Skip to main content

Advertisement

Log in

Advanced Glycation End Products: key player of the pathogenesis of atherosclerosis

  • Comprehensive Review Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Atherosclerosis is the most common type of cardiovascular disease, and it causes intima thickening, plaque development, and ultimate blockage of the artery lumen. Advanced glycation end products (AGEs) are thought to have a role in the development and progression of atherosclerosis. there is developing an enthusiasm for AGEs as a potential remedial target. AGES mainly induce arterial damage and exacerbate the development of atherosclerotic plaques by triggering cell receptor-dependent signalling. The interplay of AGEs with RAGE, a transmembrane signalling receptor present across all cells important to atherosclerosis, changes cell activity, boosts expression of genes, and increases the outflow of inflammatory compounds, resulting in arterial wall injury and plaque formation. Here in this review, function of AGEs in the genesis, progression, and instability of atherosclerosis is discussed. In endothelial and smooth muscle cells, as well as platelets, the interaction of AGEs with their transmembrane cell receptor, RAGE, triggers intracellular signalling, resulting in endothelial damage, vascular smooth muscle cell function modification, and changed platelet activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Vlassara, H.J.D.: Recent progress in advanced glycation end products and diabetic complications. 46(Supplement_2), S19-S25 (1997)

  2. Mendis, S., Davis, S., Norrving, B.J.S.: Organizational update: the world health organization global status report on noncommunicable diseases 2014; one more landmark step in the combat against stroke and vascular disease. 46(5), e121-e122 (2015)

  3. Libby, P.J.A.: thrombosis,, biology. v.: Inflammation in atherosclerosis. 32(9), 2045–2051 (2012)

    CAS  Google Scholar 

  4. Cahill, P.A., Redmond, E.M.J.A.: Vascular endothelium–Gatekeeper of vessel health. 248, 97–109 (2016)

    CAS  Google Scholar 

  5. Suji, G., Sivakami, S.J.B.: Glucose, glycation and aging. 5(6), 365–373 (2004)

    CAS  Google Scholar 

  6. Semba, R.D., Nicklett, E.J., Ferrucci, L.J.J.o.G.S.A.B.S., Sciences, M.: Does accumulation of advanced glycation end products contribute to the aging phenotype? 65(9), 963–975 (2010)

    Google Scholar 

  7. Kim, C.-S., Park, S., Kim, J.J.J.o.e.n., biochemistry: The role of glycation in the pathogenesis of aging and its prevention through herbal products and physical exercise. 21(3), 55 (2017)

  8. Monnier, V.M., Taniguchi, N.: Advanced glycation in diabetes, aging and age-related diseases: editorial and dedication. In. Springer (2016)

  9. Hegab, Z., Gibbons, S., Neyses, L., Mamas, M.A., J.W.j.o.c.: Role of advanced glycation end products in cardiovascular disease. 4(4), 90 (2012).

    Google Scholar 

  10. Brownlee, M., Vlassara, H., Cerami, A.J.D.: Nonenzymatic glycosylation products on collagen covalently trap low-density lipoprotein. 34(9), 938–941 (1985)

  11. Singh, R., Barden, A., Mori, T., Beilin, L.J.D.: Advanced glycation end-products: a review. 44(2), 129–146 (2001)

  12. Burke, A.P., Kolodgie, F.D., Zieske, A., Fowler, D.R., Weber, D.K., Varghese, P.J., Farb, A., Virmani, R.J.A.: thrombosis,, biology, v.: Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. 24(7), 1266–1271 (2004)

  13. Rojas, A., Morales, M.A.J.L.s.: Advanced glycation and endothelial functions: a link towards vascular complications in diabetes. 76(7), 715–730 (2004)

  14. Ottum, M.S., Mistry, A.M.J.J.o.c.b., nutrition: Advanced glycation end-products: modifiable environmental factors profoundly mediate insulin resistance. 57(1), 1–12 (2015)

  15. Maillard, L.J.C.-r. d.l.a.d.s.: Action of amino acids on sugars. Formation of melanoidins in a methodical way. 154, 66–68 (1912)

  16. Ikeda, K., Higashi, T., Sano, H., Jinnouchi, Y., Yoshida, M., Araki, T., Ueda, S., Horiuchi, S.J.B.: N ε-(carboxymethyl) lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction. 35(24), 8075–8083 (1996)

  17. Sharma, C., Kaur, A., Thind, S., Singh, B., Raina, S.J.J.o.f.s., technology: Advanced glycation End-products (AGEs): an emerging concern for processed food industries. 52(12), 7561–7576 (2015)

  18. Araki, N., Higashi, T., Mori, T., Shibayama, R., Kawabe, Y., Kodama, T., Takahashi, K., Shichiri, M., Horiuchi, S.J.E. j.o.b.: Macrophage scavenger receptor mediates the endocytic uptake and degradation of advanced glycation end products of the Maillard reaction. 230(2), 408–415 (1995)

  19. Suzuki, H., Kurihara, Y., Takeya, M., Kamada, N., Kataoka, M., Jishage, K., Ueda, O., Sakaguchi, H., Higashi, T., Suzuki, T.J.N.: A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. 386(6622), 292–296 (1997)

  20. Luevano-Contreras, C., Chapman-Novakofski, K.J.N.: Diet. Adv. glycation end Prod. aging 2(12), 1247–1265 (2010)

    CAS  Google Scholar 

  21. Poulsen, M.W., Hedegaard, R.V., Andersen, J.M., de Courten, B., Bügel, S., Nielsen, J., Skibsted, L.H., Dragsted, L.O.J.F., Toxicology, C.: Advanced glycation endproducts in food and their effects on health. 60, 10–37 (2013)

