Skip to main content

Advertisement

Log in

Vitamin D interferes with glucocorticoid responsiveness in human peripheral blood mononuclear target cells

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Glucocorticoids (GCs) are widely used in the treatment of inflammatory and autoimmune diseases; however, patients are often resistant to GC effects. Current studies indicate that vitamin D reduces the risk or modifies the course of autoimmune diseases posing vitamin D supplementation as a prevention or therapeutic option. Herein, we investigated whether vitamin D can modify the response to GCs at the molecular level. To this end, peripheral blood mononuclear cells (PBMCs) were isolated from healthy vitamin D-deficient women and incubated with either the active metabolite 1,25(OH)2D3 (VitD) for 11 days or dexamethasone (Dex) for the last 2 days in the presence or absence of VitD. Ex vivo GC sensitivity was assessed by the expression of the glucocorticoid receptor (GR) responsive gene GILZ with RT-PCR. Long-term incubation of PBMCs with VitD significantly decreased the Dex-induced augmentation of GILZ expression. Since the intracellular concentration of GR and the GR nuclear translocation are critical determinants of GC sensitivity, we next evaluated the effect of VitD on these factors. RT-PCR and western-blot analysis revealed that VitD reduced the expression of GR. This effect was abolished by the HDAC-specific inhibitor trichostatin A, implying that HDAC was implicated in this effect. Moreover, NCoR1 mRNA was significantly decreased upon treatment with VitD either alone or as pre-treatment to Dex, suggesting that a possible increase in expression of this co-repressor was not involved. In addition, immunofluorescence analysis showed that VitD hindered the Dex-induced GRα nuclear translocation, an effect verified by subcellular fractionation and western-blot experiments. To further explore the underpinning mechanism, we examined the potential of VitD to: (1) strengthen the FK506-binding protein 5 (FKBP5) negative feedback loop and (2) modify the phosphorylation status of GR. Remarkably, VitD decreased FKBP5 expression and decreased phosphorylation at Ser211, while enhancing phosphorylation of GR at Ser203. Overall, VitD decreases the ex vivo GC sensitivity and this effect is, at least in part, attributed both to decrease of GR expression owing to a mechanism that engages HDAC and inhibition of GR translocation to nucleus via differential modulation of the phosphorylation state of GR. Our study provides, for the first time, evidence that long-term action of VitD induces GC resistance in PBMCs from healthy volunteers and offers a possible mechanistic basis for VitD-triggered attenuation of GC effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CBG:

Corticosteroid-binding globulin

ERK:

Extracellular signal-regulated kinase

FBS:

Fetal bovine serum

FKBP5:

FK506 binding protein 5

GCs:

Glucocorticoids

GILZ:

Glucocorticoid-induced leucine zipper

GREs:

Glucocorticoid response elements

HDAC3:

Histone deacetylase 3

HSPs:

Heat shock proteins

IF:

Immunofluorescence

MAPK:

Mitogen-activated protein kinase

MKP-5:

Mitogen-activated protein kinas phosphatase 5

PBMCs:

Peripheral blood mononuclear cells

PP5:

Protein phosphatase 5

TSA:

Trichostatin A

VDR:

Vitamin D receptor

VitD:

Vitamin D

References

  1. Webster JI, Tonelli L, Sternberg EM (2002) Neuroendocrine regulation of immunity. Annu Rev Immunol 20:125–163

    Article  CAS  PubMed  Google Scholar 

  2. Barnes PJ (2010) Mechanisms and resistance in glucocorticoid control of inflammation. J Steroid Biochem Mol Biol 120(2–3):76–85

    Article  CAS  PubMed  Google Scholar 

  3. vanStaa TP, Leufkens HG, Abenhaim L, Begaud B, Zhang B, Cooper C (2000) Use of oral corticosteroids in the United Kingdom. QJM 93(2):105–111

    Article  CAS  Google Scholar 

  4. Kino T, Charmandari E, Chrousos GP (2011) Glucocorticoid receptor: implications for rheumatic diseases. Clin Exp Rheumatol 29(5 Suppl 68):S32–S41

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pratt WB, Scherrer LC, Hutchison KA, Dalman FC (1992) A model of glucocorticoid receptor unfolding and stabilization by a heat shock protein complex. J Steroid Biochem Mol Biol 41(3–8):223–229

    Article  CAS  PubMed  Google Scholar 

  6. Leung DY, de Castro M, Szefler SJ, Chrousos GP (1998) Mechanisms of glucocorticoid-resistant asthma. Ann N Y Acad Sci 840:735–746

    Article  CAS  PubMed  Google Scholar 

  7. Seki M, Ushiyama C, Seta N, Abe K, Fukazawa T, Asakawa J, Takasaki Y, Hashimoto H (1998) Apoptosis of lymphocytes induced by glucocorticoids and relationship to therapeutic efficacy in patients with systemic lupus erythematosus. Arthritis Rheum 41(5):823–830

