Skip to main content
Log in

Redox regulation of vascular remodeling

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Vascular remodeling is a dynamic process of structural and functional changes in response to biochemical and biomechanical signals in a complex in vivo milieu. While inherently adaptive, dysregulation leads to maladaptive remodeling. Reactive oxygen species participate in homeostatic cell signaling in tightly regulated- and compartmentalized cellular circuits. It is well established that perturbations in oxidation–reduction (redox) homeostasis can lead to a state of oxidative-, and more recently, reductive stress. We provide an overview of the redox signaling in the vasculature and review the role of oxidative- and reductive stress in maladaptive vascular remodeling. Particular emphasis has been placed on essential processes that determine phenotype modulation, migration and fate of the main cell types in the vessel wall. Recent advances in systems biology and the translational opportunities they may provide to specifically target the redox pathways driving pathological vascular remodeling are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AngII:

Angiotensin II

AP1:

Activator protein 1

AT1R:

Angiotensin II type 1 receptor

BH4 :

Tetrahydrobiopterin

Cys:

Cysteine

Cys-SH:

Cysteinyl thiolates

Cys-S-SH:

Cysteinyl persulfide

EC:

Endothelial cell

ECM:

Extracellular matrix

eNOS:

Endothelial nitric oxide synthase

FAK:

Focal adhesion kinase

GCHI:

Guanosine triphosphate cyclohydrolase I

GSS:

S-Glutathiolation

GTP:

Guanosine triphosphate

Hic5:

H2O2-inducible clone-5

HSP27:

Heat shock protein 27

Nox:

NADPH oxidase

Keap1:

Kelch-like ECH-associated protein 1

LMW-PTP:

Low molecular weight protein tyrosine phosphatase

MAPKAPK2:

Mitogen-activated protein kinase-activated protein kinase 2

MEF2:

Myocyte-enhanced factor 2

MLC:

Myosin light chain

MLCP:

Myosin light chain phosphatase

MRTF-A:

Myocardin-related transcription factor A

NF-κB:

Nuclear factor κB

Nrf2:

Nuclear factor erythroid 2-related factor 2

p38 MAPK:

p38 mitogen-activated protein kinase

PDGFβ:

Platelet-derived growth factor β

PDGFR:

Platelet-derived growth factor receptor

PI3K:

Phosphoinositol 3-kinase

PIP3:

Phosphatidylinositol 3,4,5 trisphosphate

PKCζ:

Protein kinase Cζ

Poldip2:

Polymerase [DNA-directed] delta-interacting protein 2

PTEN:

Phosphatase and tensin homolog

ROCK:

Rho-kinase

ROS:

Reactive oxygen species

SMC:

Smooth muscle cell

SOD:

Superoxide dismutase

SRF:

Serum response factor

SSH1L:

Slingshot1L phosphatase,

TAT3:

Signal transducer and activator of transcription 3

TGFβ:

Transforming growth factor β

TXNIP:

Thioredoxin-interacting protein

VEGF:

Vascular endothelial growth factor

VEGF-R:

Vascular endothelial growth factor receptor

WSS:

Wall shear stress

References

  1. Gibbons GH, Dzau VJ (1994) The emerging concept of vascular remodeling. N Engl J Med 330(20):1431–1438

    Article  PubMed  CAS  Google Scholar 

  2. Korshunov VA, Schwartz SM, Berk BC (2007) Vascular remodeling: hemodynamic and biochemical mechanisms underlying Glagov’s phenomenon. Arterioscler Thromb Vasc Biol 27(8):1722–1728

    Article  PubMed  CAS  Google Scholar 

  3. Brown DI, Griendling KK (2015) Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res 116(3):531–549

    Article  PubMed  CAS  Google Scholar 

  4. Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4(5):278–286

    Article  PubMed  CAS  Google Scholar 

  5. Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194(1):7–15

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Janssen-Heininger YM, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T, Stamler JS, Rhee SG, van der Vliet A (2008) Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med 45(1):1–17

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16(13):1792–1798

    Article  PubMed  CAS  Google Scholar 

  8. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322(5901):587–590

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Modis K, Coletta C, Erdelyi K, Papapetropoulos A, Szabo C (2013) Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J 27(2):601–611

    Article  PubMed  CAS  Google Scholar 

  10. Keefe AD, Miller SL, McDonald G, Bada J (1995) Investigation of the prebiotic synthesis of amino acids and RNA bases from CO2 using FeS/H2S as a reducing agent. Proc Natl Acad Sci USA 92(25):11904–11906

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Paul BD, Snyder SH (2012) H(2)S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13(8):499–507

