Skip to main content
Log in

α-Synuclein and Mitochondria: Partners in Crime?

  • Review
  • Published:
Neurotherapeutics

Abstract

Increased α-synuclein levels and mutations in mitochondria-associated proteins both cause familial Parkinson’s disease (PD), and synuclein and mitochondria also play central, but poorly understood, roles in the pathogenesis of idiopathic PD. A fraction of synuclein interacts with mitochondria, and synuclein can produce mitochondrial fragmentation and impair mitochondrial complex I activity. However, the consequences of these mitochondrial changes for bioenergetic and other mitochondrial functions remain poorly defined, as does the role of synuclein–mitochondria interactions in the normal and pathologic effects of synuclein. Understanding the functional consequences of synuclein’s interactions with mitochondria is likely to provide important insights into disease pathophysiology, and may also reveal therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 2002;125:861–870.

    Article  PubMed  Google Scholar 

  2. de Rijk MC, Launer LJ, Berger K, Breteler MM, Dartigues JF, Baldereschi M, et al. Prevalence of Parkinson's disease in Europe: A collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology 2000;54(11 Suppl. 5):S21-23.

    PubMed  Google Scholar 

  3. Guttman M, Slaughter PM, Theriault ME, DeBoer DP, Naylor CD. Burden of parkinsonism: a population-based study. Mov Disord 2003;18:313–319.

    Article  PubMed  Google Scholar 

  4. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 1997;276:2045–2047.

    Article  PubMed  CAS  Google Scholar 

  5. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat Genet 1998;18:106–108.

    Article  PubMed  CAS  Google Scholar 

  6. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 2004;55:164–173.

    Article  PubMed  CAS  Google Scholar 

  7. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, et al. alpha-Synuclein locus triplication causes Parkinson's disease. Science 2003;302:841.

    Article  PubMed  CAS  Google Scholar 

  8. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 2004;304:1158–1160.

    Article  PubMed  CAS  Google Scholar 

  9. Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 2006;441:1162–1166.

    Article  PubMed  CAS  Google Scholar 

  10. Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006;441:1157–1161.

    Article  PubMed  CAS  Google Scholar 

  11. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies. Proc Natl Acad Sci U S A 1998;95:6469–6473.

    Article  PubMed  CAS  Google Scholar 

  12. Schapira AHV, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, et al. Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson's disease. J Neurochem 1990;55:2142–2145.

    Article  PubMed  CAS  Google Scholar 

  13. Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 2006;38:515–517.

    Article  PubMed  CAS  Google Scholar 

  14. Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, et al. PGC-1alpha, a potential therapeutic target for early intervention in Parkinson's disease. Sci Transl Med 2010;2:52–73.

    Article  Google Scholar 

  15. Rideout HJ, Dietrich P, Savalle M, Dauer WT, Stefanis L. Regulation of alpha-synuclein by bFGF in cultured ventral midbrain dopaminergic neurons. J Neurochem 2003;84:803–813.

    Article  PubMed  CAS  Google Scholar 

  16. Saito Y, Kawashima A, Ruberu NN, Fujiwara H, Koyama S, Sawabe M, et al. Accumulation of phosphorylated alpha-synuclein in aging human brain. J Neuropathol Exp Neurol 2003;62:644–654.

    PubMed  CAS  Google Scholar 

  17. Nakamura K, Nemani VM, Wallender EK, Kaehlcke K, Ott M, Edwards RH. Optical reporters for the conformation of alpha-synuclein reveal a specific interaction with mitochondria. J Neurosci 2008;28:12305–12317.

    Article  PubMed  CAS  Google Scholar 

  18. Cole NB, Dieuliis D, Leo P, Mitchell DC, Nussbaum RL. Mitochondrial translocation of alpha-synuclein is promoted by intracellular acidification. Exp Cell Res 2008;314:2076–2089.

    Article  PubMed  CAS  Google Scholar 

  19. Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG, Jenkins NA, et al. Parkinson's disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 2006;26:41–50.

    Article  PubMed  CAS  Google Scholar 

  20. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 2008;283:9089–9100.

