Skip to main content
Log in

Metabolism, longevity and epigenetics

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Metabolic homeostasis and interventions that influence nutrient uptake are well-established means to influence lifespan even in higher eukaryotes. Until recently, the molecular mechanisms explaining such an effect remained scantily understood. Sirtuins are a group of protein deacetylases that depend on the metabolic intermediate NAD+ as a cofactor for their function. For this reason they sense metabolic stress and in turn function at multiple levels to exert proper metabolic adaptation. Among other things, sirtuins can perform as histone deacetylases inducing epigenetic changes to modulate transcription and DNA repair. Recent studies have indicated that beyond sirtuins, the activity of other chromatin modifiers, such as histone acetyl transferases, might also be tightly linked to the availability of their intermediate metabolite acetyl-CoA. We summarize current knowledge of the emerging concepts indicating close crosstalk between the epigenetic machineries able to sense metabolic stress, their adaptive metabolic responses and their potential role in longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23(7):781–783

    Article  PubMed  CAS  Google Scholar 

  2. Zhou VW, Goren A, Bernstein BE (2010) Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12(1):7–18

    Article  PubMed  CAS  Google Scholar 

  3. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473(7345):43–49

    Article  PubMed  CAS  Google Scholar 

  4. Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470(7333):279–283

    Article  PubMed  CAS  Google Scholar 

  5. Zhao R, Nakamura T, Fu Y, Lazar Z, Spector DL (2011) Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation. Nat Cell Biol 13(11):1295–1304

    Article  PubMed  CAS  Google Scholar 

  6. Witt O, Deubzer HE, Milde T, Oehme I (2009) HDAC family: what are the cancer relevant targets? Cancer Lett 277(1):8–21

    Article  PubMed  CAS  Google Scholar 

  7. Toiber D, Sebastian C, Mostoslavsky R (2011) Characterization of nuclear sirtuins: molecular mechanisms and physiological relevance. In: Yao T-P, Seto E (eds) Histone deacetylases: the biology and clinical information. Handbook of experimental pharmacology, vol 206. Springer Berlin, pp 189–224

  8. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159

    Article  PubMed  CAS  Google Scholar 

  9. Raychaudhuri N, Raychaudhuri S, Thamotharan M, Devaskar SU (2008) Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring. J Biol Chem 283(20):13611–13626

    Article  PubMed  CAS  Google Scholar 

  10. Christensen DP, Dahllöf M, Lundh M, Rasmussen DN, Nielsen MD, Billestrup N, Grunnet LG, Mandrup-Poulsen T (2011) Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol Med 17(5-6):378–390

    Article  PubMed  CAS  Google Scholar 

  11. Mihaylova MM, Vasquez DS, Ravnskjaer K, Denechaud P-D, Yu RT, Alvarez JG, Downes M, Evans RM, Montminy M, Shaw RJ (2011) Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145(4):607–621

    Article  PubMed  CAS  Google Scholar 

  12. Oiso H, Furukawa N, Suefuji M, Shimoda S, Ito A, Furumai R, Nakagawa J, Yoshida M, Nishino N, Araki E (2011) The role of class I histone deacetylase (HDAC) on gluconeogenesis in liver. Biochem Biophys Res Commun 404(1):166–172

    Article  PubMed  CAS  Google Scholar 

  13. Geng H, Harvey CT, Pittsenbarger J, Liu Q, Beer TM, Xue C, Qian DZ (2011) HDAC4 protein regulates HIF1alpha protein lysine acetylation and cancer cell response to hypoxia. J Biol Chem 286(44):38095–38102

    Article  PubMed  CAS  Google Scholar 

  14. Jung J-W, Lee S, Seo M-S, Park S-B, Kurtz A, Kang S-K, Kang K-S (2010) Histone deacetylase controls adult stem cell aging by balancing the expression of polycomb genes and jumonji domain containing 3. Cell Mol Life Sci 67(7):1165–1176

    Article  PubMed  CAS  Google Scholar 

  15. Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 5(8):e201

    Article  PubMed  CAS  Google Scholar 

  16. Pollina EA, Brunet A (2011) Epigenetic regulation of aging stem cells. Oncogene 30(28):3105–3126

    Article  PubMed  CAS  Google Scholar 

  17. Soliman MA, Berardi P, Pastyryeva S, Bonnefin P, Feng X, Colina A, Young D, Riabowol K (2008) ING1a expression increases during replicative senescence and induces a senescent phenotype. Aging Cell 7(6):783–794

    Article  PubMed  CAS  Google Scholar 

  18. Willis-Martinez D, Richards HW, Timchenko NA, Medrano EE (2010) Role of HDAC1 in senescence, aging, and cancer. Exp Gerontol 45(4):279–285