    Article  PubMed  CAS  Google Scholar 

  12. Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18(10):1165–1167

    PubMed  CAS  Google Scholar 

  13. Fisher CD, Augustine LM, Maher JM, Nelson DM, Slitt AL, Klaassen CD, Lehman-McKeeman LD, Cherrington NJ (2007) Induction of drug-metabolizing enzymes by garlic and allyl sulfide compounds via activation of constitutive androstane receptor and nuclear factor E2-related factor 2. Drug Metab Dispos 35(6):995–1000

    Article  PubMed  CAS  Google Scholar 

  14. Calvert JW, Elston M, Nicholson CK, Gundewar S, Jha S, Elrod JW, Ramachandran A, Lefer DJ (2010) Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice. Circulation 122(1):11–19

    Article  PubMed  PubMed Central  Google Scholar 

  15. Song P, Zou MH (2014) Redox regulation of endothelial cell fate. Cell Mol Life Sci 71(17):3219–3239

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Dikalov SI, Nazarewicz RR, Bikineyeva A, Hilenski L, Lassegue B, Griendling KK, Harrison DG, Dikalova AE (2014) Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxid Redox Signal 20(2):281–294

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Lassegue B, San Martin A, Griendling KK (2012) Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 110(10):1364–1390

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Drummond GR, Selemidis S, Griendling KK, Sobey CG (2011) Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 10(6):453–471

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Forstermann U, Munzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113(13):1708–1714

    Article  PubMed  CAS  Google Scholar 

  20. Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MA, Chen YR, Druhan LJ, Zweier JL (2010) S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468(7327):1115–1118

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Zweier JL, Chen CA, Druhan LJ (2011) S-glutathionylation reshapes our understanding of endothelial nitric oxide synthase uncoupling and nitric oxide/reactive oxygen species-mediated signaling. Antioxid Redox Signal 14(10):1769–1775

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Dumitrescu C, Biondi R, Xia Y, Cardounel AJ, Druhan LJ, Ambrosio G, Zweier JL (2007) Myocardial ischemia results in tetrahydrobiopterin (BH4) oxidation with impaired endothelial function ameliorated by BH4. Proc Natl Acad Sci USA 104(38):15081–15086

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312(3):159–163

    Article  PubMed  CAS  Google Scholar 

  24. Sorescu D, Griendling KK (2002) Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 8(3):132–140

    Article  PubMed  CAS  Google Scholar 

  25. Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295(4):C849–C868

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Zhang H, Limphong P, Pieper J, Liu Q, Rodesch CK, Christians E, Benjamin IJ (2012) Glutathione-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity. FASEB J 26(4):1442–1451

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Ali ZA, de Jesus Perez V, Yuan K, Orcholski M, Pan S, Qi W, Chopra G, Adams C, Kojima Y, Leeper NJ, Qu X, Zaleta-Rivera K, Kato K, Yamada Y, Oguri M, Kuchinsky A, Hazen SL, Jukema JW, Ganesh SK, Nabel EG, Channon K, Leon MB, Charest A, Quertermous T, Ashley EA (2014) Oxido-reductive regulation of vascular remodeling by receptor tyrosine kinase ROS1. J Clin Invest 124(12):5159–5174

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gallogly MM, Mieyal JJ (2007) Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr Opin Pharmacol 7(4):381–391

    Article  PubMed  CAS  Google Scholar 

  29. Eelen G, de Zeeuw P, Simons M, Carmeliet P (2015) Endothelial cell metabolism in normal and diseased vasculature. Circ Res 116(7):1231–1244

    Article  PubMed  CAS  Google Scholar 

  30. Li H, Horke S, Forstermann U (2014) Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 237(1):208–219

    Article  PubMed  CAS  Google Scholar 

  31. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Chuaiphichai S, McNeill E, Douglas G, Crabtree MJ, Bendall JK, Hale AB, Alp NJ, Channon KM (2014) Cell-autonomous role of endothelial GTP cyclohydrolase 1 and tetrahydrobiopterin in blood pressure regulation. Hypertension 64(3):530–540

    Article  PubMed  CAS  Google Scholar 

  33. Ali ZA, Rinze R, Douglas G, Hu Y, Xiao Q, Qi W, McNeill E, Bursill C, George I, Greaves DR, Xu Q, Channon KM (2013) Tetrahydrobiopterin determines vascular remodeling through enhanced endothelial cell survival and regeneration. Circulation 128(11 Suppl 1):S50–S58

    Article  PubMed  CAS  Google Scholar 

  34. Ali ZA, Bursill CA, Douglas G, McNeill E, Papaspyridonos M, Tatham AL, Bendall JK, Akhtar AM, Alp NJ, Greaves DR, Channon KM (2008) CCR2-mediated antiinflammatory effects of endothelial tetrahydrobiopterin inhibit vascular injury-induced accelerated atherosclerosis. Circulation 118(14 Suppl):S71–S77

