Skip to main content
Log in

Synthetic alpha-synuclein fibrils cause mitochondrial impairment and selective dopamine neurodegeneration in part via iNOS-mediated nitric oxide production

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Intracellular accumulation of α-synuclein (α-syn) are hallmarks of synucleinopathies, including Parkinson’s disease (PD). Exogenous addition of preformed α-syn fibrils (PFFs) into primary hippocampal neurons induced α-syn aggregation and accumulation. Likewise, intrastriatal inoculation of PFFs into mice and non-human primates generates Lewy bodies and Lewy neurites associated with PD-like neurodegeneration. Herein, we investigate the putative effects of synthetic human PFFs on cultured rat ventral midbrain dopamine (DA) neurons. A time- and dose-dependent accumulation of α-syn was observed following PFFs exposure that also underwent phosphorylation at serine 129. PFFs treatment decreased the expression levels of synaptic proteins, caused alterations in axonal transport-related proteins, and increased H2AX Ser139 phosphorylation. Mitochondrial impairment (including modulation of mitochondrial dynamics-associated protein content), enhanced oxidative stress, and an inflammatory response were also detected in our experimental paradigm. In attempt to unravel a potential molecular mechanism of PFFs neurotoxicity, the expression of inducible nitric oxide synthase was blocked; a significant decline in protein nitration levels and protection against PFFs-induced DA neuron death were observed. Combined exposure to PFFs and rotenone resulted in an additive toxicity. Strikingly, many of the harmful effects found were more prominent in DA rather than non-DA neurons, suggestive of higher susceptibility to degenerate. These findings provide new insights into the role of α-syn in the pathogenesis of PD and could represent a novel and valuable model to study DA-related neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, Barbour R, Huang J, Kling K, Lee M, Diep L, Keim PS, Shen X, Chataway T, Schlossmacher MG, Seubert P, Schenk D, Sinha S, Gai WP, Chilcote TJ (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281(40):29739–29752. doi:10.1074/jbc.M600933200

    Article  CAS  PubMed  Google Scholar 

  2. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4(2):160–164. doi:10.1038/ncb748

    CAS  PubMed  Google Scholar 

  3. Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290(5493):985–989

    Article  CAS  PubMed  Google Scholar 

  4. Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D, Kay DM, Doheny KF, Paschall J, Pugh E, Kusel VI, Collura R, Roberts J, Griffith A, Samii A, Scott WK, Nutt J, Factor SA, Payami H (2010) Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet 42(9):781–785. doi:10.1038/ng.642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, Paisan-Ruiz C, Lichtner P, Scholz SW, Hernandez DG, Kruger R, Federoff M, Klein C, Goate A, Perlmutter J, Bonin M, Nalls MA, Illig T, Gieger C, Houlden H, Steffens M, Okun MS, Racette BA, Cookson MR, Foote KD, Fernandez HH, Traynor BJ, Schreiber S, Arepalli S, Zonozi R, Gwinn K, van der Brug M, Lopez G, Chanock SJ, Schatzkin A, Park Y, Hollenbeck A, Gao J, Huang X, Wood NW, Lorenz D, Deuschl G, Chen H, Riess O, Hardy JA, Singleton AB, Gasser T (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41(12):1308–1312. doi:10.1038/ng.487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luk KC, Song C, O’Brien P, Stieber A, Branch JR, Brunden KR, Trojanowski JQ, Lee VM (2009) Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci USA 106(47):20051–20056. doi:10.1073/pnas.0908005106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, Meaney DF, Trojanowski JQ, Lee VM (2011) Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72(1):57–71. doi:10.1016/j.neuron.2011.08.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283(14):9089–9100. doi:10.1074/jbc.M710012200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Perez RG, Waymire JC, Lin E, Liu JJ, Guo F, Zigmond MJ (2002) A role for alpha-synuclein in the regulation of dopamine biosynthesis. J Neurosci 22(8):3090–3099

    CAS  PubMed  Google Scholar 

  10. Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M, Wong J, Takenouchi T, Hashimoto M, Masliah E (2000) Alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157(2):401–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P (2008) Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci 65(7–8):1272–1284. doi:10.1007/s00018-008-7589-1