    Article  CAS  PubMed  Google Scholar 

  8. Hearing SD, Norman M, Smyth C, Foy C, Dayan CM (1999) Wide variation in lymphocyte steroid sensitivity among healthy human volunteers. J Clin Endocrinol Metab 84(11):4149–4154

    CAS  PubMed  Google Scholar 

  9. Ramamoorthy S, Cidlowski JA (2013) Exploring the molecular mechanisms of glucocorticoid receptor action from sensitivity to resistance. Endocr Dev 24:41–56

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Charmandari E, Kino T, Chrousos GP (2013) Primary generalized familial and sporadic glucocorticoid resistance (Chrousos syndrome) and hypersensitivity. Endocr Dev 24:67–85

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kassi E, Papavassiliou AG (2012) Glucose can promote a glucocorticoid resistance state. J Cell Mol Med 16(5):1146–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bloomfield CD, Smith KA, Peterson BA, Munck A (1981) Glucocorticoid receptors in adult acute lymphoblastic leukemia. Cancer Res 41(11 Pt 2):4857–4860

    CAS  PubMed  Google Scholar 

  13. Vanderbilt JN, Miesfeld R, Maler BA, Yamamoto KR (1987) Intracellular receptor concentration limits glucocorticoid-dependent enhancer activity. Mol Endocrinol 1(1):68–74

    Article  CAS  PubMed  Google Scholar 

  14. Ayroldi E, Riccardi C (2009) Glucocorticoid-induced leucine zipper (GILZ): a new important mediator of glucocorticoid action. FASEB J 23(11):3649–3658

    Article  CAS  PubMed  Google Scholar 

  15. Jääskeläinen T, Makkonen H, Palvimo JJ (2011) Steroid up-regulation of FKBP51 and its role in hormone signaling. Curr Opin Pharmacol 11(4):326–331

    Article  PubMed  Google Scholar 

  16. Quax RA, Koper JW, de Jong PH, van Heerebeek R, Weel AE, Huisman AM, van Zeben D, de Jong FH, Lamberts SW, Hazes JM, Feelders RA (2012) In vitro glucocorticoid sensitivity is associated with clinical glucocorticoid therapy outcome in rheumatoid arthritis. Arthritis Res Ther 14(4):R195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Binder EB (2009) The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology 34(Suppl 1):S186–S195

    Article  CAS  PubMed  Google Scholar 

  18. Ramamoorthy S, Cidlowski JA (2013) Ligand-induced repression of the glucocorticoid receptor gene is mediated by an NCoR1 repression complex formed by long-range chromatin interactions with intragenic glucocorticoid response elements. Mol Cell Biol 33(9):1711–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ismaili N, Garabedian MJ (2004) Modulation of glucocorticoid receptor function via phosphorylation. Ann N Y Acad Sci 1024:86–101

    Article  CAS  PubMed  Google Scholar 

  20. Galliher-Beckley AJ, Cidlowski JA (2009) Emerging roles of glucocorticoid receptor phosphorylation in modulating glucocorticoid hormone action in health and disease. IUBMB Life 61(10):979–986

    Article  CAS  PubMed  Google Scholar 

  21. Hewison M (2012) An update on vitamin D and human immunity. Clin Endocrinol (Oxf) 76(3):315–325

    Article  CAS  Google Scholar 

  22. Antico A, Tampoia M, Tozzoli R, Bizzaro N (2012) Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? A systematic review of the literature. Autoimmun Rev 12(2):127–136

    Article  CAS  PubMed  Google Scholar 

  23. Agmon-Levin N, Theodor E, Segal RM, Shoenfeld Y (2013) Vitamin D in systemic and organ-specific autoimmune diseases. Clin Rev Allergy Immunol 45(2):256–266

    Article  CAS  PubMed  Google Scholar 

  24. Kassi E, Adamopoulos C, Basdra EK, Papavassiliou AG (2013) Role of vitamin D in atherosclerosis. Circulation 128(23):2517–2531

    Article  PubMed  Google Scholar 

  25. Adamopoulos C, Piperi C, Gargalionis AN, Dalagiorgou G, Spilioti E, Korkolopoulou P, Diamanti-Kandarakis E, Papavassiliou AG (2016) Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of ERK1/2–NF-κB and JNK–AP-1 signaling pathways. Cell Mol Life Sci 73(8):1685–1698

    Article  CAS  PubMed  Google Scholar 

  26. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Whirledge S, Cidlowski JA (2013) Estradiol antagonism of glucocorticoid-induced GILZ expression in human uterine epithelial cells and murine uterus. Endocrinology 154(1):499–510

