lipid membranes (tBLMs). Methods Mol Biol 1232:45–53PubMedCrossRefGoogle Scholar
  104. 104.
    Preta G, Jankunec M, Heinrich F et al (2016) Tethered bilayer membranes as a complementary tool for functional and structural studies: the pyolysin case. Biochim Biophys Acta 1858:2070–2080PubMedCrossRefGoogle Scholar
  105. 105.
    Kahya N, Brown DA, Schwille P (2005) Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles. Biochemistry 44:7479–7489PubMedCrossRefGoogle Scholar
  106. 106.
    Veatch SL, Keller SL (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys J 85:3074–3083PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Simons K, Vaz WLC (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–295PubMedCrossRefGoogle Scholar
  108. 108.
    Dietrich C, Bagatolli LA, Volovyk ZN et al (2001) Lipid rafts reconstituted in model membranes. Biophys J 80:1417–1428PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Dupuy AD, Engelman DM (2008) Protein area occupancy at the center of the red blood cell membrane. Proc Natl Acad Sci USA 105:2848–2852PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Levental KR, Levental I (2015) Giant plasma membrane vesicles: models for understanding membrane organization. Curr Top Membr 75:25–57PubMedCrossRefGoogle Scholar
  111. 111.
    Levental I, Byfield FJ, Chowdhury P et al (2009) Cholesterol-dependent phase separation in cell-derived giant plasma-membrane vesicles. Biochem J 424:163–167PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Sezgin E, Kaiser H-J, Baumgart T et al (2012) Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat Protoc 7:1042–1051PubMedCrossRefGoogle Scholar
  113. 113.
    Ray S, Taylor M, Banerjee T et al (2012) Lipid rafts alter the stability and activity of the cholera toxin A1 subunit. J Biol Chem 287:30395–30405PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Gupta N, DeFranco AL (2003) Visualizing lipid raft dynamics and early signaling events during antigen receptor-mediated B-lymphocyte activation. Mol Biol Cell 14:432–444PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Pathak P, London E (2015) The effect of membrane lipid composition on the formation of lipid ultrananodomains. Biophys J 109:1630–1638PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Engel S, Scolari S, Thaa B et al (2010) FLIM-FRET and FRAP reveal association of influenza virus haemagglutinin with membrane rafts. Biochem J 425:567–573PubMedCrossRefGoogle Scholar
  117. 117.
    Sachl R, Johansson LB-A, Hof M (2012) Forster resonance energy transfer (FRET) between heterogeneously distributed probes: application to lipid nanodomains and pores. Int J Mol Sci 13:16141–16156PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Rao M, Mayor S (2005) Use of Forster’s resonance energy transfer microscopy to study lipid rafts. Biochim Biophys Acta 1746:221–233PubMedCrossRefGoogle Scholar
  119. 119.
    Loura L, Prieto M (2011) FRET in membrane biophysics: an overview. Front Physiol 2:82.  https://doi.org/10.3389/fphys.2011.00082 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Chiantia S, Ries J, Schwille P (2009) Fluorescence correlation spectroscopy in membrane structure elucidation. Biochim Biophys Acta 1788:225–233PubMedCrossRefGoogle Scholar
  121. 121.
    Kahya N, Schwille P (2006) Fluorescence correlation studies of lipid domains in model membranes. Mol Membr Biol 23:29–39PubMedCrossRefGoogle Scholar
  122. 122.
    He H-T, Marguet D (2011) Detecting nanodomains in living cell membrane by fluorescence correlation spectroscopy. Annu Rev Phys Chem 62:417–436PubMedCrossRefGoogle Scholar
  123. 123.
    Sezgin E, Levental I, Mayor S, Eggeling C (2017) The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 18:361–374PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Sezgin E, Levental I, Grzybek M et al (2012) Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim Biophys Acta 1818:1777–1784PubMedCrossRefGoogle Scholar
  125. 125.