    Article  CAS  PubMed  Google Scholar 

  12. Venda LL, Cragg SJ, Buchman VL, Wade-Martins R (2010) Alpha-synuclein and dopamine at the crossroads of Parkinson’s disease. Trends Neurosci 33(12):559–568. doi:10.1016/j.tins.2010.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim C, Ho DH, Suk JE, You S, Michael S, Kang J, Joong Lee S, Masliah E, Hwang D, Lee HJ, Lee SJ (2013) Neuron-released oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 4:1562. doi:10.1038/ncomms2534

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S, Hwang D, Masliah E, Lee SJ (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285(12):9262–9272. doi:10.1074/jbc.M109.081125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhang W, Zhou Y, Hong JS, Zhang J (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19(6):533–542. doi:10.1096/fj.04-2751com

    Article  CAS  PubMed  Google Scholar 

  16. Betarbet R, Canet-Aviles RM, Sherer TB, Mastroberardino PG, McLendon C, Kim JH, Lund S, Na HM, Taylor G, Bence NF, Kopito R, Seo BB, Yagi T, Yagi A, Klinefelter G, Cookson MR, Greenamyre JT (2006) Intersecting pathways to neurodegeneration in Parkinson’s disease: effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system. Neurobiol Dis 22(2):404–420. doi:10.1016/j.nbd.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  17. Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT (2009) A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 34(2):279–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M, Panov AV, Cookson MR, Greenamyre JT (2002) An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 22(16):7006–7015

    CAS  PubMed  Google Scholar 

  19. Tapias V, Cannon JR, Greenamyre JT (2014) Pomegranate juice exacerbates oxidative stress and nigrostriatal degeneration in Parkinson’s disease. Neurobiol Aging 35(5):1162–1176. doi:10.1016/j.neurobiolaging.2013.10.077

    Article  PubMed  Google Scholar 

  20. Tapias V, Greenamyre JT (2014) A rapid and sensitive automated image-based approach for in vitro and in vivo characterization of cell morphology and quantification of cell number and neurite architecture. Curr Protoc Cytom 68:12 33 11–12 33 22. doi:10.1002/0471142956.cy1233s68

    Google Scholar 

  21. Tapias V, Greenamyre JT, Watkins SC (2013) Automated imaging system for fast quantitation of neurons, cell morphology and neurite morphometry in vivo and in vitro. Neurobiol Dis 54:158–168. doi:10.1016/j.nbd.2012.11.018

    Article  PubMed  Google Scholar 

  22. Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, Lee VM (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338(6109):949–953. doi:10.1126/science.1227157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ, Lee VM (2012) Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med 209(5):975–986. doi:10.1084/jem.20112457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chu Y, Morfini GA, Langhamer LB, He Y, Brady ST, Kordower JH (2012) Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain 135(Pt 7):2058–2073. doi:10.1093/brain/aws133

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schulz-Schaeffer WJ (2010) The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathol 120(2):131–143. doi:10.1007/s00401-010-0711-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baritaud M, Cabon L, Delavallee L, Galan-Malo P, Gilles ME, Brunelle-Navas MN, Susin SA (2012) AIF-mediated caspase-independent necroptosis requires ATM and DNA-PK-induced histone H2AX Ser139 phosphorylation. Cell Death Dis 3:e390. doi:10.1038/cddis.2012.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakamura K (2013) alpha-Synuclein and mitochondria: partners in crime? Neurotherapeutics 10(3):391–399. doi:10.1007/s13311-013-0182-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kamp F, Exner N, Lutz AK, Wender N, Hegermann J, Brunner B, Nuscher B, Bartels T, Giese A, Beyer K, Eimer S, Winklhofer KF, Haass C (2010) Inhibition of mitochondrial fusion by alpha-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J 29(20):3571–3589. doi:10.1038/emboj.2010.223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakamura K, Nemani VM, Azarbal F, Skibinski G, Levy JM, Egami K, Munishkina L, Zhang J, Gardner B, Wakabayashi J, Sesaki H, Cheng Y, Finkbeiner S, Nussbaum RL, Masliah E, Edwards RH (2011) Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. J Biol Chem 286(23):20710–20726. doi:10.1074/jbc.M110.213538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tapias V, Escames G, Lopez LC, Lopez A, Camacho E, Carrion MD, Entrena A, Gallo MA, Espinosa A, Acuna-Castroviejo D (2009) Melatonin and its brain metabolite N(1)-acetyl-5-methoxykynuramine prevent mitochondrial nitric oxide synthase induction in parkinsonian mice. J Neurosci Res 87(13):3002–3010. doi:10.1002/jnr.22123