    Article  PubMed  CAS  Google Scholar 

  19. Chuang J-Y, Hung J–J (2011) Overexpression of HDAC1 induces cellular senescence by Sp1/PP2A/pRb pathway. Biochem Biophys Res Commun 407(3):587–592

    Article  PubMed  CAS  Google Scholar 

  20. Miller KM, Tjeertes JV, Coates J, Legube G, Polo SE, Britton S, Jackson SP (2010) Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat Struct Mol Biol 17(99):1144–1151

    Article  PubMed  CAS  Google Scholar 

  21. Gorbunova V, Seluanov A, Mao Z, Hine C (2007) Changes in DNA repair during aging. Nucleic Acids Res 35(22):7466–7474

    Article  PubMed  CAS  Google Scholar 

  22. Marquard L, Poulsen CB, Gjerdrum LM, de Nully Brown P, Christensen IJ, Jensen PB, Sehested M, Johansen P, Ralfkiaer E (2009) Histone deacetylase 1, 2, 6 and acetylated histone H4 in B- and T-cell lymphomas. Histopathology 54(6):688–698

    Article  PubMed  Google Scholar 

  23. Hayashi A, Horiuchi A, Kikuchi N, Hayashi T, Fuseya C, Suzuki A, Konishi I, Shiozawa T (2010) Type-specific roles of histone deacetylase (HDAC) overexpression in ovarian carcinoma: hDAC1 enhances cell proliferation and HDAC3 stimulates cell migration with downregulation of E-cadherin. Int J Cancer 127(6):1332–1346

    Article  PubMed  CAS  Google Scholar 

  24. Klar AJ, Fogel S, Macleod K (1979) MAR1 – a regulator of the HMa and HMalpha loci in Saccharomyces cerevisiae. Genetics 93(1):37–50

    PubMed  CAS  Google Scholar 

  25. Guarente L, Picard F (2005) Calorie restriction – the SIR2 connection. Cell 120(4):473–482

    Article  PubMed  CAS  Google Scholar 

  26. Strahl-Bolsinger S, Hecht A, Luo K, Grunstein M (1997) SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev 11(1):83–93

    Article  PubMed  CAS  Google Scholar 

  27. Moazed D, Kistler A, Axelrod A, Rine J, Johnson AD (1997) Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. Proc Natl Acad Sci U S A 94(6):2186–2191

    Article  PubMed  CAS  Google Scholar 

  28. Oppikofer M, Kueng S, Martino F, Soeroes S, Hancock SM, Chin JW, Fischle W, Gasser SM (2011) A dual role of H4K16 acetylation in the establishment of yeast silent chromatin. EMBO J 30(13):2610–2621

    Article  PubMed  CAS  Google Scholar 

  29. Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273(2):793–798

    Article  PubMed  CAS  Google Scholar 

  30. Sauve AA, Celic I, Avalos J, Deng H, Boeke JD, Schramm VL (2001) Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions. Biochemistry 40(51):15456–15463

    Article  PubMed  CAS  Google Scholar 

  31. Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, Kim J, Woo J, Kim JH, Choi BH, He B, Chen W, Zhang S, Cerione RA, Auwerx J, Hao Q, Lin H (2011) Sirt5 Is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334(6057):806–809

    Article  PubMed  CAS  Google Scholar 

  32. Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, Luo H, Zhang Y, He W, Yang K, Zwaans BM, Tishkoff D, Ho L, Lombard D, He TC, Dai J, Verdin E, Ye Y, Zhao Y (2011) The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics 10(12):M111.012658

    Article  PubMed  CAS  Google Scholar 

  33. Finkel T, Deng C-X, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460(7255):587–591

    Article  PubMed  CAS  Google Scholar 

  34. Kim HS, Vassilopoulos A, Wang RH, Lahusen T, Xiao Z, Xu X, Li C, Veenstra TD, Li B, Yu H, Ji J, Wang XW, Park SH, Cha YI, Gius D, Deng CX (2011) SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 20(4):487–499

    Article  PubMed  CAS  Google Scholar 

  35. Fernandez-Marcos PJ, Jeninga EH, Cantó C, Harach T, de Boer VC, Andreux P, Moullan N, Pirinen E, Yamamoto H, Houten SM, Schoonjans K, Auwerx J (2012) Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis. Sci Rep 2:425

    Article  PubMed  CAS  Google Scholar 

  36. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng H-L, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124(2):315–329

    Article  PubMed  CAS  Google Scholar 

  37. Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z, Tennen RI, Paredes S, Young NL, Chen K, Struhl K, Garcia BA, Gozani O, Li W, Chua KF (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487(7405):114–118