    Article  PubMed  CAS  Google Scholar 

  35. Crabtree MJ, Brixey R, Batchelor H, Hale AB, Channon KM (2013) Integrated redox sensor and effector functions for tetrahydrobiopterin- and glutathionylation-dependent endothelial nitric-oxide synthase uncoupling. J Biol Chem 288(1):561–569

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Galougahi KK, Liu CC, Gentile C, Kok C, Nunez A, Garcia A, Fry NA, Davies MJ, Hawkins CL, Rasmussen HH, Figtree GA (2014) Glutathionylation mediates angiotensin II-induced eNOS uncoupling, amplifying NADPH oxidase-dependent endothelial dysfunction. J Am Heart Assoc 3(2):e000731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69(1):11–25

    Article  PubMed  CAS  Google Scholar 

  38. Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475(7356):316–323

    Article  PubMed  CAS  Google Scholar 

  39. Bryan MT, Duckles H, Feng S, Hsiao ST, Kim HR, Serbanovic-Canic J, Evans PC (2014) Mechanoresponsive networks controlling vascular inflammation. Arterioscler Thromb Vasc Biol 34(10):2199–2205

    Article  PubMed  CAS  Google Scholar 

  40. Ando J, Yamamoto K (2011) Effects of shear stress and stretch on endothelial function. Antioxid Redox Signal 15(5):1389–1403

    Article  PubMed  CAS  Google Scholar 

  41. Dai G, Vaughn S, Zhang Y, Wang ET, Garcia-Cardena G, Gimbrone MA Jr (2007) Biomechanical forces in atherosclerosis-resistant vascular regions regulate endothelial redox balance via phosphoinositol 3-kinase/Akt-dependent activation of Nrf2. Circ Res 101(7):723–733

    Article  PubMed  CAS  Google Scholar 

  42. Yamawaki H, Pan S, Lee RT, Berk BC (2005) Fluid shear stress inhibits vascular inflammation by decreasing thioredoxin-interacting protein in endothelial cells. J Clin Invest 115(3):733–738

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Browning EA, Chatterjee S, Fisher AB (2012) Stop the flow: a paradigm for cell signaling mediated by reactive oxygen species in the pulmonary endothelium. Annu Rev Physiol 74:403–424

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Hsiai TK, Hwang J, Barr ML, Correa A, Hamilton R, Alavi M, Rouhanizadeh M, Cadenas E, Hazen SL (2007) Hemodynamics influences vascular peroxynitrite formation: implication for low-density lipoprotein apo-B-100 nitration. Free Radic Biol Med 42(4):519–529

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Brandes RP, Weissmann N, Schroder K (2014) Nox family NADPH oxidases in mechano-transduction: mechanisms and consequences. Antioxid Redox Signal 20(6):887–898

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Van Buul JD, Fernandez-Borja M, Anthony EC, Hordijk PL (2005) Expression and localization of NOX2 and NOX4 in primary human endothelial cells. Antioxid Redox Signal 7(3–4):308–317

    Article  PubMed  Google Scholar 

  47. Bendall JK, Rinze R, Adlam D, Tatham AL, de Bono J, Wilson N, Volpi E, Channon KM (2007) Endothelial Nox2 overexpression potentiates vascular oxidative stress and hemodynamic response to angiotensin II: studies in endothelial-targeted Nox2 transgenic mice. Circ Res 100(7):1016–1025

    Article  PubMed  CAS  Google Scholar 

  48. Nigro P, Abe J, Woo CH, Satoh K, McClain C, O’Dell MR, Lee H, Lim JH, Li JD, Heo KS, Fujiwara K, Berk BC (2010) PKCzeta decreases eNOS protein stability via inhibitory phosphorylation of ERK5. Blood 116(11):1971–1979

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Frey RS, Rahman A, Kefer JC, Minshall RD, Malik AB (2002) PKCzeta regulates TNF-α-induced activation of NADPH oxidase in endothelial cells. Circ Res 90(9):1012–1019

    Article  PubMed  CAS  Google Scholar 

  50. Magid R, Davies PF (2005) Endothelial protein kinase C isoform identity and differential activity of PKCzeta in an athero-susceptible region of porcine aorta. Circ Res 97(5):443–449

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Liu Y, Collins C, Kiosses WB, Murray AM, Joshi M, Shepherd TR, Fuentes EJ, Tzima E (2013) A novel pathway spatiotemporally activates Rac1 and redox signaling in response to fluid shear stress. J Cell Biol 201(6):863–873

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Breton-Romero R, Lamas S (2014) Hydrogen peroxide signaling in vascular endothelial cells. Redox Biol 2:529–534

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Abid MR, Kachra Z, Spokes KC, Aird WC (2000) NADPH oxidase activity is required for endothelial cell proliferation and migration. FEBS Lett 486(3):252–256

    Article  PubMed  CAS  Google Scholar 

  54. Stone JR, Collins T (2002) The role of hydrogen peroxide in endothelial proliferative responses. Endothelium 9(4):231–238