    Article  CAS  PubMed  Google Scholar 

  28. Hidalgo AA, Deeb KK, Pike JW, Johnson CS, Trump DL (2011) Dexamethasone enhances 1alpha,25-dihydroxyvitamin D3 effects by increasing vitamin D receptor transcription. J Biol Chem 286(42):36228–36237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hidalgo AA, Trump DL, Johnson CS (2010) Glucocorticoid regulation of the vitamin D receptor. J Steroid Biochem Mol Biol 121(1–2):372–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smit P, Russcher H, de Jong FH, Brinkmann AO, Lamberts SW, Koper JW (2005) Differential regulation of synthetic glucocorticoids on gene expression levels of glucocorticoid-induced leucine zipper and interleukin-2. J Clin Endocrinol Metab 90(5):2994–3000

    Article  CAS  PubMed  Google Scholar 

  31. D’Adamio F, Zollo O, Moraca R, Ayroldi E, Bruscoli S, Bartoli A, Cannarile L, Migliorati G, Riccardi C (1997) A new dexamethasone-induced gene of the leucine zipper family protects T lymphocytes from TCR/CD3-activated cell death. Immunity 7(6):803–812

    Article  PubMed  Google Scholar 

  32. Bruscoli S, Donato V, Velardi E, Di Sante M, Migliorati G, Donato R, Riccardi C (2010) Glucocorticoid-induced leucine zipper (GILZ) and long GILZ inhibit myogenic differentiation and mediate anti-myogenic effects of glucocorticoids. J Biol Chem 285(14):10385–10396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aguilar DC, Strom J, Xu B, Kappeler K, Chen QM (2013) Expression of glucocorticoid-induced leucine zipper (GILZ) in cardiomyocytes. Cardiovasc Toxicol 13(2):91–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shipman GF, Bloomfield CD, Gajl-Peczalska KJ, Munck AU, Smith KA (1983) Glucocorticoids and lymphocytes. III. Effects of glucocorticoid administration on lymphocyte glucocorticoid receptors. Blood 61(6):1086–1090

    CAS  PubMed  Google Scholar 

  35. Storer CL, Dickey CA, Galigniana MD, Rein T, Cox MB (2011) FKBP51 and FKBP52 in signaling and disease. Trends Endocrinol Metab 22(12):481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krstic MD, Rogatsky I, Yamamoto KR, Garabedian MJ (1997) Mitogen-activated and cyclin-dependent protein kinases selectively and differentially modulate transcriptional enhancement by the glucocorticoid receptor. Mol Cell Biol 17(7):3947–3954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Z, Frederick J, Garabedian MJ (2002) Deciphering the phosphorylation “code” of the glucocorticoid receptor in vivo. J Biol Chem 277(29):26573–26580

    Article  CAS  PubMed  Google Scholar 

  38. Takabe S, Mochizuki K, Goda T (2008) De-phosphorylation of GR at Ser203 in nuclei associates with GR nuclear translocation and GLUT5 gene expression in Caco-2 cells. Arch Biochem Biophys 475(1):1–6

    Article  CAS  PubMed  Google Scholar 

  39. Blind RD, Garabedian MJ (2008) Differential recruitment of glucocorticoid receptor phospho-isoforms to glucocorticoid-induced genes. J Steroid Biochem Mol Biol 109(1–2):150–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen W, Dang T, Blind RD, Wang Z, Cavasotto CN, Hittelman AB, Rogatsky I, Logan SK, Garabedian MJ (2008) Glucocorticoid receptor phosphorylation differentially affects target gene expression. Mol Endocrinol 22(8):1754–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Buitrago C, Pardo VG, Boland R (2013) Role of VDR in 1α,25-dihydroxyvitamin D3-dependent non-genomic activation of MAPKs, Src and Akt in skeletal muscle cells. J Steroid Biochem Mol Biol 136:125–130

    Article  CAS  PubMed  Google Scholar 

  42. Irazoqui AP, Boland RL, Buitrago CG (2014) Actions of 1,25(OH)2-vitamin D3 on the cellular cycle depend on VDR and p38 MAPK in skeletal muscle cells. J Mol Endocrinol 53(3):331–343

    Article  CAS  PubMed  Google Scholar 

  43. Theodosiou A, Smith A, Gillieron C, Arkinstall S, Ashworth A (1999) MKP5, a new member of the MAP kinase phosphatase family, which selectively dephosphorylates stress-activated kinases. Oncogene 18(50):6981–6988

    Article  CAS  PubMed  Google Scholar 

  44. Miller AL, Webb MS, Copik AJ, Wang Y, Johnson BH, Kumar R, Thompson EB (2005) p38 Mitogen-activated protein kinase (MAPK) is a key mediator in glucocorticoid-induced apoptosis of lymphoid cells: correlation between p38 MAPK activation and site-specific phosphorylation of the human glucocorticoid receptor at serine 211. Mol Endocrinol 19(6):1569–1583