  22. Vlassara, H., Uribarri, J., Cai, W., Striker, G.J.A.o.t.N.Y.A.o.S.: Advanced glycation end product homeostasis: exogenous oxidants and innate defenses. 1126(1), 46–52 (2008)

  23. Del Turco, S., Basta, G.J.B.: An update on advanced glycation endproducts. and atherosclerosis. 38(4), 266–274 (2012)

    Google Scholar 

  24. Perrone, A., Giovino, A., Benny, J., Martinelli, F.J.O.m., longevity, c.: Advanced glycation end products (AGEs): biochemistry, signaling, analytical methods, and epigenetic effects. 2020 (2020)

  25. Gill, V., Kumar, V., Singh, K., Kumar, A., Kim, J.-J.J.B.: Advanced glycation end products (AGEs) may be a striking link between modern. diet. and health 9(12), 888 (2019)

    CAS  Google Scholar 

  26. Gkogkolou, P., Böhm, M.J.D.-e: Advanced glycation end products: Key players in skin aging? 4(3), 259–270 (2012)

  27. Ott, C., Jacobs, K., Haucke, E., Santos, A.N., Grune, T., Simm, A.J.R.b.: Role of advanced glycation end products in cellular signaling. 2, 411–429: (2014)

  28. Gugliucci, A.J.A.i.n: Formation of fructose-mediated advanced glycation end products and their roles in metabolic and inflammatory diseases. 8(1), 54–62 (2017)

  29. Ruiz, H.H., Ramasamy, R., Schmidt, A.M.J.E.: Advanced glycation end products: building on the concept of the “common soil”. in metabolic disease. 161(1), bqz006 (2020)

    Google Scholar 

  30. Baynes, J.W.: The Maillard Reaction: Chemistry, Biochemistry and Implications By Harry Nursten (The University of Reading, Reading, UK). Royal Society of Chemistry: Cambridge. 2005. xii + 214 pp. $199.00. ISBN 0-85404-964-9. In. ACS Publications, (2005)

  31. Thorpe, S., Baynes, J.J.A.a.: Maillard reaction products in tissue proteins: new products and new perspectives. 25(3–4), 275–281 (2003)

  32. Cepas, V., Collino, M., Mayo, J.C., Sainz, R.M.J.A.: Redox signaling and advanced glycation endproducts (AGEs) in diet-related diseases. 9(2), 142 (2020)

  33. Chen, J., Song, M., Yu, S., Gao, P., Yu, Y., Wang, H., Huang, L.J.M., biochemistry, c.: Advanced glycation endproducts alter functions and promote apoptosis in endothelial progenitor cells through receptor for advanced glycation endproducts mediate overpression of cell oxidant stress. 335(1), 137–146: (2010)

  34. Yim, M.B., Yim, H.S., Lee, C., Kang, S.O., Chock, P.B.J.A.o.t.N.Y.A.o.S.: Protein glycation: creation of catalytic sites for free radical generation. 928(1), 48–53 (2001)

  35. Horiuchi, S., Sakamoto, Y., Sakai, M.J.A.a.: Scavenger receptors for oxidized and glycated proteins. 25(3), 283–292 (2003)

    CAS  Google Scholar 

  36. Cai, W., He, J.C., Zhu, L., Chen, X., Striker, G.E., Vlassara, H.J.A.J.o.P.-C.P.: AGE-receptor-1 counteracts cellular oxidant stress induced by AGEs via negative regulation of p66 shc-dependent FKHRL1 phosphorylation. 294(1), C145-C152 (2008)

  37. Aragno, M., Mastrocola, R.J.N.: Dietary sugars and endogenous formation of advanced glycation endproducts: emerging mechanisms of disease. 9(4), 385 (2017)

  38. Takeuchi, M., Takino, J., Furuno, S., Shirai, H., Kawakami, M., Muramatsu, M., Kobayashi, Y., Yamagishi, S.-i.J.P.o.: Assessment of the concentrations of various advanced glycation end-products in beverages and foods that are commonly consumed in Japan. 10(3), e0118652 (2015)

  39. DeChristopher, L.R.J.A.iN.: Perspective: the paradox in dietary advanced glycation end products research—the source of the serum and urinary advanced glycation end products is the intestines. not the food. 8(5), 679–683 (2017)

    Google Scholar 

  40. Deluyker, D., Evens, L., Bito, V.J.A.a.: Advanced glycation end products (AGEs) and cardiovascular dysfunction: focus on high molecular weight AGEs. 49(9), 1535–1541 (2017)

  41. Sakata, N., Imanaga, Y., Meng, J., Tachikawa, Y., Takebayashi, S., Nagai, R., Horiuchi, S., Itabe, H., Takano, T.J.A.: Immunohistochemical localization of different epitopes of advanced glycation end products in human atherosclerotic lesions. 141(1), 61–75 (1998)

    CAS  Google Scholar 

  42. Kislinger, T., Fu, C., Huber, B., Qu, W., Taguchi, A., Du Yan, S., Hofmann, M., Yan, S.F., Pischetsrieder, M., Stern, D.J.J.o.B.C.: N ε-(carboxymethyl) lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. 274(44), 31740–31749 (1999)

  43. Basta, G., Lazzerini, G., Massaro, M., Simoncini, T., Tanganelli, P., Fu, C., Kislinger, T., Stern, D.M., Schmidt, A.M., De Caterina, R.J.C.: Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. 105(7), 816–822 (2002)

  44. Basta, G.J.A.: Receptor for advanced glycation endproducts and atherosclerosis: from basic mechanisms to clinical implications. 196(1), 9–21 (2008)