    Article  PubMed  CAS  Google Scholar 

  55. Zafari AM, Ushio-Fukai M, Akers M, Yin Q, Shah A, Harrison DG, Taylor WR, Griendling KK (1998) Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension 32(3):488–495

    Article  PubMed  CAS  Google Scholar 

  56. Hoelzle MK, Svitkina T (2012) The cytoskeletal mechanisms of cell-cell junction formation in endothelial cells. Mol Biol Cell 23(2):310–323

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Coso S, Harrison I, Harrison CB, Vinh A, Sobey CG, Drummond GR, Williams ED, Selemidis S (2012) NADPH oxidases as regulators of tumor angiogenesis: current and emerging concepts. Antioxid Redox Signal 16(11):1229–1247

    Article  PubMed  CAS  Google Scholar 

  58. Pendyala S, Gorshkova IA, Usatyuk PV, He D, Pennathur A, Lambeth JD, Thannickal VJ, Natarajan V (2009) Role of Nox4 and Nox2 in hyperoxia-induced reactive oxygen species generation and migration of human lung endothelial cells. Antioxid Redox Signal 11(4):747–764

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Wang Y, Zang QS, Liu Z, Wu Q, Maass D, Dulan G, Shaul PW, Melito L, Frantz DE, Kilgore JA, Williams NS, Terada LS, Nwariaku FE (2011) Regulation of VEGF-induced endothelial cell migration by mitochondrial reactive oxygen species. Am J Physiol Cell Physiol 301(3):C695–C704

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Sung BH, Zhu X, Kaverina I, Weaver AM (2011) Cortactin controls cell motility and lamellipodial dynamics by regulating ECM secretion. Curr Biol 21(17):1460–1469

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Pendyala S, Usatyuk PV, Gorshkova IA, Garcia JG, Natarajan V (2009) Regulation of NADPH oxidase in vascular endothelium: the role of phospholipases, protein kinases, and cytoskeletal proteins. Antioxid Redox Signal 11(4):841–860

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Usatyuk PV, Singleton PA, Pendyala S, Kalari SK, He D, Gorshkova IA, Camp SM, Moitra J, Dudek SM, Garcia JG, Natarajan V (2012) Novel role for non-muscle myosin light chain kinase (MLCK) in hyperoxia-induced recruitment of cytoskeletal proteins, NADPH oxidase activation, and reactive oxygen species generation in lung endothelium. J Biol Chem 287(12):9360–9375

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Mishina NM, Tyurin-Kuzmin PA, Markvicheva KN, Vorotnikov AV, Tkachuk VA, Laketa V, Schultz C, Lukyanov S, Belousov VV (2011) Does cellular hydrogen peroxide diffuse or act locally? Antioxid Redox Signal 14(1):1–7

    Article  PubMed  CAS  Google Scholar 

  64. Usatyuk PV, Fu P, Mohan V, Epshtein Y, Jacobson JR, Gomez-Cambronero J, Wary KK, Bindokas V, Dudek SM, Salgia R, Garcia JG, Natarajan V (2014) Role of c-Met/phosphatidylinositol 3-kinase (PI3k)/Akt signaling in hepatocyte growth factor (HGF)-mediated lamellipodia formation, reactive oxygen species (ROS) generation, and motility of lung endothelial cells. J Biol Chem 289(19):13476–13491

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Arbiser JL, Petros J, Klafter R, Govindajaran B, McLaughlin ER, Brown LF, Cohen C, Moses M, Kilroy S, Arnold RS, Lambeth JD (2002) Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc Natl Acad Sci USA 99(2):715–720

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Ushio-Fukai M, Nakamura Y (2008) Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett 266(1):37–52

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Gavard J, Gutkind JS (2006) VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8(11):1223–1234

    Article  PubMed  CAS  Google Scholar 

  68. Peshavariya H, Dusting GJ, Jiang F, Halmos LR, Sobey CG, Drummond GR, Selemidis S (2009) NADPH oxidase isoform selective regulation of endothelial cell proliferation and survival. Naunyn Schmiedebergs Arch Pharmacol 380(2):193–204

    Article  PubMed  CAS  Google Scholar 

  69. Abdelsaid MA, Matragoon S, El-Remessy AB (2013) Thioredoxin-interacting protein expression is required for VEGF-mediated angiogenic signal in endothelial cells. Antioxid Redox Signal 19(18):2199–2212

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Du J, Teng RJ, Guan T, Eis A, Kaul S, Konduri GG, Shi Y (2012) Role of autophagy in angiogenesis in aortic endothelial cells. Am J Physiol Cell Physiol 302(2):C383–C391

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabo C (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci USA 106(51):21972–21977