    Article  CAS  PubMed  Google Scholar 

  31. McCormack AL, Mak SK, Di Monte DA (2012) Increased alpha-synuclein phosphorylation and nitration in the aging primate substantia nigra. Cell Death Dis 3:e315. doi:10.1038/cddis.2012.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Amschl D, Neddens J, Havas D, Flunkert S, Rabl R, Romer H, Rockenstein E, Masliah E, Windisch M, Hutter-Paier B (2013) Time course and progression of wild type alpha-synuclein accumulation in a transgenic mouse model. BMC Neurosci 14:6. doi:10.1186/1471-2202-14-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schell H, Hasegawa T, Neumann M, Kahle PJ (2009) Nuclear and neuritic distribution of serine-129 phosphorylated alpha-synuclein in transgenic mice. Neuroscience 160(4):796–804. doi:10.1016/j.neuroscience.2009.03.002

    Article  CAS  PubMed  Google Scholar 

  34. Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC (2010) Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329(5999):1663–1667. doi:10.1126/science.1195227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC (2005) Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123(3):383–396. doi:10.1016/j.cell.2005.09.028

    Article  CAS  PubMed  Google Scholar 

  36. Galvin JE, Uryu K, Lee VM, Trojanowski JQ (1999) Axon pathology in Parkinson’s disease and Lewy body dementia hippocampus contains alpha-, beta-, and gamma-synuclein. Proc Natl Acad Sci USA 96(23):13450–13455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chung CY, Koprich JB, Siddiqi H, Isacson O (2009) Dynamic changes in presynaptic and axonal transport proteins combined with striatal neuroinflammation precede dopaminergic neuronal loss in a rat model of AAV alpha-synucleinopathy. J Neurosci 29(11):3365–3373. doi:10.1523/JNEUROSCI.5427-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Muller SK, Bender A, Laub C, Hogen T, Schlaudraff F, Liss B, Klopstock T, Elstner M (2013) Lewy body pathology is associated with mitochondrial DNA damage in Parkinson’s disease. Neurobiol Aging 34(9):2231–2233. doi:10.1016/j.neurobiolaging.2013.03.016

    Article  PubMed  Google Scholar 

  39. Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG, Jenkins NA, Price DL, Lee MK (2006) Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 26(1):41–50. doi:10.1523/JNEUROSCI.4308-05.2006

    Article  CAS  PubMed  Google Scholar 

  40. Decressac M, Mattsson B, Lundblad M, Weikop P, Bjorklund A (2012) Progressive neurodegenerative and behavioural changes induced by AAV-mediated overexpression of alpha-synuclein in midbrain dopamine neurons. Neurobiol Dis 45(3):939–953. doi:10.1016/j.nbd.2011.12.013

    Article  CAS  PubMed  Google Scholar 

  41. Baptista MJ, O’Farrell C, Daya S, Ahmad R, Miller DW, Hardy J, Farrer MJ, Cookson MR (2003) Co-ordinate transcriptional regulation of dopamine synthesis genes by alpha-synuclein in human neuroblastoma cell lines. J Neurochem 85(4):957–968

    Article  CAS  PubMed  Google Scholar 

  42. Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N, Mandel RJ, Bjorklund A (2002) Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci 22(7):2780–2791

    CAS  PubMed  Google Scholar 

  43. Tanaka S, Takehashi M, Matoh N, Iida S, Suzuki T, Futaki S, Hamada H, Masliah E, Sugiura Y, Ueda K (2002) Generation of reactive oxygen species and activation of NF-kappaB by non-Abeta component of Alzheimer’s disease amyloid. J Neurochem 82(2):305–315

    Article  CAS  PubMed  Google Scholar 

  44. Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P (2009) Alpha-synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells. Int J Biochem Cell Biol 41(10):2015–2024. doi:10.1016/j.biocel.2009.05.008