    Kinoshita M, Suzuki KGN, Matsumori N et al (2017) Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs. J Cell Biol 216:1183–1204PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Kraft ML (2016) Sphingolipid organization in the plasma membrane and the mechanisms that influence it. Front cell Dev Biol 4:154PubMedGoogle Scholar
  127. 127.
    Boslem E, Weir JM, MacIntosh G et al (2013) Alteration of endoplasmic reticulum lipid rafts contributes to lipotoxicity in pancreatic beta-cells. J Biol Chem 288:26569–26582PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Sorice M, Manganelli V, Matarrese P et al (2009) Cardiolipin-enriched raft-like microdomains are essential activating platforms for apoptotic signals on mitochondria. FEBS Lett 583:2447–2450PubMedCrossRefGoogle Scholar
  129. 129.
    Scorrano L (2008) Caspase-8 goes cardiolipin: a new platform to provide mitochondria with microdomains of apoptotic signals? J Cell Biol 183:579–581PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    El Khoury M, Swain J, Sautrey G et al (2017) Targeting bacterial cardiolipin enriched microdomains: an antimicrobial strategy used by amphiphilic aminoglycoside antibiotics. Sci Rep 7:10697PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Ciarlo L, Manganelli V, Garofalo T et al (2010) Association of fission proteins with mitochondrial raft-like domains. Cell Death Differ 17:1047–1058PubMedCrossRefGoogle Scholar
  132. 132.
    Ziolkowski W, Szkatula M, Nurczyk A et al (2010) Methyl-beta-cyclodextrin induces mitochondrial cholesterol depletion and alters the mitochondrial structure and bioenergetics. FEBS Lett 584:4606–4610PubMedCrossRefGoogle Scholar
  133. 133.
    Krols M, van Isterdael G, Asselbergh B et al (2016) Mitochondria-associated membranes as hubs for neurodegeneration. Acta Neuropathol 131:505–523PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Ciarlo L, Manganelli V, Matarrese P et al (2012) Raft-like microdomains play a key role in mitochondrial impairment in lymphoid cells from patients with Huntington’s disease. J Lipid Res 53:2057–2068PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Sorice M, Garofalo T, Misasi R et al (2012) Ganglioside GD3 as a raft component in cell death regulation. Anticancer Agents Med Chem 12:376–382PubMedCrossRefGoogle Scholar
  136. 136.
    Mattei V, Matarrese P, Garofalo T et al (2011) Recruitment of cellular prion protein to mitochondrial raft-like microdomains contributes to apoptosis execution. Mol Biol Cell 22:4842–4853PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Sorice M, Mattei V, Tasciotti V et al (2012) Trafficking of PrPc to mitochondrial raft-like microdomains during cell apoptosis. Prion 6:354–358PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Faris R, Moore RA, Ward A et al (2017) Cellular prion protein is present in mitochondria of healthy mice. Sci Rep 7:41556PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Thanan R, Oikawa S, Hiraku Y et al (2014) Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci 16:193–217PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Guo C, Sun L, Chen X, Zhang D (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8:2003–2014PubMedPubMedCentralGoogle Scholar
  141. 141.
    Di Carlo M, Giacomazza D, Picone P et al (2012) Are oxidative stress and mitochondrial dysfunction the key players in the neurodegenerative diseases? Free Radic Res 46:1327–1338PubMedCrossRefGoogle Scholar
  142. 142.
    Schuessel K, Frey C, Jourdan C et al (2006) Aging sensitizes toward ROS formation and lipid peroxidation in PS1M146L transgenic mice. Free Radic Biol Med 40:850–862PubMedCrossRefGoogle Scholar
  143. 143.
    Gueraud F, Atalay M, Bresgen N et al (2010) Chemistry and biochemistry of lipid peroxidation products. Free Radic Res 44:1098–1124PubMedCrossRefGoogle Scholar
  144. 144.
    Okayasu T, Curtis MT, Farber JL (1985) Structural alterations of the inner mitochondrial membrane in ischemic liver cell injury. Arch Biochem Biophys 236:638–645PubMedCrossRefGoogle Scholar
  145. 145.