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Coletta C, Papapetropoulos A, Erdelyi K, Olah G, Modis K, Panopoulos P, Asimakopoulou A, Gero D, Sharina I, Martin E, Szabo C (2012) Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci USA 109(23):9161–9166

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Tao BB, Liu SY, Zhang CC, Fu W, Cai WJ, Wang Y, Shen Q, Wang MJ, Chen Y, Zhang LJ, Zhu YZ, Zhu YC (2013) VEGFR2 functions as an H2S-targeting receptor protein kinase with its novel Cys 1045-Cys1024 disulfide bond serving as a specific molecular switch for hydrogen sulfide actions in vascular endothelial cells. Antioxid Redox Signal 19(5):448–464

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Szabo G, Veres G, Radovits T, Gero D, Modis K, Miesel-Groschel C, Horkay F, Karck M, Szabo C (2011) Cardioprotective effects of hydrogen sulfide. Nitric Oxide 25(2):201–210

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Wall VZ, Bornfeldt KE (2014) Arterial smooth muscle. Arterioscler Thromb Vasc Biol 34(10):2175–2179

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Gomez D, Owens GK (2012) Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc Res 95(2):156–164

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Tang Z, Wang A, Yuan F, Yan Z, Liu B, Chu JS, Helms JA, Li S (2012) Differentiation of multipotent vascular stem cells contributes to vascular diseases. Nat Commun 3:875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Nguyen AT, Gomez D, Bell RD, Campbell JH, Clowes AW, Gabbiani G, Giachelli CM, Parmacek MS, Raines EW, Rusch NJ, Speer MY, Sturek M, Thyberg J, Towler DA, Weiser-Evans MC, Yan C, Miano JM, Owens GK (2013) Smooth muscle cell plasticity: fact or fiction? Circ Res 112(1):17–22

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Majesky MW (2007) Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27(6):1248–1258

    Article  PubMed  CAS  Google Scholar 

  80. Clempus RE, Sorescu D, Dikalova AE, Pounkova L, Jo P, Sorescu GP, Schmidt HH, Lassegue B, Griendling KK (2007) Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 27(1):42–48

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Martin-Garrido A, Brown DI, Lyle AN, Dikalova A, Seidel-Rogol B, Lassegue B, San Martin A, Griendling KK (2011) NADPH oxidase 4 mediates TGF-beta-induced smooth muscle alpha-actin via p38MAPK and serum response factor. Free Radic Biol Med 50(2):354–362

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Ismail S, Sturrock A, Wu P, Cahill B, Norman K, Huecksteadt T, Sanders K, Kennedy T, Hoidal J (2009) NOX4 mediates hypoxia-induced proliferation of human pulmonary artery smooth muscle cells: the role of autocrine production of transforming growth factor-β1 and insulin-like growth factor binding protein-3. Am J Physiol Lung Cell Mol Physiol 296(3):L489–L499

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Lee MY, San Martin A, Mehta PK, Dikalova AE, Garrido AM, Datla SR, Lyons E, Krause KH, Banfi B, Lambeth JD, Lassegue B, Griendling KK (2009) Mechanisms of vascular smooth muscle NADPH oxidase 1 (Nox1) contribution to injury-induced neointimal formation. Arterioscler Thromb Vasc Biol 29(4):480–487

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Soe NN, Sowden M, Baskaran P, Smolock EM, Kim Y, Nigro P, Berk BC (2013) Cyclophilin A is required for angiotensin II-induced p47phox translocation to caveolae in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 33(9):2147–2153

    Article  PubMed  CAS  Google Scholar 

  85. Satoh K, Matoba T, Suzuki J, O’Dell MR, Nigro P, Cui Z, Mohan A, Pan S, Li L, Jin ZG, Yan C, Abe J, Berk BC (2008) Cyclophilin A mediates vascular remodeling by promoting inflammation and vascular smooth muscle cell proliferation. Circulation 117(24):3088–3098

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Gellert M, Hanschmann EM, Lepka K, Berndt C, Lillig CH (2015) Redox regulation of cytoskeletal dynamics during differentiation and de-differentiation. Biochim Biophys Acta 1850(8):1575–1587

    Article  PubMed  CAS  Google Scholar 

  87. Wong CM, Marcocci L, Liu L, Suzuki YJ (2010) Cell signaling by protein carbonylation and decarbonylation. Antioxid Redox Signal 12(3):393–404

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Lundquist MR, Storaska AJ, Liu TC, Larsen SD, Evans T, Neubig RR, Jaffrey SR (2014) Redox modification of nuclear actin by MICAL-2 regulates SRF signaling. Cell 156(3):563–576

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  89. Rodriguez AI, Csanyi G, Ranayhossaini DJ, Feck DM, Blose KJ, Assatourian L, Vorp DA, Pagano PJ (2015) MEF2B-Nox1 signaling is critical for stretch-induced phenotypic modulation of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 35(2):430–438