    Article  PubMed  CAS  Google Scholar 

  21. Li WW, Yang R, Guo JC, Ren HM, Zha XL, Cheng JS, et al. Localization of alpha-synuclein to mitochondria within midbrain of mice. Neuroreport 2007;18:1543–1546.

    Article  PubMed  CAS  Google Scholar 

  22. Kamp F, Exner N, Lutz AK, Wender N, Hegermann J, Brunner B, et al. Inhibition of mitochondrial fusion by alpha-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J 2010;29:3571–3589.

    Article  PubMed  CAS  Google Scholar 

  23. Nakamura K, Nemani VM, Azarbal F, Skibinski G, Levy JM, Egami K, et al. Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. J Biol Chem 2011;286:20710–20726.

    Article  PubMed  CAS  Google Scholar 

  24. Liu G, Zhang C, Yin J, Li X, Cheng F, Li Y, et al. alpha-Synuclein is differentially expressed in mitochondria from different rat brain regions and dose-dependently down-regulates complex I activity. Neurosci Lett 2009;454:187–192.

    Article  PubMed  CAS  Google Scholar 

  25. Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P. Alpha-synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells. Int J Biochem Cell Biol 2009;41:2015–2024.

    Article  PubMed  CAS  Google Scholar 

  26. Daum G. Lipids of mitochondria. Biochim Biophys Acta 1985;822:1–42.

    Article  PubMed  CAS  Google Scholar 

  27. Sperka-Gottlieb CD, Hermetter A, Paltauf F, Daum G. Lipid topology and physical properties of the outer mitochondrial membrane of the yeast, Saccharomyces cerevisiae. Biochim Biophys Acta 1988;946:227–234.

    Article  PubMed  CAS  Google Scholar 

  28. Liu J, Dai Q, Chen J, Durrant D, Freeman A, Liu T, et al. Phospholipid scramblase 3 controls mitochondrial structure, function, and apoptotic response. Mol Cancer Res 2003;1:892–902.

    PubMed  CAS  Google Scholar 

  29. Hovius R, Thijssen J, van der Linden P, Nicolay K, de Kruijff B. Phospholipid asymmetry of the outer membrane of rat liver mitochondria. Evidence for the presence of cardiolipin on the outside of the outer membrane. FEBS Lett 1993;330:71–76.

    Article  PubMed  CAS  Google Scholar 

  30. Choubey V, Safiulina D, Vaarmann A, Cagalinec M, Wareski P, Kuum M, et al. Mutant A53T alpha-synuclein induces neuronal death by increasing mitochondrial autophagy. J Biol Chem 2011;286:10814–10824.

    Article  PubMed  CAS  Google Scholar 

  31. Gui YX, Wang XY, Kang WY, Zhang YJ, Zhang Y, Zhou Y, et al. Extracellular signal-regulated kinase is involved in alpha-synuclein-induced mitochondrial dynamic disorders by regulating dynamin-like protein 1. Neurobiol Aging 2012;33:2841–2854.

    Article  PubMed  CAS  Google Scholar 

  32. Butler EK, Voigt A, Lutz AK, Toegel JP, Gerhardt E, Karsten P, et al. The mitochondrial chaperone protein TRAP1 mitigates alpha-Synuclein toxicity. PLoS Genet 8:e1002488.

  33. Xie W, Chung KK. Alpha-synuclein impairs normal dynamics of mitochondria in cell and animal models of Parkinson's disease. J Neurochem 2012 Apr 28 [Epub ahead of print].

  34. Siddiqui A, Chinta SJ, Mallajosyula JK, Rajagopolan S, Hanson I, Rane A, et al. Selective binding of nuclear alpha-synuclein to the PGC1alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: implications for Parkinson's disease. Free Radic Biol Med 2012;53:993–1003.

    Article  PubMed  CAS  Google Scholar 

  35. Varkey J, Isas JM, Mizuno N, Jensen MB, Bhatia VK, Jao CC, et al. Membrane curvature induction and tubulation are common features of synucleins and apolipoproteins. J Biol Chem 2010;285:32486–32493.