    Paradies G, Ruggiero FM, Petrosillo G, Quagliariello E (1997) Age-dependent decline in the cytochrome c oxidase activity in rat heart mitochondria: role of cardiolipin. FEBS Lett 406:136–138PubMedCrossRefGoogle Scholar
  146. 146.
    Ha EE-J, Frohman MA (2014) Regulation of mitochondrial morphology by lipids. BioFactors 40:419–424PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Nakamura K, Nemani VM, Azarbal F et al (2011) Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. J Biol Chem 286:20710–20726PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Chan EYL, McQuibban GA (2012) Phosphatidylserine decarboxylase 1 (Psd1) promotes mitochondrial fusion by regulating the biophysical properties of the mitochondrial membrane and alternative topogenesis of mitochondrial genome maintenance protein 1 (Mgm1). J Biol Chem 287:40131–40139PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20:460–473PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Dall’Armi C, Devereaux KA, Di Paolo G (2013) The role of lipids in the control of autophagy. Curr Biol 23:R33–R45PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Wu Y, Cheng S, Zhao H et al (2014) PI3P phosphatase activity is required for autophagosome maturation and autolysosome formation. EMBO Rep 15:973–981PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Hao F, Itoh T, Morita E et al (2016) The PtdIns3-phosphatase MTMR3 interacts with mTORC1 and suppresses its activity. FEBS Lett 590:161–173PubMedCrossRefGoogle Scholar
  154. 154.
    Kumar A, Baycin-Hizal D, Zhang Y et al (2015) Cellular traffic cops: the interplay between lipids and proteins regulates vesicular formation, trafficking, and signaling in mammalian cells. Curr Opin Biotechnol 36:215–221PubMedCrossRefGoogle Scholar
  155. 155.
    Czubowicz K, Strosznajder R (2014) Ceramide in the molecular mechanisms of neuronal cell death. The role of sphingosine-1-phosphate. Mol Neurobiol 50:26–37PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Pelled D, Raveh T, Riebeling C et al (2002) Death-associated protein (DAP) kinase plays a central role in ceramide-induced apoptosis in cultured hippocampal neurons. J Biol Chem 277:1957–1961PubMedCrossRefGoogle Scholar
  157. 157.
    Widau RC, Jin Y, Dixon SA et al (2010) Protein phosphatase 2A (PP2A) holoenzymes regulate death-associated protein kinase (DAPK) in ceramide-induced anoikis. J Biol Chem 285:13827–13838PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Cuervo AM (2010) Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol Metab 21:142–150PubMedCrossRefGoogle Scholar
  159. 159.
    Rodriguez-Navarro JA, Kaushik S, Koga H et al (2012) Inhibitory effect of dietary lipids on chaperone-mediated autophagy. Proc Natl Acad Sci USA 109:E705–E714PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Toops KA, Tan LX, Jiang Z et al (2015) Cholesterol-mediated activation of acid sphingomyelinase disrupts autophagy in the retinal pigment epithelium. Mol Biol Cell 26:1–14PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    King MA, Ganley IG, Flemington V (2016) Inhibition of cholesterol metabolism underlies synergy between mTOR pathway inhibition and chloroquine in bladder cancer cells. Oncogene 35:4518–4528PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Singh R, Cuervo AM (2012) Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol 2012:282041PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Dong H, Czaja MJ (2011) Regulation of lipid droplets by autophagy. Trends Endocrinol Metab 22:234–240PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Liu K, Czaja MJ (2013) Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ 20:3–11PubMedCrossRefGoogle Scholar
  165. 165.
    Wang C-W (2016) Lipid droplets, lipophagy, and beyond. Biochim Biophys Acta 1861:793–805PubMedCrossRefGoogle Scholar
  166. 166.
    Ravikumar B, Sarkar S, Davies JE et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435PubMedCrossRefGoogle Scholar
  167. 167.