    Article  PubMed  CAS  Google Scholar 

  90. San Martin A, Griendling KK (2010) Redox control of vascular smooth muscle migration. Antioxid Redox Signal 12(5):625–640

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Buetow BS, Tappan KA, Crosby JR, Seifert RA, Bowen-Pope DF (2003) Chimera analysis supports a predominant role of PDGFRbeta in promoting smooth-muscle cell chemotaxis after arterial injury. Am J Pathol 163(3):979–984

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Lee HM, Jeon BH, Won KJ, Lee CK, Park TK, Choi WS, Bae YM, Kim HS, Lee SK, Park SH, Irani K, Kim B (2009) Gene transfer of redox factor-1 inhibits neointimal formation: involvement of platelet-derived growth factor-beta receptor signaling via the inhibition of the reactive oxygen species-mediated Syk pathway. Circ Res 104(2):219–227 (215p following 227)

    Article  PubMed  CAS  Google Scholar 

  93. Chiarugi P, Fiaschi T, Taddei ML, Talini D, Giannoni E, Raugei G, Ramponi G (2001) Two vicinal cysteines confer a peculiar redox regulation to low molecular weight protein tyrosine phosphatase in response to platelet-derived growth factor receptor stimulation. J Biol Chem 276(36):33478–33487

    Article  PubMed  CAS  Google Scholar 

  94. Ashino T, Yamamoto M, Yoshida T, Numazawa S (2013) Redox-sensitive transcription factor Nrf2 regulates vascular smooth muscle cell migration and neointimal hyperplasia. Arterioscler Thromb Vasc Biol 33(4):760–768

    Article  PubMed  CAS  Google Scholar 

  95. Montenegro MF, Valdivia A, Smolensky A, Verma K, Robert Taylor W, San Martin A (2015) Nox4-dependent activation of cofilin mediates VSMC reorientation in response to cyclic stretching. Free Radic Biol Med 85:288–294

    Article  PubMed  CAS  Google Scholar 

  96. Maheswaranathan M, Gole HK, Fernandez I, Lassegue B, Griendling KK, San Martin A (2011) Platelet-derived growth factor (PDGF) regulates Slingshot phosphatase activity via Nox1-dependent auto-dephosphorylation of serine 834 in vascular smooth muscle cells. J Biol Chem 286(41):35430–35437

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  97. Zaidel-Bar R, Ballestrem C, Kam Z, Geiger B (2003) Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J Cell Sci 116(Pt 22):4605–4613

    Article  PubMed  CAS  Google Scholar 

  98. de Rezende FF, Martins Lima A, Niland S, Wittig I, Heide H, Schroder K, Eble JA (2012) Integrin α7β1 is a redox-regulated target of hydrogen peroxide in vascular smooth muscle cell adhesion. Free Radic Biol Med 53(3):521–531

    Article  PubMed  CAS  Google Scholar 

  99. Chiarugi P, Pani G, Giannoni E, Taddei L, Colavitti R, Raugei G, Symons M, Borrello S, Galeotti T, Ramponi G (2003) Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol 161(5):933–944

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. Rigacci S, Rovida E, Dello Sbarba P, Berti A (2002) Low Mr phosphotyrosine protein phosphatase associates and dephosphorylates p125 focal adhesion kinase, interfering with cell motility and spreading. J Biol Chem 277(44):41631–41636

    Article  PubMed  CAS  Google Scholar 

  101. Burridge K, Sastry SK, Sallee JL (2006) Regulation of cell adhesion by protein-tyrosine phosphatases. I. Cell-matrix adhesion. J Biol Chem 281(23):15593–15596

    PubMed  CAS  Google Scholar 

  102. Mitchell L, Hobbs GA, Aghajanian A, Campbell SL (2013) Redox regulation of Ras and Rho GTPases: mechanism and function. Antioxid Redox Signal 18(3):250–258

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  103. Datla SR, McGrail DJ, Vukelic S, Huff LP, Lyle AN, Pounkova L, Lee M, Seidel-Rogol B, Khalil MK, Hilenski LL, Terada LS, Dawson MR, Lassegue B, Griendling KK (2014) Poldip2 controls vascular smooth muscle cell migration by regulating focal adhesion turnover and force polarization. Am J Physiol Heart Circ Physiol 307(7):H945–H957

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  104. Fernandez I, Martin-Garrido A, Zhou DW, Clempus RE, Seidel-Rogol B, Valdivia A, Lassegue B, Garcia AJ, Griendling KK, San Martin A (2015) Hic-5 mediates TGFβ-induced adhesion in vascular smooth muscle cells by a Nox4-dependent mechanism. Arterioscler Thromb Vasc Biol 35(5):1198–1206