    Article  PubMed  CAS  Google Scholar 

  36. Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A 2008;105:1638–1643.

    Article  PubMed  CAS  Google Scholar 

  37. Yang Y, Ouyang Y, Yang L, Beal MF, McQuibban A, Vogel H, et al. Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci U S A 2008;105:7070–7075.

    Article  PubMed  CAS  Google Scholar 

  38. Wang X, Yan MH, Fujioka H, Liu J, Wilson-Delfosse A, Chen SG, et al. LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet 2012;21:1931–1944.

    Article  PubMed  CAS  Google Scholar 

  39. Wang X, Petrie TG, Liu Y, Liu J, Fujioka H, Zhu X. Parkinson's disease-associated DJ-1 mutations impair mitochondrial dynamics and cause mitochondrial dysfunction. J Neurochem 2012;121:830–839.

    Article  PubMed  CAS  Google Scholar 

  40. Ziviani E, Tao RN, Whitworth AJ. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci U S A 2010;107:5018–5023.

    Article  PubMed  CAS  Google Scholar 

  41. Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 2010;191:1367–1380.

    Article  PubMed  CAS  Google Scholar 

  42. Gallop JL, Jao CC, Kent HM, Butler PJ, Evans PR, Langen R, et al. Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J 2006;25:2898–2910.

    Article  PubMed  CAS  Google Scholar 

  43. Pandey AP, Haque F, Rochet JC, Hovis JS. Clustering of alpha-synuclein on supported lipid bilayers: role of anionic lipid, protein, and divalent ion concentration. Biophys J 2009;96:540–551.

    Article  PubMed  CAS  Google Scholar 

  44. Jao CC, Der-Sarkissian A, Chen J, Langen R. Structure of membrane-bound alpha-synuclein studied by site-directed spin labeling. Proc Natl Acad Sci U S A 2004;101:8331–8336.

    Article  PubMed  CAS  Google Scholar 

  45. Ulmer TS, Bax A, Cole NB, Nussbaum RL. Structure and dynamics of micelle-bound human alpha-synuclein. J Biol Chem 2005;280:9595–9603.

    Article  PubMed  CAS  Google Scholar 

  46. Lee HJ, Choi C, Lee SJ. Membrane-bound alpha-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J Biol Chem 2002;277:671–678.

    Article  PubMed  CAS  Google Scholar 

  47. Bigay J, Gounon P, Robineau S, Antonny B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 2003;426:563–566.

    Article  PubMed  CAS  Google Scholar 

  48. Chinta SJ, Mallajosyula JK, Rane A, Andersen JK. Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci Lett 2010;486:235–239.

    Article  PubMed  CAS  Google Scholar 

  49. van Rooijen BD, Claessens MM, Subramaniam V. Lipid bilayer disruption by oligomeric alpha-synuclein depends on bilayer charge and accessibility of the hydrophobic core. Biochim Biophys Acta 2009;1788:1271–1278.

    Article  PubMed  Google Scholar 

  50. Bartels T, Choi JG, Selkoe DJ. alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 2011;477:107–110.

    Article  PubMed  CAS  Google Scholar 

  51. Wang W, Perovic I, Chittuluru J, Kaganovich A, Nguyen LT, Liao J, et al. A soluble alpha-synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci U S A 2011;108:17797–17802.

    Article  PubMed  CAS  Google Scholar 

  52. Fauvet B, Mbefo MK, Fares MB, Desobry C, Michael S, Ardah MT, et al. alpha-Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. J Biol Chem 2012;287:15345–15364.

    Article  PubMed  CAS  Google Scholar 

  53. Loeb V, Yakunin E, Saada A, Sharon R. The transgenic over expression of alpha-synuclein and not its related pathology, associates with complex I inhibition. J Biol Chem 2010;285:7334–7343.

    Article  PubMed  CAS  Google Scholar 

  54. Banerjee K, Sinha M, Pham Cle L, Jana S, Chanda D, Cappai R, et al. Alpha-synuclein induced membrane depolarization and loss of phosphorylation capacity of isolated rat brain mitochondria: implications in Parkinson's disease. FEBS Lett 2010;584:1571–1576.