    Article  CAS  PubMed  Google Scholar 

  45. Paxinou E, Chen Q, Weisse M, Giasson BI, Norris EH, Rueter SM, Trojanowski JQ, Lee VM, Ischiropoulos H (2001) Induction of alpha-synuclein aggregation by intracellular nitrative insult. J Neurosci 21(20):8053–8061

    CAS  PubMed  Google Scholar 

  46. Duda JE, Giasson BI, Chen Q, Gur TL, Hurtig HI, Stern MB, Gollomp SM, Ischiropoulos H, Lee VM, Trojanowski JQ (2000) Widespread nitration of pathological inclusions in neurodegenerative synucleinopathies. Am J Pathol 157(5):1439–1445. doi:10.1016/S0002-9440(10)64781-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Couch Y, Alvarez-Erviti L, Sibson NR, Wood MJ, Anthony DC (2011) The acute inflammatory response to intranigral alpha-synuclein differs significantly from intranigral lipopolysaccharide and is exacerbated by peripheral inflammation. J Neuroinflammation 8:166. doi:10.1186/1742-2094-8-166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Theodore S, Cao S, McLean PJ, Standaert DG (2008) Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J Neuropathol Exp Neurol 67(12):1149–1158. doi:10.1097/NEN.0b013e31818e5e99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Watson MB, Richter F, Lee SK, Gabby L, Wu J, Masliah E, Effros RB, Chesselet MF (2012) Regionally-specific microglial activation in young mice over-expressing human wildtype alpha-synuclein. Exp Neurol 237(2):318–334. doi:10.1016/j.expneurol.2012.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Su X, Federoff HJ, Maguire-Zeiss KA (2009) Mutant alpha-synuclein overexpression mediates early proinflammatory activity. Neurotox Res 16(3):238–254. doi:10.1007/s12640-009-9053-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Uversky VN, Li J, Bower K, Fink AL (2002) Synergistic effects of pesticides and metals on the fibrillation of alpha-synuclein: implications for Parkinson’s disease. Neurotoxicology 23(4–5):527–536

    Article  CAS  PubMed  Google Scholar 

  52. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301–1306

    Article  CAS  PubMed  Google Scholar 

  53. Horowitz MP, Milanese C, Di Maio R, Hu X, Montero LM, Sanders LH, Tapias V, Sepe S, van Cappellen WA, Burton EA, Greenamyre JT, Mastroberardino PG (2011) Single-cell redox imaging demonstrates a distinctive response of dopaminergic neurons to oxidative insults. Antioxid Redox Signal 15(4):855–871. doi:10.1089/ars.2010.3629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cannon JR, Geghman KD, Tapias V, Sew T, Dail MK, Li C, Greenamyre JT (2013) Expression of human E46K-mutated alpha-synuclein in BAC-transgenic rats replicates early-stage Parkinson’s disease features and enhances vulnerability to mitochondrial impairment. Exp Neurol 240:44–56. doi:10.1016/j.expneurol.2012.11.007

    Article  CAS  PubMed  Google Scholar 

  55. Lee JW, Tapias V, Di Maio R, Greenamyre JT, Cannon JR (2015) Behavioral, neurochemical, and pathologic alterations in bacterial artificial chromosome transgenic G2019S leucine-rich repeated kinase 2 rats. Neurobiol Aging 36(1):505–518. doi:10.1016/j.neurobiolaging.2014.07.011

    Article  CAS  PubMed  Google Scholar 

  56. Sai Y, Chen J, Ye F, Zhao Y, Zou Z, Cao J, Dong Z (2013) Dopamine release suppression dependent on an increase of intracellular Ca(2+) contributed to rotenone-induced neurotoxicity in PC12 cells. J Toxicol Pathol 26(2):149–157. doi:10.1293/tox.26.149

    Article  PubMed  PubMed Central  Google Scholar 

  57. Arnold B, Cassady SJ, VanLaar VS, Berman SB (2011) Integrating multiple aspects of mitochondrial dynamics in neurons: age-related differences and dynamic changes in a chronic rotenone model. Neurobiol Dis 41(1):189–200. doi:10.1016/j.nbd.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  58. Gao HM, Liu B, Hong JS (2003) Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 23(15):6181–6187

    CAS  PubMed  Google Scholar 

  59. Gonzalez-Hernandez T, Rodriguez M (2000) Compartmental organization and chemical profile of dopaminergic and GABAergic neurons in the substantia nigra of the rat. J Comp Neurol 421(1):107–135