    Ward C, Martinez-Lopez N, Otten EG et al (2016) Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim Biophys Acta 1861:269–284PubMedCrossRefGoogle Scholar
  168. 168.
    Albi E, Viola Magni MP (2004) The role of intranuclear lipids. Biol Cell 96:657–667PubMedCrossRefGoogle Scholar
  169. 169.
    Albi E, Lazzarini A, Lazzarini R et al (2013) Nuclear lipid microdomain as place of interaction between sphingomyelin and DNA during liver regeneration. Int J Mol Sci 14:6529–6541PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Irvine RF (2003) Nuclear lipid signalling. Nat Rev Mol Cell Biol 4:349–360PubMedCrossRefGoogle Scholar
  171. 171.
    Terry LJ, Shows EB, Wente SR (2007) Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318:1412–1416PubMedCrossRefGoogle Scholar
  172. 172.
    Albi E (2011) Role of intranuclear lipids in health and disease. Clin Lipidol 6:59–69CrossRefGoogle Scholar
  173. 173.
    Cocco L, Faenza I, Fiume R et al (2006) Phosphoinositide-specific phospholipase C (PI-PLC) beta1 and nuclear lipid-dependent signaling. Biochim Biophys Acta 1761:509–521PubMedCrossRefGoogle Scholar
  174. 174.
    Lin H, Choi JH, Hasek J et al (2000) Phospholipase C is involved in kinetochore function in Saccharomyces cerevisiae. Mol Cell Biol 20:3597–3607PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Cerbon J, Falcon A, Hernandez-Luna C, Segura-Cobos D (2005) Inositol phosphoceramide synthase is a regulator of intracellular levels of diacylglycerol and ceramide during the G1 to S transition in Saccharomyces cerevisiae. Biochem J 388:169–176PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Ibarguren M, Bomans PHH, Frederik PM et al (2010) End-products diacylglycerol and ceramide modulate membrane fusion induced by a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa. Biochim Biophys Acta 1798:59–64PubMedCrossRefGoogle Scholar
  177. 177.
    Ruvolo PP (2001) Ceramide regulates cellular homeostasis via diverse stress signaling pathways. Leukemia 15:1153–1160PubMedCrossRefGoogle Scholar
  178. 178.
    Hertz R, Magenheim J, Berman I, Bar-Tana J (1998) Fatty acyl-CoA thioesters are ligands of hepatic nuclear factor-4alpha. Nature 392:512–516PubMedCrossRefGoogle Scholar
  179. 179.
    Shoji-Kawaguchi M, Izuta S, Tamiya-Koizumi K et al (1995) Selective inhibition of DNA polymerase epsilon by phosphatidylinositol. J Biochem 117:1095–1099PubMedCrossRefGoogle Scholar
  180. 180.
    Tamiya-Koizumi K (2002) Nuclear lipid metabolism and signaling. J Biochem 132:13–22PubMedCrossRefGoogle Scholar
  181. 181.
    van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Sleight RG (1987) Intracellular lipid transport in eukaryotes. Annu Rev Physiol 49:193–208PubMedCrossRefGoogle Scholar
  183. 183.
    Rueckert DG, Schmidt K (1990) Lipid transfer proteins. Chem Phys Lipids 56:1–20PubMedCrossRefGoogle Scholar
  184. 184.
    Holthuis JCM, van Meer G, Huitema K (2003) Lipid microdomains, lipid translocation and the organization of intracellular membrane transport (Review). Mol Membr Biol 20:231–241PubMedCrossRefGoogle Scholar
  185. 185.
    Bittman R, Clejan S, Robinson BP, Witzke NM (1985) Kinetics of cholesterol and phospholipid exchange from membranes containing cross-linked proteins or cross-linked phosphatidylethanolamines. Biochemistry 24:1403–1409PubMedCrossRefGoogle Scholar
  186. 186.