  45. Goldin, A., Beckman, J.A., Schmidt, A.M., Creager, M.A.J.C.: Advanced glycation end products: sparking the development of diabetic vascular injury. 114(6), 597–605 (2006)

  46. Alikhani, Z., Alikhani, M., Boyd, C.M., Nagao, K., Trackman, P.C., Graves, D.T.J.J.o.B.C.: Advanced glycation end products enhance expression of pro-apoptotic genes and stimulate fibroblast apoptosis through cytoplasmic and mitochondrial pathways. 280(13), 12087–12095 (2005)

  47. Schrijvers, B.F., De Vriese, A.S., Flyvbjerg, A.J.E.r.: From hyperglycemia to diabetic kidney disease: the role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. 25(6), 971–1010 (2004)

  48. Vlassara, H., Bucala, R.J.D.: Recent progress in advanced glycation and diabetic vascular disease: role of advanced glycation end product receptors. 45(Supplement 3), S65-S66 (1996)

  49. Sourris, K.C., Forbes, J.M.J.C.d.t.: Interactions between advanced glycation end-products (AGE) and their receptors in the development and progression of diabetic nephropathy-are these receptors valid therapeutic targets. 10(1), 42–50 (2009)

  50. Neeper, M., Schmidt, A.M., Brett, J., Yan, S., Wang, F., Pan, Y., Elliston, K., Stern, D., Shaw, A.J.J.o.B.C.: Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. 267(21), 14998–15004 (1992)

  51. Schmidt, A.M., Vianna, M., Gerlach, M., Brett, J., Ryan, J., Kao, J., Esposito, C., Hegarty, H., Hurley, W., Clauss, M.J.J.o.B.C.: Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. 267(21), 14987–14997 (1992)

  52. Ramasamy, R., Yan, S.F., Schmidt, A.M.: J.J.o.l.b.: RAGE: therapeutic target and biomarker of the inflammatory response—the. Evid. mounts 86(3), 505–512 (2009)

    CAS  Google Scholar 

  53. Yan, S.F., Ramasamy, R., Schmidt, A.M.J.J.o.m.m.: Receptor for AGE (RAGE) and its ligands—cast into leading roles in diabetes and the inflammatory response. 87(3), 235–247 (2009)

  54. Bierhaus, A., Nawroth, P.J.D.: Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. 52(11), 2251–2263 (2009)

  55. Malherbe, P., Richards, J.G., Gaillard, H., Thompson, A., Diener, C., Schuler, A., Huber, G.J.M.B.R.: cDNA cloning of a novel secreted isoform of the human receptor for advanced glycation end products and characterization of cells co-expressing cell-surface scavenger receptors and Swedish mutant amyloid precursor protein. 71(2), 159–170 (1999)

  56. Yonekura, H., Yamamoto, Y., Sakurai, S., Petrova, R.G., Abedin, M.J., Li, H., Yasui, K., Takeuchi, M., Makita, Z., Takasawa, S.J.B.J.: Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. 370(3), 1097–1109 (2003)

  57. Schlueter, C., Hauke, S., Flohr, A.M., Rogalla, P., Bullerdiek, J.J.B.: e.B.A.-G.S., Expression: Tissue-specific expression patterns of the RAGE receptor and its soluble forms—a. result of regulated alternative splicing? 1630(1), 1–6 (2003)

    CAS  Google Scholar 

  58. Méndez, J.D., Xie, J., Aguilar-Hernández, M., Méndez-Valenzuela, V.J.M., biochemistry, c.: Molecular susceptibility to glycation and its implication in diabetes mellitus and related diseases. 344(1), 185–193: (2010)

  59. Litwinoff, E., Del Pozo, H., Ramasamy, C., Schmidt, R.: A.M.: Emerging Targets for Therapeutic Development in Diabetes and Its Complications: The RAGE Signaling Pathway. Clin. Pharmacol. Ther. 98(2), 135–144 (2015). doi:https://doi.org/10.1002/cpt.148

    Article  CAS  PubMed  Google Scholar 

  60. Philip, B.K., Childress, P.J., Robling, A.G., Heller, A., Nawroth, P.P., Bierhaus, A., Bidwell, J.P.: RAGE supports parathyroid hormone-induced gains in femoral trabecular bone. Am. J. Physiol. Endocrinol. Metab. 298(3), E714–E725 (2010). doi:https://doi.org/10.1152/ajpendo.00564.2009

    Article  CAS  PubMed  Google Scholar 

  61. Wautier, M.P., Guillausseau, P.J., Wautier, J.L.: Activation of the receptor for advanced glycation end products and consequences on health. Diabetes & metabolic syndrome. 11(4), 305–309 (2017). doi:https://doi.org/10.1016/j.dsx.2016.09.009

    Article  Google Scholar 

  62. Ahmed, M.U., Thorpe, S.R., Baynes, J.W.J.J.o.B.C.: Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. 261(11), 4889–4894 (1986)

  63. Thornalley, P.J.J.C., biology, m: Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs. 44(7), 1013–1023 (1998)

  64. Jono, T., Miyazaki, A., Nagai, R., Sawamura, T., Kitamura, T., Horiuchi, S.J.F.l.: Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) serves as an endothelial receptor for advanced glycation end products (AGE). 511(1–3), 170–174 (2002)

  65. Tamura, Y., Adachi, H., Osuga, J., Ohashi, K., Yahagi, N., Sekiya, M., Okazaki, H., Tomita, S., Iizuka, Y., Shimano, H.J.J.o.B.C.: FEEL-1 and FEEL-2 are endocytic receptors for advanced glycation end products. 278(15), 12613–12617 (2003)