    PubMed  CAS  Google Scholar 

  38. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127(6):1109–1122

    Article  PubMed  CAS  Google Scholar 

  39. Cohen DE, Supinski AM, Bonkowski MS, Donmez G, Guarente LP (2009) Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes Dev 23(24):2812–2817

    Article  PubMed  CAS  Google Scholar 

  40. Cohen HY (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305(5682):390–392

    Article  PubMed  CAS  Google Scholar 

  41. Cantó C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, Zierath JR, Auwerx J (2010) Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 11(3):213–219

    Article  PubMed  CAS  Google Scholar 

  42. Schenk S, McCurdy CE, Philp A, Chen MZ, Holliday MJ, Bandyopadhyay GK, Osborn O, Baar K, Olefsky JM (2011) Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J Clin Invest 121(11):4281–4288

    Article  PubMed  CAS  Google Scholar 

  43. Gurd BJ, Yoshida Y, McFarlan JT, Holloway GP, Moyes CD, Heigenhauser GJ, Spriet L, Bonen A (2011) Nuclear SIRT1 activity, but not protein content, regulates mitochondrial biogenesis in rat and human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 301(1):R67–R75

    Article  PubMed  CAS  Google Scholar 

  44. Ghosh HS, McBurney M, Robbins PD (2010) SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 5(2):e9199

    Article  PubMed  CAS  Google Scholar 

  45. Gerhart-Hines Z, Dominy JE Jr, Blattler SM, Jedrychowski MP, Banks AS, Lim JH, Chim H, Gygi SP, Puigserver P (2011) The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+). Mol Cell 44(6):851–863

    Article  PubMed  CAS  Google Scholar 

  46. Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13(4):225–238

    PubMed  CAS  Google Scholar 

  47. Wang R-H, Kim H-S, Xiao C, Xu X, Gavrilova O, Deng C-X (2011) Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J Clin Invest 121(11):4477–4490

    Article  PubMed  CAS  Google Scholar 

  48. Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, Hoeks J, van der Krieken S, Ryu D, Kersten S, Moonen-Kornips E, Hesselink MKC, Kunz I, Schrauwen-Hinderling VB, Blaak EE, Auwerx J, Schrauwen P (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14(5):612–622

    Article  PubMed  CAS  Google Scholar 

  49. Zhong L, Urso AD, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T, Clish CB, Vaitheesvaran B, Iliopoulos O, Kurland I, Dor Y, Weissleder R, Shirihai OS, Ellisen LW, Espinosa JM, Mostoslavsky R (2010) The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 140(2):280–293

    Article  PubMed  CAS  Google Scholar 

  50. Sebastián C, Zbm M, Silberman DM, Gymrek MA, Goren A, Zhong L, Ram O, Truelove J, Guimaraes AR, Toiber D, Cosentino C, Greenson JK, Mac Donald A, McGlynn L, Maxwell F, Edwards J, Giacosa S, Guccione E, Weissleder R, Bernstein BE, Regev A, Shiels PG, Lombard DB, Mostoslavsky R (2012) The histone deacetylase SIRT6 is a novel tumor suppressor that controls cancer metabolism. Cell 151(6):1185–1199

    Article  PubMed  CAS  Google Scholar 

  51. Kanfi Y, Peshti V, Gil R, Naiman S, Nahum L, Levin E, Kronfeld-Schor N, Cohen HY (2010) SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell 9(2):162–173

    Article  PubMed  CAS  Google Scholar 

  52. Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, Kaeberlein M, Kennedy BK, Berger SL (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459(7248):802–807

    Article  PubMed  CAS  Google Scholar 

  53. de Lange T (2009) How telomeres solve the end-protection problem. Science 326(5955):948–952

    Article  PubMed  CAS  Google Scholar 

  54. Driscoll R, Hudson A, Jackson SP (2007) Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 315(5812):649–652

    Article  PubMed  CAS  Google Scholar 

  55. Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410(6825):227–230

    Article  PubMed  CAS  Google Scholar 

  56. Wang Y, Oh SW, Deplancke B, Luo J, Walhout AJ, Tissenbaum HA (2006) C. elegans 14-3-3 proteins regulate life span and interact with SIR-2.1 and DAF-16/FOXO. Mech Ageing Dev 127(9):741–747

    Article  PubMed  CAS  Google Scholar 

  57. Wang Y, Tissenbaum HA (2006) Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech Ageing Dev 127(1):48–56

    Article  PubMed  CAS  Google Scholar 

  58. Rosenberg MI, Parkhurst SM (2002) Drosophila Sir2 is required for heterochromatic silencing and by euchromatic Hairy/E(Spl) bHLH repressors in segmentation and sex determination. Cell 109(4):447–458

    Article  PubMed  CAS  Google Scholar 

  59. Furuyama T, Banerjee R, Breen TR, Harte PJ (2004) SIR2 is required for polycomb silencing and is associated with an E(Z) histone methyltransferase complex. Curr Biol 14(20):1812–1821