    Vahouny GV, Chanderbhan R, Kharroubi A et al (1987) Sterol carrier and lipid transfer proteins. Adv Lipid Res 22:83–113PubMedCrossRefGoogle Scholar
  187. 187.
    Lidstrom-Olsson B, Wikvall K (1986) The role of sterol carrier protein2 and other hepatic lipid-binding proteins in bile-acid biosynthesis. Biochem J 238:879–884PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Stolowich NJ, Petrescu AD, Huang H et al (2002) Sterol carrier protein-2: structure reveals function. Cell Mol Life Sci 59:193–212PubMedCrossRefGoogle Scholar
  189. 189.
    Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–47PubMedCrossRefGoogle Scholar
  190. 190.
    Trapani L, Segatto M, Pallottini V (2012) Regulation and deregulation of cholesterol homeostasis: the liver as a metabolic “power station”. World J Hepatol 4:184–190PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Baur JA, Chen D, Chini EN et al (2010) Dietary restriction: standing up for sirtuins. Science 329:1012–1014PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Girard E, Paul JL, Fournier N et al (2011) The dynamin chemical inhibitor dynasore impairs cholesterol trafficking and sterol-sensitive genes transcription in human HeLa cells and macrophages. PLoS One 6:e29042PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Preta G, Cronin JG, Sheldon IM (2015) Dynasore—not just a dynamin inhibitor. Cell Commun Signal 13:24PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Sturbois B, Moreau P, Maneta-Peyret L et al (1994) Cell-free transfer of phospholipids between the endoplasmic reticulum and the Golgi apparatus of leek seedlings. Biochim Biophys Acta 1189:31–37PubMedCrossRefGoogle Scholar
  195. 195.
    Moreau P, Rodriguez M, Cassagne C et al (1991) Trafficking of lipids from the endoplasmic reticulum to the Golgi apparatus in a cell-free system from rat liver. J Biol Chem 266:4322–4328PubMedGoogle Scholar
  196. 196.
    Fukasawa M, Nishijima M, Hanada K (1999) Genetic evidence for ATP-dependent endoplasmic reticulum-to-Golgi apparatus trafficking of ceramide for sphingomyelin synthesis in Chinese hamster ovary cells. J Cell Biol 144:673–685PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Tatsuta T, Scharwey M, Langer T (2014) Mitochondrial lipid trafficking. Trends Cell Biol 24:44–52PubMedCrossRefGoogle Scholar
  198. 198.
    Yang X, Yu Y, Wang D, Qin S (2017) Overexpressed PLTP in macrophage may promote cholesterol accumulation by prolonged endoplasmic reticulum stress. Med Hypotheses 98:45–48PubMedCrossRefGoogle Scholar
  199. 199.
    Vuletic S, Dong W, Wolfbauer G et al (2009) PLTP is present in the nucleus, and its nuclear export is CRM1-dependent. Biochim Biophys Acta 1793:584–591PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Ferkingstad E, Frigessi A, Lyng H (2008) Indirect genomic effects on survival from gene expression data. Genome Biol 9(3):R58PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Cronan JE (2003) Bacterial membrane lipids: where do we stand? Annu Rev Microbiol 57:203–224PubMedCrossRefGoogle Scholar
  202. 202.
    Kaiser H-J, Surma MA, Mayer F et al (2011) Molecular convergence of bacterial and eukaryotic surface order. J Biol Chem 286:40631–40637PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Lopez D (2015) Molecular composition of functional microdomains in bacterial membranes. Chem Phys Lipids 192:3–11PubMedCrossRefGoogle Scholar
  204. 204.
    Cybulski LE, Martin M, Mansilla MC et al (2010) Membrane thickness cue for cold sensing in a bacterium. Curr Biol 20:1539–1544PubMedCrossRefGoogle Scholar
  205. 205.