  66. Ohgami, N., Nagai, R., Ikemoto, M., Arai, H., Kuniyasu, A., Horiuchi, S., Nakayama, H.J.: Cd36, a member of the class b scavenger receptor family, as a receptor for advanced glycation end products. J. o B C 276(5), 3195–3202 (2001)

    CAS  Google Scholar 

  67. Hori, O., Brett, J., Slattery, T., Cao, R., Zhang, J., Chen, J.X., Nagashima, M., Lundh, E.R., Vijay, S., Nitecki, D.J.J.o.b.c.: The Receptor for Advanced Glycation End Products (RAGE) Is a Cellular Binding Site for Amphoterin: MEDIATION OF NEURITE OUTGROWTH AND CO-EXPRESSION OF RAGE AND AMPHOTERIN IN THE DEVELOPING NERVOUS SYSTEM (∗). 270(43), 25752–25761 (1995)

  68. Hofmann, M.A., Drury, S., Fu, C., Qu, W., Taguchi, A., Lu, Y., Avila, C., Kambham, N., Bierhaus, A., Nawroth, P.J.C.: RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. 97(7), 889–901 (1999)

  69. Du Yan, S., Chen, X., Fu, J., Chen, M., Zhu, H., Roher, A., Slattery, T., Zhao, L., Nagashima, M., Morser, J.J.N.: RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. 382(6593), 685–691 (1996)

  70. He, M., Kubo, H., Morimoto, K., Fujino, N., Suzuki, T., Takahasi, T., Yamada, M., Yamaya, M., Maekawa, T., Yamamoto, Y.J.E.r.: Receptor for advanced glycation end products binds to phosphatidylserine and assists in the clearance of apoptotic cells. 12(4), 358–364 (2011)

  71. Ruan, B.H., Li, X., Winkler, A.R., Cunningham, K.M., Kuai, J., Greco, R.M., Nocka, K.H., Fitz, L.J., Wright, J.F., Pittman, D.D.J.T.J.o.I.: Complement C3a, CpG oligos, and DNA/C3a complex stimulate IFN-α production in a receptor for advanced glycation end product-dependent manner. 185(7), 4213–4222 (2010)

  72. Zhou, L.L., Cao, W., Xie, C., Tian, J., Zhou, Z., Zhou, Q., Zhu, P., Li, A., Liu, Y., Miyata, T.J.K.i.: The receptor of advanced glycation end products plays a central role in advanced oxidation protein products-induced podocyte apoptosis. 82(7), 759–770 (2012)

  73. Orlova, V.V., Choi, E.Y., Xie, C., Chavakis, E., Bierhaus, A., Ihanus, E., Ballantyne, C.M., Gahmberg, C.G., Bianchi, M.E., Nawroth, P.P.J.T.E.j.: A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac‐1‐integrin. 26(4), 1129–1139 (2007)

  74. Park, J.S., Svetkauskaite, D., He, Q., Kim, J.-Y., Strassheim, D., Ishizaka, A., Abraham, E.J.J.o.B.C.: Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. 279(9), 7370–7377 (2004)

  75. Park, J.S., Gamboni-Robertson, F., He, Q., Svetkauskaite, D., Kim, J.-Y., Strassheim, D., Sohn, J.-W., Yamada, S., Maruyama, I., Banerjee, A.J.A.J.o.P.-C.P.: High mobility group box 1 protein interacts with multiple Toll-like receptors. 290(3), C917-C924 (2006)

  76. Sell, D.R., Monnier, V.M.J.J.o.BC.: Structure elucidation of a senescence cross-link from human extracellular matrix: implication of pentoses in the aging process. 264(36), 21597–21602 (1989)

  77. Ritthaler, U., Deng, Y., Zhang, Y., Greten, J., Abel, M., Sido, B., Allenberg, J., Otto, G., Roth, H., Bierhaus, A.J.T.A.j.o.p.: Expression of receptors for advanced glycation end products in peripheral occlusive vascular disease. 146(3), 688 (1995).

    CAS  Google Scholar 

  78. Miyata, T., Hori, O., Zhang, J., Yan, S., Ferran, L., Iida, Y., Schmidt, A.M.: J.T.J.o.c.i.: The receptor for advanced glycation end products (RAGE) is a central mediator of the interaction of AGE-beta2microglobulin with human mononuclear phagocytes via an oxidant-sensitive pathway. Implications for. the pathogenesis of dialysis-related amyloidosis 98(5), 1088–1094 (1996)

    CAS  Google Scholar 

  79. Said, G., Guilbert, M., Millerot-Serrurot, E., Van Gulick, L., Terryn, C., Garnotel, R., Jeannesson, P.: Impact of carbamylation and glycation of collagen type I on migration of HT1080 human fibrosarcoma cells. Int. J. Oncol. 40(6), 1797–1804 (2012). doi:https://doi.org/10.3892/ijo.2012.1393

    Article  CAS  PubMed  Google Scholar 

  80. Valcourt, U., Merle, B., Gineyts, E., Viguet-Carrin, S., Delmas, P.D., Garnero, P.: Non-enzymatic glycation of bone collagen modifies osteoclastic activity and differentiation. J. Biol. Chem. 282(8), 5691–5703 (2007). doi:https://doi.org/10.1074/jbc.M610536200

    Article  CAS  PubMed  Google Scholar 

  81. Yuen, A., Laschinger, C., Talior, I., Lee, W., Chan, M., Birek, J., Young, E.W., Sivagurunathan, K., Won, E., Simmons, C.A., McCulloch, C.A.: Methylglyoxal-modified collagen promotes myofibroblast differentiation. Matrix biology: journal of the International Society for Matrix Biology. 29(6), 537–548 (2010). doi:https://doi.org/10.1016/j.matbio.2010.04.004