    Article  PubMed  CAS  Google Scholar 

  105. Heo J, Campbell SL (2005) Mechanism of redox-mediated guanine nucleotide exchange on redox-active Rho GTPases. J Biol Chem 280(35):31003–31010

    Article  PubMed  CAS  Google Scholar 

  106. Jernigan NL, Walker BR, Resta TC (2008) Reactive oxygen species mediate RhoA/Rho kinase-induced Ca2+ sensitization in pulmonary vascular smooth muscle following chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 295(3):L515–L529

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  107. Shimizu T, Fukumoto Y, Tanaka S, Satoh K, Ikeda S, Shimokawa H (2013) Crucial role of ROCK2 in vascular smooth muscle cells for hypoxia-induced pulmonary hypertension in mice. Arterioscler Thromb Vasc Biol 33(12):2780–2791

    Article  PubMed  CAS  Google Scholar 

  108. Shimokawa H, Satoh K (2014) Vascular function. Arterioscler Thromb Vasc Biol 34(11):2359–2362

    Article  PubMed  CAS  Google Scholar 

  109. Dikalova A, Clempus R, Lassegue B, Cheng G, McCoy J, Dikalov S, San Martin A, Lyle A, Weber DS, Weiss D, Taylor WR, Schmidt HH, Owens GK, Lambeth JD, Griendling KK (2005) Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation 112(17):2668–2676

    Article  PubMed  CAS  Google Scholar 

  110. Chiu J, Dawes IW (2012) Redox control of cell proliferation. Trends Cell Biol 22(11):592–601

    Article  PubMed  CAS  Google Scholar 

  111. Leonard SE, Reddie KG, Carroll KS (2009) Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem Biol 4(9):783–799

    Article  PubMed  CAS  Google Scholar 

  112. Giannoni E, Chiarugi P (2014) Redox circuitries driving Src regulation. Antioxid Redox Signal 20(13):2011–2025

    Article  PubMed  CAS  Google Scholar 

  113. Kwon J, Lee SR, Yang KS, Ahn Y, Kim YJ, Stadtman ER, Rhee SG (2004) Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc Natl Acad Sci USA 101(47):16419–16424

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  114. Antico Arciuch VG, Galli S, Franco MC, Lam PY, Cadenas E, Carreras MC, Poderoso JJ (2009) Akt1 intramitochondrial cycling is a crucial step in the redox modulation of cell cycle progression. PLoS ONE 4(10):e7523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Taniyama Y, Weber DS, Rocic P, Hilenski L, Akers ML, Park J, Hemmings BA, Alexander RW, Griendling KK (2003) Pyk2- and Src-dependent tyrosine phosphorylation of PDK1 regulates focal adhesions. Mol Cell Biol 23(22):8019–8029

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  116. Butturini E, Darra E, Chiavegato G, Cellini B, Cozzolino F, Monti M, Pucci P, Dell’Orco D, Mariotto S (2014) S-glutathionylation at Cys328 and Cys542 impairs STAT3 phosphorylation. ACS Chem Biol 9(8):1885–1893

    Article  PubMed  CAS  Google Scholar 

  117. Klatt P, Molina EP, De Lacoba MG, Padilla CA, Martinez-Galesteo E, Barcena JA, Lamas S (1999) Redox regulation of c-Jun DNA binding by reversible S-glutathiolation. FASEB J 13(12):1481–1490

    PubMed  CAS  Google Scholar 

  118. Chen CY, Willard D, Rudolph J (2009) Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines. Biochemistry 48(6):1399–1409

    Article  PubMed  CAS  Google Scholar 

  119. Fitzgibbons TP, Czech MP (2014) Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J Am Heart Assoc 3(2):e000582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Antonopoulos AS, Margaritis M, Coutinho P, Shirodaria C, Psarros C, Herdman L, Sanna F, De Silva R, Petrou M, Sayeed R, Krasopoulos G, Lee R, Digby J, Reilly S, Bakogiannis C, Tousoulis D, Kessler B, Casadei B, Channon KM, Antoniades C (2015) Adiponectin as a link between type 2 diabetes and vascular NADPH oxidase activity in the human arterial wall: the regulatory role of perivascular adipose tissue. Diabetes 64(6):2207–2219

    Article  PubMed  CAS  Google Scholar 

  121. Brown NK, Zhou Z, Zhang J, Zeng R, Wu J, Eitzman DT, Chen YE, Chang L (2014) Perivascular adipose tissue in vascular function and disease: a review of current research and animal models. Arterioscler Thromb Vasc Biol 34(8):1621–1630

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  122. Okamoto E, Couse T, De Leon H, Vinten-Johansen J, Goodman RB, Scott NA, Wilcox JN (2001) Perivascular inflammation after balloon angioplasty of porcine coronary arteries. Circulation 104(18):2228–2235