    Article  PubMed  CAS  Google Scholar 

  55. Ellis CE, Murphy EJ, Mitchell DC, Golovko MY, Scaglia F, Barcelo-Coblijn GC, et al. Mitochondrial lipid abnormality and electron transport chain impairment in mice lacking alpha-synuclein. Mol Cell Biol 2005;25:10190–10201.

    Article  PubMed  CAS  Google Scholar 

  56. Sampaio-Marques B, Felgueiras C, Silva A, Rodrigues M, Tenreiro S, Franssens V, et al. SNCA (alpha-synuclein)-induced toxicity in yeast cells is dependent on sirtuin 2 (Sir2)-mediated mitophagy. Autophagy 2012;8:1494–1509.

    Article  PubMed  CAS  Google Scholar 

  57. Jin SM, Youle RJ. PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci 2012;125:795–799.

    Article  PubMed  CAS  Google Scholar 

  58. Cali T, Ottolini D, Negro A, Brini M. alpha-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J Biol Chem 2012;287:17914–17929.

    Article  PubMed  CAS  Google Scholar 

  59. Cardenas C, Miller RA, Smith I, Bui T, Molgo J, Muller M, et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 2010;142:270–283.

    Article  PubMed  CAS  Google Scholar 

  60. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK. ER tubules mark sites of mitochondrial division. Science 2011;334:358–362.

    Article  PubMed  CAS  Google Scholar 

  61. Barcelo-Coblijn G, Golovko MY, Weinhofer I, Berger J, Murphy EJ. Brain neutral lipids mass is increased in alpha-synuclein gene-ablated mice. J Neurochem 2007;101:132–141.

    Article  PubMed  CAS  Google Scholar 

  62. Schug ZT, Gottlieb E. Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis. Biochim Biophys Acta 2009;1788:2022–2031.

    Article  PubMed  CAS  Google Scholar 

  63. Guschina I, Millership S, O'Donnell V, Ninkina N, Harwood J, Buchman V. Lipid classes and fatty acid patterns are altered in the brain of gamma-synuclein null mutant mice. Lipids 2011;46:121–130.

    Article  PubMed  CAS  Google Scholar 

  64. Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 2005;280:26185–26192.

    Article  PubMed  CAS  Google Scholar 

  65. George JM, Jin H, Woods WS, Clayton DF. Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 1995;15:361–372.

    Article  PubMed  CAS  Google Scholar 

  66. Sekigawa A, Fujita M, Sekiyama K, Takamatsu Y, Rockenstein E, La Spada AR, et al. Distinct mechanisms of axonal globule formation in mice expressing human wild type alpha-synuclein or dementia with Lewy bodies-linked P123H Ss-synuclein. Mol Brain 2012;5:34.

    Article  PubMed  CAS  Google Scholar 

  67. Junn E, Mouradian MM. Human alpha-synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine. Neurosci Lett 2002;320:146–150.

    Article  PubMed  CAS  Google Scholar 

  68. Jiang H, Wu YC, Nakamura M, Liang Y, Tanaka Y, Holmes S, et al. Parkinson's disease genetic mutations increase cell susceptibility to stress: mutant alpha-synuclein enhances H2O2- and Sin-1-induced cell death. Neurobiol Aging 2007;28:1709–1717.

    Article  PubMed  CAS  Google Scholar 

  69. Smith WW, Jiang H, Pei Z, Tanaka Y, Morita H, Sawa A, et al. Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Hum Mol Genet 2005;14:3801–3811.

    Article  PubMed  CAS  Google Scholar 

  70. Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P. Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci 2008;65:1272–1284.

    Article  PubMed  CAS  Google Scholar 

  71. Buttner S, Bitto A, Ring J, Augsten M, Zabrocki P, Eisenberg T, et al. Functional mitochondria are required for alpha-synuclein toxicity in aging yeast. J Biol Chem 2008;283:7554–7560.