    Article  CAS  Google Scholar 

  82. Baynes, J.W.: Role of oxidative stress in development of complications in diabetes. Diabetes. 40(4), 405–412 (1991). doi:https://doi.org/10.2337/diab.40.4.405

    Article  CAS  PubMed  Google Scholar 

  83. Baynes, J.W.: The Maillard hypothesis on aging: time to focus on DNA. Ann. N. Y. Acad. Sci. 959, 360–367 (2002). doi:https://doi.org/10.1111/j.1749-6632.2002.tb02107.x

    Article  CAS  PubMed  Google Scholar 

  84. Ma, M., Guo, X., Chang, Y., Li, C., Meng, X., Li, S., Du, Z.-X., Wang, H.-Q., Sun, Y.J.M., biochemistry, c.: Advanced glycation end products promote proliferation and suppress autophagy via reduction of Cathepsin D in rat vascular smooth muscle cells. 403(1), 73–83: (2015)

  85. Zhao, L.-M., Su, X.-L., Wang, Y., Li, G.-R., Deng, X.-L.J.L.I.: K Ca 3.1 channels mediate the increase of cell migration and proliferation by advanced glycation endproducts in cultured rat vascular smooth muscle cells. 93(2), 159–167 (2013)

  86. Hu, P., Lai, D., Lu, P., Gao, J., He, H.J.I.j.o.m.m.: ERK and Akt signaling pathways are involved in advanced glycation end product-induced autophagy in rat vascular smooth muscle cells. 29(4), 613–618 (2012)

  87. Meloche, J., Paulin, R., Courboulin, A., Lambert, C., Barrier, M., Bonnet, P., Bisserier, M., Roy, M., Sussman, M.A., Agharazii, M.J.A.: thrombosis,, biology, v.: RAGE-dependent activation of the oncoprotein Pim1 plays a critical role in systemic vascular remodeling processes. 31(9), 2114–2124 (2011)

  88. Nam, M.-H., Son, W.-R., Lee, Y.S., Lee, K.-W.J.C.c., adhesion: Glycolaldehyde-derived advanced glycation end products (glycol-AGEs)-induced vascular smooth muscle cell dysfunction is regulated by the AGES-receptor (RAGE) axis in endothelium. 22(2–6), 67–78 (2015)

  89. Chung, T.-W., Choi, H.-J., Kim, C.-H., Jeong, H.-S., Ha, K.-T.J.B.e.B.A.-M.C.R.: Lipocalin-2 elicited by advanced glycation end-products promotes the migration of vascular smooth muscle cells. 1833(12), 3386–3395 (2013)

  90. Dhar, S., Sun, Z., Meininger, G.A., Hill, M.A.J.M.: Nonenzymatic glycation interferes with fibronectin-integrin interactions in vascular smooth muscle cells. 24(3), e12347 (2017)

  91. Eun, S.Y., Ko, Y.S., Park, S.W., Chang, K.C., Kim, H.J.J.V.p.: IL-1β enhances vascular smooth muscle cell proliferation and migration via P2Y2 receptor-mediated RAGE expression and HMGB1 release. 72, 108–117 (2015)

  92. Suga, T., Iso, T., Shimizu, T., Tanaka, T., Yamagishi, S., Takeuchi, M., Imaizumi, T., Kurabayashi, M.J.J.o.a., thrombosis: Activation of receptor for advanced glycation end products induces osteogenic differentiation of vascular smooth muscle cells. 1104200368–1104200368 (2011)

  93. Chistiakov, A., Sobenin, D.A., Orekhov, I.N., Bobryshev, A.V.: Y J. C p d : Mechanisms of medial arterial calcification in diabetes 20(37), 5870–5883 (2014)

    CAS  Google Scholar 

  94. Shi, X., Gao, J., Lv, Q., Cai, H., Wang, F., Ye, R., Liu, X.: Calcification in Atherosclerotic Plaque Vulnerability: Friend or Foe? Front. Physiol. 11, 56 (2020). doi:https://doi.org/10.3389/fphys.2020.00056

    Article  PubMed  PubMed Central  Google Scholar 

  95. Menini, S., Iacobini, C., Ricci, C., Blasetti Fantauzzi, C., Salvi, L., Pesce, C.M., Relucenti, M., Familiari, G., Taurino, M., Pugliese, G.J.C.R.: The galectin-3/RAGE dyad modulates vascular osteogenesis in atherosclerosis. 100(3), 472–480 (2013)

  96. Pugliese, G., Iacobini, C., Fantauzzi, C.B., Menini, S.J.A.: The dark and bright side of atherosclerotic calcification. 238(2), 220–230 (2015)

    CAS  Google Scholar 

  97. Li, N., Hu, H., Lindqvist, M., Wikström-Jonsson, E., Goodall, A.H., Hjemdahl, P.J.A.: thrombosis,, biology. v.: Platelet-leukocyte cross talk in whole blood. 20(12), 2702–2708 (2000)

    CAS  Google Scholar 

  98. Daleke, D.L.J.J.o.l.r.: Regulation of transbilayer plasma membrane phospholipid asymmetry. 44(2), 233–242 (2003)

  99. Frasch, S.C., Henson, P.M., Kailey, J.M., Richter, D.A., Janes, M.S., Fadok, V.A., Bratton, D.L.J.J.o.B.C.: Regulation of phospholipid scramblase activity during apoptosis and cell activation by protein kinase Cδ. 275(30), 23065–23073 (2000)

  100. Monroe, D.M., Hoffman, M., Roberts, H.R.J.A.: thrombosis,, biology, v. Platelets and thrombin generation. 22(9), 1381–1389 (2002)