    Article  CAS  PubMed  Google Scholar 

  45. Nonn L, Peng L, Feldman D, Peehl DM (2006) Inhibition of p38 by vitamin D reduces interleukin-6 production in normal prostate cells via mitogen-activated protein kinase phosphatase 5: implications for prostate cancer prevention by vitamin D. Cancer Res 66(8):4516–4524

    Article  CAS  PubMed  Google Scholar 

  46. Tynan SH, Lundeen SG, Allan GF (2004) Cell type-specific bidirectional regulation of the glucocorticoid-induced leucine zipper (GILZ) gene by estrogen. J Steroid Biochem Mol Biol 91(4–5):225–239

    Article  CAS  PubMed  Google Scholar 

  47. Vanderbilt JN, Miesfeld R, Maler BA, Yamamoto KR (1987) Intracellular receptor concentration limits glucocorticoid-dependent enhancer activity. Mol Endocrinol 1:68–74

    Article  CAS  PubMed  Google Scholar 

  48. Silva CM, Powell-Oliver FE, Jewell CM, Sar M, Allgood VE, Cidlowski JA (1994) Regulation of the human glucocorticoid receptor by long-term and chronic treatment with glucocorticoid. Steroids 59(7):436–442

    Article  CAS  PubMed  Google Scholar 

  49. Xiang L, Marshall GD Jr (2013) Immunomodulatory effects of dexamethasone on gene expression of cytokine and stress hormone receptors in peripheral blood mononuclear cells. Int Immunopharmacol 17(3):556–560

    Article  CAS  PubMed  Google Scholar 

  50. Burnsides C, Corry J, Alexander J, Balint C, Cosmar D, Phillips G, Marketon JI (2012) Ex vivo stimulation of whole blood as a means to determine glucocorticoid sensitivity. J Inflamm Res 5:89–97

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Webster JC, Jewell CM, Bodwell JE, Munck A, Sar M, Cidlowski JA (1997) Mouse glucocorticoid receptor phosphorylation status influences multiple functions of the receptor protein. J Biol Chem 272(14):9287–9293

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y, Leung DY, Goleva E (2013) Vitamin D enhances glucocorticoid action in human monocytes: involvement of granulocyte-macrophage colony-stimulating factor and mediator complex subunit 14. J Biol Chem 288(20):14544–14553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang Y, Leung DY, Goleva E (2014) Anti-inflammatory and corticosteroid-enhancing actions of vitamin D in monocytes of patients with steroid-resistant and those with steroid-sensitive asthma. J Allergy Clin Immunol 133(6):1744–1752.e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Urry Z, Chambers ES, Xystrakis E, Dimeloe S, Richards DF, Gabryšová L, Christensen J, Gupta A, Saglani S, Bush A, O’Garra A, Brown Z, Hawrylowicz CM (2012) The role of 1α,25-dihydroxyvitamin D3 and cytokines in the promotion of distinct Foxp3+ and IL-10+ CD4+ T cells. Eur J Immunol 42(10):2697–2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Krishnan AV, Swami S, Feldman D (2001) Estradiol inhibits glucocorticoid receptor expression and induces glucocorticoid resistance in MCF-7 human breast cancer cells. J Steroid Biochem Mol Biol 77(1):29–37

    Article  CAS  PubMed  Google Scholar 

  56. Kinyamu HK, Archer TK (2003) Estrogen receptor-dependent proteasomal degradation of the glucocorticoid receptor is coupled to an increase in mdm2 protein expression. Mol Cell Biol 23(16):5867–5881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang Y, Leung DY, Nordeen SK, Goleva E (2009) Estrogen inhibits glucocorticoid action via protein phosphatase 5 (PP5)-mediated glucocorticoid receptor dephosphorylation. J Biol Chem 284(36):24542–24552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abou-Raya A, Abou-Raya S, Helmii M (2013) The effect of vitamin D supplementation on inflammatory and hemostatic markers and disease activity in patients with systemic lupus erythematosus: a randomized placebo-controlled trial. J Rheumatol 40(3):265–272

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. J. Cidlowski (Laboratory of Signal Transduction and Laboratory of Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Triangle Park, NC, USA) for providing the anti-phospho-GR-S203 antibody and Dr. G. Dalagiorgou (Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens) for help with immunofluorescence. This work was supported by a grant from Unipharma (Grant Code 70/3/13029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios G. Papavassiliou.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest with any financial organization regarding the material discussed in the manuscript.

Additional information

E. Kassi and N. Nasiri-Ansari contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassi, E., Nasiri-Ansari, N., Spilioti, E. et al. Vitamin D interferes with glucocorticoid responsiveness in human peripheral blood mononuclear target cells. Cell. Mol. Life Sci. 73, 4341–4354 (2016). https://doi.org/10.1007/s00018-016-2281-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2281-3

Keywords

Navigation