    Good MC, Zalatan JG, Lim WA (2011) Scaffold proteins: hubs for controlling the flow of cellular information. Science 332:680–686PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Arendt W, Hebecker S, Jager S et al (2012) Resistance phenotypes mediated by aminoacyl-phosphatidylglycerol synthases. J Bacteriol 194:1401–1416PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Sohlenkamp C, Geiger O (2016) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40:133–159PubMedCrossRefGoogle Scholar
  208. 208.
    Mizoguchi T, Harada J, Yoshitomi T, Tamiaki H (2013) A variety of glycolipids in green photosynthetic bacteria. Photosynth Res 114:179–188PubMedCrossRefGoogle Scholar
  209. 209.
    Mansilla MC, Cybulski LE, Albanesi D, de Mendoza D (2004) Control of membrane lipid fluidity by molecular thermosensors. J Bacteriol 186:6681–6688PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Donovan C, Bramkamp M (2009) Characterization and subcellular localization of a bacterial flotillin homologue. Microbiology 155:1786–1799PubMedCrossRefGoogle Scholar
  211. 211.
    Devi SN, Vishnoi M, Kiehler B et al (2015) In vivo functional characterization of the transmembrane histidine kinase KinC in Bacillus subtilis. Microbiology 161:1092–1104PubMedCrossRefGoogle Scholar
  212. 212.
    Dempwolff F, Schmidt FK, Hervas AB et al (2016) Super resolution fluorescence microscopy and tracking of bacterial flotillin (Reggie) paralogs provide evidence for defined-sized protein microdomains within the bacterial membrane but absence of clusters containing detergent-resistant proteins. PLoS Genet 12:e1006116PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Schneider J, Klein T, Mielich-Suss B et al (2015) Spatio-temporal remodeling of functional membrane microdomains organizes the signaling networks of a bacterium. PLoS Genet 11:e1005140PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Daum G, Lees ND, Bard M, Dickson R (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14:1471–1510PubMedCrossRefGoogle Scholar
  215. 215.
    Hoekstra D, van Ijzendoorn SCD (2003) In search of lipid translocases and their biological functions. Dev Cell 4:8–9PubMedCrossRefGoogle Scholar
  216. 216.
    Ikeda M, Kihara A, Igarashi Y (2006) Lipid asymmetry of the eukaryotic plasma membrane: functions and related enzymes. Biol Pharm Bull 29:1542–1546PubMedCrossRefGoogle Scholar
  217. 217.
    Henderson CM, Block DE (2014) Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae. Appl Environ Microbiol 80:2966–2972PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Henderson CM, Lozada-Contreras M, Naravane Y et al (2011) Analysis of major phospholipid species and ergosterol in fermenting industrial yeast strains using atmospheric pressure ionization ion-trap mass spectrometry. J Agric Food Chem 59:12761–12770PubMedCrossRefGoogle Scholar
  219. 219.
    Vanegas JM, Contreras MF, Faller R, Longo ML (2012) Role of unsaturated lipid and ergosterol in ethanol tolerance of model yeast biomembranes. Biophys J 102:507–516PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Laurinyecz B, Peter M, Vedelek V et al (2016) Reduced expression of CDP-DAG synthase changes lipid composition and leads to male sterility in Drosophila. Open Biol 6:50169PubMedCrossRefGoogle Scholar
  221. 221.
    Guan XL, Cestra G, Shui G et al (2013) Biochemical membrane lipidomics during Drosophila development. Dev Cell 24:98–111PubMedCrossRefGoogle Scholar
  222. 222.
    Ghosh A, Kling T, Snaidero N et al (2013) A global in vivo Drosophila RNAi screen identifies a key role of ceramide phosphoethanolamine for glial ensheathment of axons. PLoS Genet 9:e1003980PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Fan W, Lam SM, Xin J et al (2017) Drosophila TRF2 and TAF9 regulate lipid droplet size and phospholipid fatty acid composition. PLoS Genet 13:e1006664PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Wahlby C, Conery AL, Bray M-A et al (2014) High- and low-throughput scoring of fat mass and body fat distribution in C. elegans. Methods 68:492–499PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Yen K, Le TT, Bansal A et al (2010) A comparative study of fat storage quantitation in nematode Caenorhabditis elegans using label and label-free methods. PLoS One 5:e12810PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Zhang P, Na H, Liu Z et al (2012) Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets. Mol Cell Proteom 11:317–328CrossRefGoogle Scholar
  227. 227.