    Article  PubMed  CAS  Google Scholar 

  123. Takaoka M, Suzuki H, Shioda S, Sekikawa K, Saito Y, Nagai R, Sata M (2010) Endovascular injury induces rapid phenotypic changes in perivascular adipose tissue. Arterioscler Thromb Vasc Biol 30(8):1576–1582

    Article  PubMed  CAS  Google Scholar 

  124. Schroeter MR, Eschholz N, Herzberg S, Jerchel I, Leifheit-Nestler M, Czepluch FS, Chalikias G, Konstantinides S, Schafer K (2013) Leptin-dependent and leptin-independent paracrine effects of perivascular adipose tissue on neointima formation. Arterioscler Thromb Vasc Biol 33(5):980–987

    Article  PubMed  CAS  Google Scholar 

  125. Margaritis M, Antonopoulos AS, Digby J, Lee R, Reilly S, Coutinho P, Shirodaria C, Sayeed R, Petrou M, De Silva R, Jalilzadeh S, Demosthenous M, Bakogiannis C, Tousoulis D, Stefanadis C, Choudhury RP, Casadei B, Channon KM, Antoniades C (2013) Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation 127(22):2209–2221

    Article  PubMed  CAS  Google Scholar 

  126. Bhattacharya I, Dragert K, Albert V, Contassot E, Damjanovic M, Hagiwara A, Zimmerli L, Humar R, Hall MN, Battegay EJ, Haas E (2013) Rictor in perivascular adipose tissue controls vascular function by regulating inflammatory molecule expression. Arterioscler Thromb Vasc Biol 33(9):2105–2111

    Article  PubMed  CAS  Google Scholar 

  127. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’Farrell FM, Buchan AM, Lauritzen M, Attwell D (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508(7494):55–60

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  128. Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T (2009) Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med 15(9):1031–1037

    Article  PubMed  CAS  Google Scholar 

  129. O’Farrell FM, Attwell D (2014) A role for pericytes in coronary no-reflow. Nat Rev Cardiol 11(7):427–432

    Article  PubMed  Google Scholar 

  130. Ricard N, Tu L, Le Hiress M, Huertas A, Phan C, Thuillet R, Sattler C, Fadel E, Seferian A, Montani D, Dorfmuller P, Humbert M, Guignabert C (2014) Increased pericyte coverage mediated by endothelial-derived fibroblast growth factor-2 and interleukin-6 is a source of smooth muscle-like cells in pulmonary hypertension. Circulation 129(15):1586–1597

    Article  PubMed  CAS  Google Scholar 

  131. Burgoyne JR, Mongue-Din H, Eaton P, Shah AM (2012) Redox signaling in cardiac physiology and pathology. Circ Res 111(8):1091–1106

    Article  PubMed  CAS  Google Scholar 

  132. Kotani J, Awata M, Nanto S, Uematsu M, Oshima F, Minamiguchi H, Mintz GS, Nagata S (2006) Incomplete neointimal coverage of sirolimus-eluting stents: angioscopic findings. J Am Coll Cardiol 47(10):2108–2111

    Article  PubMed  CAS  Google Scholar 

  133. Raber L, Magro M, Stefanini GG, Kalesan B, van Domburg RT, Onuma Y, Wenaweser P, Daemen J, Meier B, Juni P, Serruys PW, Windecker S (2012) Very late coronary stent thrombosis of a newer-generation everolimus-eluting stent compared with early-generation drug-eluting stents: a prospective cohort study. Circulation 125(9):1110–1121

    Article  PubMed  CAS  Google Scholar 

  134. Deuse T, Hua X, Wang D, Maegdefessel L, Heeren J, Scheja L, Bolanos JP, Rakovic A, Spin JM, Stubbendorff M, Ikeno F, Langer F, Zeller T, Schulte-Uentrop L, Stoehr A, Itagaki R, Haddad F, Eschenhagen T, Blankenberg S, Kiefmann R, Reichenspurner H, Velden J, Klein C, Yeung A, Robbins RC, Tsao PS, Schrepfer S (2014) Dichloroacetate prevents restenosis in preclinical animal models of vessel injury. Nature 509(7502):641–644

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  135. Tang R, Cui XB, Wang JN, Chen SY (2013) CTP synthase 1, a smooth muscle-sensitive therapeutic target for effective vascular repair. Arterioscler Thromb Vasc Biol 33(10):2336–2344

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

KKG is supported by a Columbia University Research Grant and Lucy Falkiner Fellowship from Sydney Medical School Foundation. ZAA is supported by NIH Grant R00HL109256.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keyvan Karimi Galougahi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi Galougahi, K., Ashley, E.A. & Ali, Z.A. Redox regulation of vascular remodeling. Cell. Mol. Life Sci. 73, 349–363 (2016). https://doi.org/10.1007/s00018-015-2068-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2068-y

Keywords

Navigation