    Article  CAS  PubMed  Google Scholar 

  60. Bredt DS, Glatt CE, Hwang PM, Fotuhi M, Dawson TM, Snyder SH (1991) Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron 7(4):615–624

    Article  CAS  PubMed  Google Scholar 

  61. Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5(12):1403–1409. doi:10.1038/70978

    Article  CAS  PubMed  Google Scholar 

  62. Dryanovski DI, Guzman JN, Xie Z, Galteri DJ, Volpicelli-Daley LA, Lee VM, Miller RJ, Schumacker PT, Surmeier DJ (2013) Calcium entry and alpha-synuclein inclusions elevate dendritic mitochondrial oxidant stress in dopaminergic neurons. J Neurosci 33(24):10154–10164. doi:10.1523/JNEUROSCI.5311-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Giasson BI, Murray IV, Trojanowski JQ, Lee VM (2001) A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J Biol Chem 276(4):2380–2386. doi:10.1074/jbc.M008919200

    Article  CAS  PubMed  Google Scholar 

  64. Diers AR, Higdon AN, Ricart KC, Johnson MS, Agarwal A, Kalyanaraman B, Landar A, Darley-Usmar VM (2010) Mitochondrial targeting of the electrophilic lipid 15-deoxy-Delta 12,14-prostaglandin J2 increases apoptotic efficacy via redox cell signalling mechanisms. Biochem J 426(1):31–41. doi:10.1042/BJ20091293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the DSF Charitable Foundation, the Consolidated Anti-Aging Foundation, the National Institutes of Health (NS059806, NS095387, ES020718, ES020327), the Blechman Foundation, and the American Parkinson Disease Association. The authors would like to thank Dr. Simon Watkins (Center for Biologic Imaging, University of Pittsburgh, PA, USA) for the use of the motorized stage system and Evan Howlett for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

VT contributed to the design and conceptualization of the study and complete data collection, analysis and interpretation of data, drafting and revision of the manuscript. XH carried out the cell culture. KCL synthesized the PFFs and contributed to interpretation of the data and revision of the manuscript. LHS performed the mitochondrial respiration assays. VML assisted with manuscript revision. JTG participated in the design and conceptualization of the study, data interpretation, and revision of the manuscript.

Corresponding author

Correspondence to Victor Tapias.

Ethics declarations

Conflict of interest

The authors declare that there are no actual or potential conflicts of interest, including any financial, personal, or other relationships with people or organizations during the development of the work submitted.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2017_2541_MOESM1_ESM.jpg

Fig. S1 (related to Fig. 1). α-Syn localization and nature. Confocal microscopy imaging at 300x magnification revealed that intracellular α-syn inclusions (C; α-syn pSer129, red) occurred specifically in DA neurons (A; TH+, blue) rather than astrocytes (B; GFAP, green). Scale bar = 10 µm (JPEG 2804 kb)

18_2017_2541_MOESM2_ESM.jpg

Fig. S2 (related to Fig. 3). α-Syn fibrils decrease protein levels of synaptic proteins in dopamine neurons. (A-D) Series of high-resolution confocal micrographs at 100x depicting VAMP2 (red) and synaptophysin (green) immunoreactivity. (E) Barogram showing a strong reduction in VAMP2 immunofluorescence in PFFs and rotenone-treated DA neurons. (F) Quantitative analysis of VAMP2 protein levels in non-DA neurons. (G-H) Bar graph comparing the levels of synaptophysin in DA and non-DA neurons. Data are mean ± S.E.M. from two separate experiments done in triplicate for each culture condition. *** p < 0.001, ** p < 0.01 and * p < 0.05 vs VEH + VEH. ### p < 0.001, ## p < 0.01 and # p < 0.05 compared to PFFs + VEH. ** p < 0.01 compared to VEH + ROT (one-way ANOVA followed by Newman–Keuls multiple comparisons test). Scale bar = 20 μm (JPEG 6355 kb)