    Mullaney BC, Ashrafi K (2009) C. elegans fat storage and metabolic regulation. Biochim Biophys Acta 1791:474–478PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    McKay RM, McKay JP, Avery L, Graff JM (2003) C elegans: a model for exploring the genetics of fat storage. Dev Cell 4:131–142PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Hirsch D, Stahl A, Lodish HF (1998) A family of fatty acid transporters conserved from mycobacterium to man. Proc Natl Acad Sci USA 95:8625–8629PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39PubMedCrossRefGoogle Scholar
  231. 231.
    Galbiati F, Razani B, Lisanti MP (2001) Emerging themes in lipid rafts and caveolae. Cell 106:403–411PubMedCrossRefGoogle Scholar
  232. 232.
    Oakley FD, Smith RL, Engelhardt JF (2009) Lipid rafts and caveolin-1 coordinate interleukin-1beta (IL-1beta)-dependent activation of NFkappaB by controlling endocytosis of Nox2 and IL-1beta receptor 1 from the plasma membrane. J Biol Chem 284:33255–33264PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Ikeguchi M, Makino M, Kaibara N (2001) Clinical significance of E-cadherin-catenin complex expression in metastatic foci of colorectal carcinoma. J Surg Oncol 77:201–207PubMedCrossRefGoogle Scholar
  234. 234.
    Jiang WG, Mansel RE (2000) E-cadherin complex and its abnormalities in human breast cancer. Surg Oncol 9:151–171PubMedCrossRefGoogle Scholar
  235. 235.
    Mollinedo F, Gajate C (2006) Fas/CD95 death receptor and lipid rafts: new targets for apoptosis-directed cancer therapy. Drug Resist Updat 9:51–73PubMedCrossRefGoogle Scholar
  236. 236.
    Simpson-Holley M, Ellis D, Fisher D et al (2002) A functional link between the actin cytoskeleton and lipid rafts during budding of filamentous influenza virions. Virology 301:212–225PubMedCrossRefGoogle Scholar
  237. 237.
    Lin S-L, Chien C-W, Han C-L et al (2010) Temporal proteomics profiling of lipid rafts in CCR6-activated T cells reveals the integration of actin cytoskeleton dynamics. J Proteome Res 9:283–297PubMedCrossRefGoogle Scholar
  238. 238.
    Shimizu Y (2001) Moving Ras in and out of lipid rafts. Trends Immunol 22:352PubMedCrossRefGoogle Scholar
  239. 239.
    Parton RG, Hancock JF (2004) Lipid rafts and plasma membrane microorganization: insights from Ras. Trends Cell Biol 14:141–147PubMedCrossRefGoogle Scholar
  240. 240.
    Del Pozo MA (2004) Integrin signaling and lipid rafts. Cell Cycle 3:725–728PubMedCrossRefGoogle Scholar
  241. 241.
    Leitinger B, Hogg N (2002) The involvement of lipid rafts in the regulation of integrin function. J Cell Sci 115:963–972PubMedGoogle Scholar
  242. 242.