    CAS  Google Scholar 

  101. Rosing, J., Bevers, E., Comfurius, P., Hemker, H., Van Dieijen, G., Weiss, H., Zwaal, R.: Impaired factor X and prothrombin activation associated with decreased phospholipid exposure in platelets from a patient with a bleeding disorder. (1985)

  102. Wang, Y., Beck, W., Deppisch, R., Marshall, S.M., Hoenich, N.A., Thompson, M.G.J.A.J.o.P.-C.P.: Advanced glycation end products elicit externalization of phosphatidylserine in a subpopulation of platelets via 5-HT2A/2 C receptors. 293(1), C328-C336 (2007)

  103. Chlopicki, S., Olszanecki, R., Janiszewski, M., Laurindo, F.R., Panz, T., Miedzobrodzki, J.J.A., Signaling, R.: Functional role of NADPH oxidase in activation of platelets. 6(4), 691–698 (2004)

  104. Begonja, A.J., Gambaryan, S., Geiger, J.r., Aktas, B., Pozgajova, M., Nieswandt, B., Walter, U.J.B.: Platelet NAD (P) H-oxidase–generated ROS production regulates αIIbβ3-integrin activation independent of the NO/cGMP pathway. 106(8), 2757–2760 (2005)

  105. Lyons, T.J.: Glycation and oxidation: a role in the pathogenesis of atherosclerosis. The American journal of cardiology 71(6), 26b-31b: (1993). doi:https://doi.org/10.1016/0002-9149(93)90142-y

  106. Gawlowski, T., Stratmann, B., Ruetter, R., Buenting, C.E., Menart, B., Weiss, J., Vlassara, H., Koschinsky, T., Tschoepe D.J.E.j.o.n.: Adv. glycation end Prod. strongly activate platelets. 48(8), 475–481 (2009).

    CAS  Google Scholar 

  107. Stirban, A., Negrean, M., Stratmann, B., Gawlowski, T., Horstmann, T., Götting, C., Kleesiek, K., Mueller-Roesel, M., Koschinsky, T., Uribarri, J.J.D.c.: Benfotiamine prevents macro-and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes. 29(9), 2064–2071 (2006)

  108. Negrean, M., Stirban, A., Stratmann, B., Gawlowski, T., Horstmann, T., Götting, C., Kleesiek, K., Mueller-Roesel, M., Koschinsky, T., Uribarri, J.J.T.A.j.o.c.n.: Effects of low-and high-advanced glycation endproduct meals on macro-and microvascular endothelial function and oxidative stress in patients with type 2 diabetes mellitus. 85(5), 1236–1243 (2007)

  109. Peppa, M., Uribarri, J., Vlassara, H.: The role of advanced glycation end products in the development of atherosclerosis. Curr. Diab. Rep. 4(1), 31–36 (2004). doi:https://doi.org/10.1007/s11892-004-0008-6

    Article  PubMed  Google Scholar 

  110. Vlassara, H., Palace, M.R.: Diabetes and advanced glycation endproducts. J. Intern. Med. 251(2), 87–101 (2002). doi:https://doi.org/10.1046/j.1365-2796.2002.00932.x

    Article  CAS  PubMed  Google Scholar 

  111. Rumble, J.R., Cooper, M.E., Soulis, T., Cox, A., Wu, L., Youssef, S., Jasik, M., Jerums, G., Gilbert, R.E.: Vascular hypertrophy in experimental diabetes. Role of advanced glycation end products. J. Clin. Investig. 99(5), 1016–1027 (1997). doi:https://doi.org/10.1172/jci119229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Walcher, D., Marx, N.: Advanced glycation end products and C-peptide-modulators in diabetic vasculopathy and atherogenesis. Semin. Immunopathol. 31(1), 103–111 (2009). doi:https://doi.org/10.1007/s00281-009-0144-9

    Article  CAS  PubMed  Google Scholar 

  113. Collot-Teixeira, S., Martin, J., McDermott-Roe, C., Poston, R., McGregor: CD36 and macrophages in atherosclerosis. J. L J. C r 75(3), 468–477 (2007)

    CAS  Google Scholar 

  114. Mehta, J.L., Chen, J., Hermonat, P.L., Romeo, F., Novelli, G.J.C.r.: Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders. 69(1), 36–45 (2006)

  115. Lv, Y., Hou, X., Ti, Y., Bu, P.J.C.n.: Associations of CXCL16/CXCR6 with carotid atherosclerosis in patients with metabolic syndrome. 32(5), 849–854 (2013)

  116. Voloshyna, I., Reiss, A.B.J.P.i.l.r.: The ABC transporters in lipid flux and atherosclerosis. 50(3), 213–224 (2011)

  117. Wang, N., Tall, A.R.J.A.: thrombosis,, biology, v.: Regulation and mechanisms of ATP-binding cassette transporter A1-mediated cellular cholesterol efflux. 23(7), 1178–1184 (2003)

  118. Björkhem, I., Andersson, O., Diczfalusy, U., Sevastik, B., Xiu, R.-J., Duan, C., Lund, E.J.P.o.t.N.A.o.S.: Atherosclerosis and sterol 27-hydroxylase: evidence for a role of this enzyme in elimination of cholesterol from human macrophages. 91(18), 8592–8596 (1994)

  119. Iborra, R.T., Machado-Lima, A., Castilho, G., Nunes, V.S., Abdalla, D.S., Nakandakare, E.R., Passarelli, M.J.L.i.h., disease: Advanced glycation in macrophages induces intracellular accumulation of 7-ketocholesterol and total sterols by decreasing the expression of ABCA-1 and ABCG-1. 10(1), 1–7 (2011)