18_2017_2541_MOESM3_ESM.jpg

Fig. S3 (related to Fig. 6). α-Syn fibrils downregulate dopamine protein content in a time-dependent fashion. (A-C) Representative immunoblots depicting the expression of TH+, MAP2, and β-Actin. Densitometric analysis revealed that PFFs did not exhibit any deleterious effect following 4 days post-addition (A1). A lack of pathogenicity was also observed 7 days post PFFs administration when neurons were treated with PFFs; however, a slight decrease in TH+ content was detected when PFFs were combined with rotenone (B1). By 14 days post PFFs addition, a considerably reduction in TH+ protein levels was found after exposure to PFFs alone or in combination with rotenone (C1). PFFs did not produce adverse effects on non-DA neurons (A2, B2, and C2). β-Actin was used for loading control normalization. Results were normalized to percentage neuron survival of vehicle control cells. Values are expressed as mean optical densitometry ± S.E.M. from four independent cultures run in triplicate. **** p < 0.0001, *** p < 0.001, ** p < 0.01and * p < 0.05 compared to VEH + VEH. #### p < 0.0001 and ### p < 0.001 vs PFFs + VEH. * p < 0.05 relative to VEH + ROT (one-way ANOVA followed by Newman-Keuls multiple comparisons test) (JPEG 1296 kb)

18_2017_2541_MOESM4_ESM.jpg

Fig. S4 (related to Fig. 7). α-Syn fibrils enhance mitochondrial ROS levels. Barograms depicting representative MitoSox red traces from single identified neurons. The rate O •−2 of production was significantly higher following PFFs treatment (B) relative to control group (A). Combined exposure of PFFs and rotenone heightened the toxic effects of rotenone (C and E vs D and F). Measurements were conducted at least three times for all conditions from three independent neuron cultures. On an average, ~ 30-40 neurons per condition were investigated (JPEG 1991 kb)

18_2017_2541_MOESM5_ESM.jpg

Fig. S5 (related to Fig. 7). α-syn fibrils exposure does not alter mitochondrial mass content. Both qualitative and quantitative analyses of confocal micrographs (100x and 300x) did not show any variation in TOM20 immunoreactivity between groups in DA (I) and non-DA (J) neurons. Scale bars = 20 μm at low magnification and 10 μm at high magnification (JPEG 4386 kb)

18_2017_2541_MOESM6_ESM.jpg

Fig. S6 (related to Fig. 8). Detection of 3-nitrotyrosine in mitochondrial proteins. (A-D) To determine the subcellular localization of the upregulated amounts of protein tyrosine nitration after PFFs exposure, primary neurons were fixed and stained with 3-NT and TOM20 antibodies. (E-F) Pearson’s coefficient between 3-NT and TOM20 in both DA and non-DA neurons. Quantitative correlational analysis did not reach statistical significance among groups after PFFs exposure, suggesting that increased 3-NT levels arise from the nucleus and/or cytosol rather than mitochondrion. Data from three independent experiments in triplicate were pooled and presented as the average mean fluorescence intensity ± S.E.M. An average of ~ 25-30 TH+ and 450-550 MAP2 neurons were examined. * p < 0.05 vs VEH + VEH (one-way ANOVA followed by Newman-Keuls multiple comparisons test). Scale bar = 5 μm (JPEG 5172 kb)

18_2017_2541_MOESM7_ESM.jpg

Fig. S7 (related to Fig. 9). α-Syn fibrils do not activate microglial cells. Data analysis revealed that although chronic exposure to rotenone induced important alterations in the morphology of Iba1 cells, no statistical important changes were detected in morphological activation (A), number of Iba1-positive cells (B), and overall area occupied by microglial cells (C) following PFFs treatment. Data from three independent cultures in triplicate were combined to determine means ± S.E.M. ** p < 0.01 relative to VEH + VEH. ## p < 0.01 vs PFFs + VEH (one-way ANOVA followed by Newman-Keuls multiple comparisons test) (JPEG 1092 kb)

Supplementary material 8 (DOCX 15 kb)

Supplementary material 9 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapias, V., Hu, X., Luk, K.C. et al. Synthetic alpha-synuclein fibrils cause mitochondrial impairment and selective dopamine neurodegeneration in part via iNOS-mediated nitric oxide production. Cell. Mol. Life Sci. 74, 2851–2874 (2017). https://doi.org/10.1007/s00018-017-2541-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2541-x

Keywords

Navigation