    Vassilieva EV, Gerner-Smidt K, Ivanov AI, Nusrat A (2008) Lipid rafts mediate internalization of beta1-integrin in migrating intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 295:G965–G976PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Wang C, Yoo Y, Fan H et al (2010) Regulation of Integrin beta 1 recycling to lipid rafts by Rab1a to promote cell migration. J Biol Chem 285:29398–29405PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Lee J-L, Wang M-J, Sudhir P-R, Chen J-Y (2008) CD44 engagement promotes matrix-derived survival through the CD44-SRC-integrin axis in lipid rafts. Mol Cell Biol 28:5710–5723PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Oliferenko S, Paiha K, Harder T et al (1999) Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. J Cell Biol 146:843–854PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Qian H, Xia L, Ling P et al (2012) CD44 ligation with A3D8 antibody induces apoptosis in acute myeloid leukemia cells through binding to CD44s and clustering lipid rafts. Cancer Biol Ther 13:1276–1283PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Singleton PA, Bourguignon LYW (2004) CD44 interaction with ankyrin and IP3 receptor in lipid rafts promotes hyaluronan-mediated Ca2+ signaling leading to nitric oxide production and endothelial cell adhesion and proliferation. Exp Cell Res 295:102–118PubMedCrossRefGoogle Scholar
  248. 248.
    Nishikawa M, Nojima S, Akiyama T et al (1984) Interaction of digitonin and its analogs with membrane cholesterol. J Biochem 96:1231–1239PubMedCrossRefGoogle Scholar
  249. 249.
    Gardner JA, Gainsborough H, Murray R (1938) Studies in the cholesterol content of normal human plasma: an improved macromethod for the estimation of cholesterol by digitonin. Biochem J 32:15–18PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Bittman R, Blau L, Clejan S, Rottem S (1981) Determination of cholesterol asymmetry by rapid kinetics of filipin-cholesterol association: effect of modification in lipids and proteins. Biochemistry 20:2425–2432PubMedCrossRefGoogle Scholar
  251. 251.
    Behnke O, Tranum-Jensen J, van Deurs B (1984) Filipin as a cholesterol probe. II. Filipin-cholesterol interaction in red blood cell membranes. Eur J Cell Biol 35:200–215PubMedGoogle Scholar
  252. 252.
    Singer MA (1975) Interaction of amphotericin B and nystatin with phospholipid bilayer membranes: effect of cholesterol. Can J Physiol Pharmacol 53:1072–1079PubMedCrossRefGoogle Scholar
  253. 253.
    Kuipers HF, van den Elsen PJ (2007) Immunomodulation by statins: inhibition of cholesterol vs. isoprenoid biosynthesis. Biomed Pharmacother 61:400–407PubMedCrossRefGoogle Scholar
  254. 254.
    Griffin S, Preta G, Sheldon IM (2017) Inhibiting mevalonate pathway enzymes increases stromal cell resilience to a cholesterol-dependent cytolysin. Sci Rep 7(1):17050PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Marasas WFO, Riley RT, Hendricks KA et al (2004) Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutr 134:711–716PubMedCrossRefGoogle Scholar
  256. 256.
    Merrill AHJ, Sullards MC, Wang E et al (2001) Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins. Environ Health Perspect 109(Suppl):283–289PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Lee Y-S, Choi K-M, Lee S et al (2012) Myriocin, a serine palmitoyltransferase inhibitor, suppresses tumor growth in a murine melanoma model by inhibiting de novo sphingolipid synthesis. Cancer Biol Ther 13:92–100PubMedCrossRefGoogle Scholar
  258. 258.
    Delgado A, Casas J, Llebaria A et al (2006) Inhibitors of sphingolipid metabolism enzymes. Biochim Biophys Acta 1758:1957–1977PubMedCrossRefGoogle Scholar
  259. 259.
    Megha London E (2004) Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J Biol Chem 279:9997–10004PubMedCrossRefGoogle Scholar
  260. 260.
    Yu C, Alterman M, Dobrowsky RT (2005) Ceramide displaces cholesterol from lipid rafts and decreases the association of the cholesterol binding protein caveolin-1. J Lipid Res 46:1678–1691PubMedCrossRefGoogle Scholar
  261. 261.
    Cremesti AE, Goni FM, Kolesnick R (2002) Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett 531:47–53PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut National de la Santé et de la Recherche Médicale, U1001 and Faculté de MédecineUniversité Paris DescartesParisFrance
  2. 2.Institute of BiochemistryVilnius UniversityVilniusLithuania

Personalised recommendations