  120. Iwashima, Y., Eto, M., Hata, A., Kaku, K., Horiuchi, S., Ushikubi, F., Sano, H.J.B., Communications, B.R.: Advanced glycation end products-induced gene expression of scavenger receptors in cultured human monocyte-derived macrophages. 277(2), 368–380 (2000)

  121. Voloshyna, I., Godoy, J., Littlefield, M., Leon, J., Magana, M., Reiss, A.J.I.MS.: Advanced glycation end products promote pro-atherogenic changes in cholesterol transport: a possible mechanism for cardiovascular risk in diabetes. 11, 005 (2014)

  122. Ishibashi, Y., Matsui, T., Nakamura, N., Sotokawauchi, A., Higashimoto, Y., Yamagishi, S.-i.JD., Research, V.D.: Methylglyoxal-derived hydroimidazolone-1 evokes inflammatory reactions in endothelial cells via an interaction with receptor for advanced glycation end products. 14(5), 450–453 (2017)

  123. Soro-Paavonen, A., Zhang, W.-Z., Venardos, K., Coughlan, M.T., Harris, E., Tong, D.C., Brasacchio, D., Paavonen, K., Chin-Dusting, J., Cooper, M.E.J.J.o.h.: Advanced glycation end-products induce vascular dysfunction via resistance to nitric oxide and suppression of endothelial nitric oxide synthase. 28(4), 780–788 (2010)

  124. Yamagishi, S., Matsui, T.J.A.o.v.d.: Role of hyperglycemia-induced advanced glycation end product (AGE) accumulation in atherosclerosis. ra. 18–00070: (2018)

  125. Adamopoulos, C., Piperi, C., Gargalionis, A.N., Dalagiorgou, G., Spilioti, E., Korkolopoulou, P., Diamanti-Kandarakis, E., Papavassiliou, A.G.J.C., Sciences, M.L.: Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of ERK1/2–NF-κB and JNK–AP-1 signaling pathways. 73(8), 1685–1698 (2016)

  126. Charikleia, C., Frangiskos, E., Sarantis, L., Christina, P., Christos, A., Evangelos, M., Evanthia, D.-K.J.H.: Strong and positive association of endothelin-1 with AGEs in PCOS: a causal relationship or a bystander? 10(4), 292–297 (2011)

  127. Adamopoulos, C., Farmaki, E., Spilioti, E., Kiaris, H., Piperi, C., Papavassiliou, A.G.J.C.c., medicine, l.: Advanced glycation end-products induce endoplasmic reticulum stress in human aortic endothelial cells. 52(1), 151–160 (2014)

  128. Adamopoulos, C., Mihailidou, C., Grivaki, C., Papavassiliou, K.A., Kiaris, H., Piperi, C., Papavassiliou, A.G.J.G.j.: Systemic effects of AGEs in ER stress induction in vivo. 33(4), 537–544 (2016)

  129. Oba, T., Tatsunami, R., Sato, K., Takahashi, K., Hao, Z., Tampo, Y.J.E.t., pharmacology: Methylglyoxal has deleterious effects on thioredoxin in human aortic endothelial cells. 34(2), 117–126 (2012)

  130. Li, Z., Zhong, Q., Yang, T., Xie, X., Chen, M.J.C.D.: The role of profilin-1 in endothelial cell injury induced by advanced glycation end products (AGEs). 12(1), 1–11 (2013)

  131. Higashimoto, Y., Matsui, T., Nishino, Y., Taira, J., Inoue, H., Takeuchi, M., Yamagishi, S.i.J.M.r.: Blockade by phosphorothioate aptamers of advanced glycation end products-induced damage in cultured pericytes and endothelial cells. 90, 64–70 (2013)

  132. Xu, D., Young, J.H., Krahn, J.M., Song, D., Corbett, K.D., Chazin, W.J., Pedersen, L.C., Esko, J.D.J.A.c.b.: Stable RAGE-heparan sulfate complexes are essential for signal transduction. 8(7), 1611–1620 (2013)

  133. Cai, W., Duan, X.-M., Liu, Y., Yu, J., Tang, Y.-L., Liu, Z.-L., Jiang, S., Zhang, C.-P., Liu, J.-Y., Xu, J..-X.J.B.r.i.: Uric acid induces endothelial dysfunction by activating the HMGB1/RAGE signaling pathway. 2017 (2017)

  134. Lubrano, V., Balzan, S.J.M.r.: Roles of LOX-1 in microvascular dysfunction. 105, 132–140 (2016)

  135. Pepe, D., Elliott, C.G., Forbes, T.L., Hamilton, D.W.: Detection of galectin-3 and localization of advanced glycation end products (AGE) in human chronic skin wounds. (2014)

  136. Paget, C., Lecomte, M., Ruggiero, D., Wiernsperger, N., Lagarde, M.J.F.R.B.: Medicine: Modification of enzymatic antioxidants in retinal microvascular cells by glucose or advanced glycation. end Prod. 25(1), 121–129 (1998)

    CAS  Google Scholar 

  137. Coughlan, M.T., Thorburn, D.R., Penfold, S.A., Laskowski, A., Harcourt, B.E., Sourris, K.C., Tan, A.L., Fukami, K., Thallas-Bonke, V., Nawroth, P.P.J.J.o.t.A.S.o.N.: RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. 20(4), 742–752 (2009)

  138. Lin, N., Zhang, H., Su, Q.J.D.: metabolism: Advanced glycation end-products induce injury to pancreatic beta cells through oxidative stress. 38(3), 250–257 (2012)

  139. Zhou, Q., Cheng, K.-W., Gong, J., Li, E.T., Wang, M.J.B.p.: Apigenin and its methylglyoxal-adduct inhibit advanced glycation end products-induced oxidative stress and inflammation in endothelial cells. 166, 231–241 (2019)