    Article  PubMed  Google Scholar 

  72. Nasstrom T, Fagerqvist T, Barbu M, Karlsson M, Nikolajeff F, Kasrayan A, et al. The lipid peroxidation products 4-oxo-2-nonenal and 4-hydroxy-2-nonenal promote the formation of alpha-synuclein oligomers with distinct biochemical, morphological, and functional properties. Free Radic Biol Med 2011;50:428–437.

    Article  PubMed  Google Scholar 

  73. Larsen KE, Schmitz Y, Troyer MD, Mosharov E, Dietrich P, Quazi AZ, et al. Alpha-synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis. J Neurosci 2006;26:11915–11922.

    Article  PubMed  CAS  Google Scholar 

  74. Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, et al. Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 2010;65:66–79.

    Article  PubMed  CAS  Google Scholar 

  75. Scott DA, Tabarean I, Tang Y, Cartier A, Masliah E, Roy S. A pathologic cascade leading to synaptic dysfunction in alpha-synuclein-induced neurodegeneration. J Neurosci 2010;30:8083–8095.

    Article  PubMed  CAS  Google Scholar 

  76. Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 2010;329:1663–1667.

    Article  PubMed  CAS  Google Scholar 

  77. Greten-Harrison B, Polydoro M, Morimoto-Tomita M, Diao L, Williams AM, Nie EH, et al. alphabetagamma-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction. Proc Natl Acad Sci U S A 2010;107:19573–19578.

    Article  PubMed  CAS  Google Scholar 

  78. Anwar S, Peters O, Millership S, Ninkina N, Doig N, Connor-Robson N, et al. Functional alterations to the nigrostriatal system in mice lacking all three members of the synuclein family. J Neurosci 2011;31:7264–7274.

    Article  PubMed  CAS  Google Scholar 

  79. Burre J, Sharma M, Sudhof TC. Systematic mutagenesis of alpha-synuclein reveals distinct sequence requirements for physiological and pathological activities. J Neurosci 2012;32:15227–15242.

    Article  PubMed  CAS  Google Scholar 

  80. Dauer W, Kholodilov N, Vila M, Trillat AC, Goodchild R, Larsen KE, et al. Resistance of alpha -synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci U S A 2002;99:14524–14529.

    Article  PubMed  CAS  Google Scholar 

  81. Orth M, Tabrizi SJ, Schapira AH, Cooper JM. Alpha-synuclein expression in HEK293 cells enhances the mitochondrial sensitivity to rotenone. Neurosci Lett 2003;351:29–32.

    Article  PubMed  CAS  Google Scholar 

  82. Klivenyi P, Siwek D, Gardian G, Yang L, Starkov A, Cleren C, et al. Mice lacking alpha-synuclein are resistant to mitochondrial toxins. Neurobiol Dis 2006;21:541–548.

    Article  PubMed  CAS  Google Scholar 

  83. Fountaine TM, Venda LL, Warrick N, Christian HC, Brundin P, Channon KM, et al. The effect of alpha-synuclein knockdown on MPP + toxicity in models of human neurons. EurJ Neurosci 2008;28:2459–2473.

    Article  Google Scholar 

  84. Choong CJ, Say YH. Neuroprotection of alpha-synuclein under acute and chronic rotenone and maneb treatment is abolished by its familial Parkinson's disease mutations A30P, A53T and E46K. Neurotoxicology 2011;32:857–863.

    Article  PubMed  CAS  Google Scholar 

  85. Musgrove RE, King AE, Dickson TC. alpha-synuclein protects neurons from apoptosis downstream of free-radical production through modulation of the MAPK signalling pathway. Neurotox Res 2012 Aug 31 [Epub ahead of print].

Download references

Acknowledgments

This work was supported by a Burroughs-Wellcome Medical Scientist Fund Career Award, the Michael J. Fox Foundation for Parkinson’s Research, and award numbers 1KO8NS062954-01A1 and P30NS069496 from the National Institute of Neurological Disorders And Stroke. I thank Anna Lisa Lucido for assistance editing the manuscript.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Nakamura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 510 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, K. α-Synuclein and Mitochondria: Partners in Crime?. Neurotherapeutics 10, 391–399 (2013). https://doi.org/10.1007/s13311-013-0182-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-013-0182-9

Keywords

Navigation