  140. Tang, S., Zhang, Q., Tang, H., Wang, C., Su, H., Zhou, Q., Wei, W., Zhu, H., Wang, Y.J.E.: Effects of glucagon-like peptide-1 on advanced glycation endproduct-induced aortic endothelial dysfunction in streptozotocin-induced diabetic rats: possible roles of Rho kinase-and AMP kinase-mediated nuclear factor κB. Signal. pathways 53(1), 107–116 (2016)

    CAS  Google Scholar 

  141. Hegab, Z., Mohamed, T.M., Stafford, N., Mamas, M., Cartwright, E.J., Oceandy, D.J.F.O.B.: Advanced glycation end products reduce the calcium transient in cardiomyocytes by increasing production of reactive oxygen species and nitric oxide. 7(11), 1672–1685 (2017)

  142. Chen, X.J., Wu, W.J., Zhou, Q., Jie, J.P., Chen, X., Wang, F., Gong, X.H.J.J.o.c.b.: Advanced glycation end-products induce oxidative stress through the Sirt1/Nrf2 axis by interacting with the receptor of AGEs. under Diabet. conditions. 120(2), 2159–2170 (2019).

    CAS  Google Scholar 

  143. Pennings, M., Meurs, I., Ye, D., Out, R., Hoekstra, M., Van Berkel, T.J., Van Eck, M.J.F.l.: Regulation of cholesterol homeostasis in macrophages and consequences for atherosclerotic lesion development. 580(23), 5588–5596: (2006)

  144. Ghosh, S., Zhao, B., Bie, J., Song, J.J.V.p.: Macrophage cholesteryl ester mobilization and atherosclerosis. 52(1–2), 1–10 (2010)

    CAS  Google Scholar 

  145. Jessup, W., Gelissen, I.C., Gaus, K., Kritharides, L.J.C.o.i.l.: Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. 17(3), 247–257 (2006)

  146. Chawla, A., Boisvert, W.A., Lee, C.-H., Laffitte, B.A., Barak, Y., Joseph, S.B., Liao, D., Nagy, L., Edwards, P.A., Curtiss, L.K.J.M.c.: A PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. 7(1), 161–171 (2001)

  147. Goldstein, J.L., Brown, M.S.J.N.: Regul. mevalonate Pathw. 343(6257), 425–430 (1990)

    CAS  Google Scholar 

  148. Mozos, I., Malainer, C., Horbańczuk, J., Gug, C., Stoian, D., Luca, C.T., Atanasov, A.G.J.F.i.i.: Inflammatory markers for arterial stiffness in cardiovascular diseases. 8, 1058 (2017)

  149. Yamada, S., Taniguchi, M., Tokumoto, M., Toyonaga, J., Fujisaki, K., Suehiro, T., Noguchi, H., Iida, M., Tsuruya, K., Kitazono, T.J.J.o.B., Research, M.: The antioxidant tempol ameliorates arterial medial calcification in uremic rats: important role of oxidative stress in the pathogenesis of vascular calcification in chronic kidney disease. 27(2), 474–485 (2012)

  150. Kay, A.M., Simpson, C.L., Stewart, J.A.J.J.o.d.r.: The role of AGE/RAGE signaling in diabetes-mediated vascular calcification. 2016 (2016)

  151. Liberman, M., Bassi, E., Martinatti, M.K., Lario, F.C., Wosniak, J. Jr., Pomerantzeff, P.M., Laurindo, F.R.J.A.: thrombosis,, biology, v.: Oxidant generation predominates around calcifying foci and enhances progression of aortic valve calcification. 28(3), 463–470 (2008)

  152. Takino, J., Nagamine, K., Hori, T., Sakasai-Sakai, A., Takeuchi, M.J.W.j.o.h.: Contribution of the toxic advanced glycation end-products-receptor axis in nonalcoholic steatohepatitis-related hepatocellular carcinoma. 7(23), 2459 (2015)

  153. Baumann, M., Richart, T., Sollinger, D., Pelisek, J., Roos, M., Kouznetsova, T., Eckstein, H.-H., Heemann, U., Staessen, J.A.J.C.D.: Association between carotid diameter and the advanced glycation endproduct N ε-Carboxymethyllysine (CML). 8(1), 1–8 (2009)

  154. Wang, Z., Yan, J., Li, L., Liu, N., Liang, Y., Yuan, W., Chen, X.J.I.j.o.c.: Effects of Nε-carboxymethyl-Lysine on ERS-mediated apoptosis in diabetic atherosclerosis. 172(3), e478-e483 (2014)

  155. Sun, H., Yuan, Y., Sun, Z.J.B.r.i.: Update on mechanisms of renal tubule injury caused by advanced glycation end products. 2016 (2016)

  156. Park, Y.M., Febbraio, M., Silverstein, R.L.J.T.J.o.c.i.: CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. 119(1), 136–145 (2009)

  157. Wang, Z., Jing, L., Yan, J., Sun, Z., Bao, Z., Shao, C., Pang, Q., Geng, Y., Zhang, L.: Li, L.-h.J.G.j.: Role of AGEs in the progression and regression of atherosclerotic plaques. 35(5), 443–450 (2018)

Download references

Acknowledgements

Author is thankful to the Department of Pharmaceuticals, Ministry of Chemical and Fertilizers, Govt. of India for providing necessary support to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiv Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Siva, B.V. & Ravichandiran, V. Advanced Glycation End Products: key player of the pathogenesis of atherosclerosis. Glycoconj J 39, 547–563 (2022). https://doi.org/10.1007/s10719-022-10063-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-022-10063-x

Keywords

Navigation