    Article  PubMed  CAS  Google Scholar 

  60. Astrom SU, Cline TW, Rine J (2003) The Drosophila melanogaster sir2+ gene is nonessential and has only minor effects on position-effect variegation. Genetics 163(3):931–937

    PubMed  CAS  Google Scholar 

  61. Frankel S, Ziafazeli T, Rogina B (2010) dSir2 and longevity in Drosophila. Exp Gerontol 46(5):391–396

    Article  PubMed  CAS  Google Scholar 

  62. Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park S-K, Hartlerode A, Stegmuller J, Hafner A, Loerch P, Wright SM, Mills KD, Bonni A, Yankner BA, Scully R, Prolla TA, Alt FW, Sinclair DA (2008) SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135(5):907–918

    Article  PubMed  CAS  Google Scholar 

  63. Sasaki T, Maier B, Bartke A, Scrable H (2006) Progressive loss of SIRT1 with cell cycle withdrawal. Aging Cell 5(5):413–422

    Article  PubMed  CAS  Google Scholar 

  64. Han L, Zhou R, Niu J, McNutt MA, Wang P, Tong T (2010) SIRT1 is regulated by a PPARγ-SIRT1 negative feedback loop associated with senescence. Nucleic Acids Res 38(21):7458–7471

    Article  PubMed  CAS  Google Scholar 

  65. Martinez-Pastor B, Mostoslavsky R (2012) Sirtuins, metabolism, and cancer. Front Pharmacol 3:22

    Article  PubMed  Google Scholar 

  66. Zhou S, Chen HZ, Wan Yz, Zhang QJ, Wei YS, Huang S, Liu JJ, Lu YB, Zhang ZQ, Yang RF, Zhang R, Cai H, Liu DP, Liang CC (2011) Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res 109(6):639–648

    Article  PubMed  CAS  Google Scholar 

  67. Guarani V, Deflorian G, Franco CA, Kruger M, Phng LK, Bentley K, Toussaint L, Dequiedt F, Mostoslavsky R, Schmidt MH, Zimmermann B, Brandes RP, Mione M, Westphal CH, Braun T, Zeiher AM, Gerhardt H, Dimmeler S, Potente M (2011) Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473(7346):234–238

    Article  PubMed  CAS  Google Scholar 

  68. Qiang L, Lin HV, Kim-Muller JY, Welch CL, Gu W, Accili D (2011) Proatherogenic abnormalities of lipid metabolism in SirT1 transgenic mice are mediated through creb deacetylation. Cell Metab 14(6):758–767

    Article  PubMed  CAS  Google Scholar 

  69. Donmez G, Guarente L (2010) Aging and disease: connections to sirtuins. Aging Cell 9(2):285–290

    Article  PubMed  CAS  Google Scholar 

  70. Kaidi A, Weinert BT, Choudhary C, Jackson SP (2010) Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 329(5997):1348–1353

    Article  PubMed  CAS  Google Scholar 

  71. Kim DH, Kim JY, Yu BP, Chung HY (2008) The activation of NF-kappaB through Akt-induced FOXO1 phosphorylation during aging and its modulation by calorie restriction. Biogerontology 9(1):33–47

    Article  PubMed  CAS  Google Scholar 

  72. Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant M, Barnard D, Ward WF, Qi W, Ingram DK, de Cabo R (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489(7415):318–321

    Article  PubMed  CAS  Google Scholar 

  73. Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar-Joseph Z, Cohen HY (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483(7388):218–221

    Article  PubMed  CAS  Google Scholar 

  74. Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, Seluanov A, Gorbunova V (2011) SIRT6 promotes DNA repair under stress by activating PARP1. Science 332(6036):1443–1446

    Article  PubMed  CAS  Google Scholar 

  75. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204

    Article  PubMed  CAS  Google Scholar 

  76. Tennen RI, Bua DJ, Wright WE, Chua KF (2011) SIRT6 is required for maintenance of telomere position effect in human cells. Nat Commun 2:433–437

    Article  PubMed  CAS  Google Scholar 

  77. Jin Q, Yu LR, Wang L, Zhang Z, Kasper LH, Lee JE, Wang C, Brindle PK, Dent SY, Ge K (2011) Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J 30(2):249–262

    Article  PubMed  CAS  Google Scholar 

  78. Szerlong HJ, Prenni JE, Nyborg JK, Hansen JC (2010) Activator-dependent p300 acetylation of chromatin in vitro: enhancement of transcription by disruption of repressive nucleosome–nucleosome interactions. J Biol Chem 285(42):31954–31964

    Article  PubMed  CAS  Google Scholar 

  79. Lerin C, Rodgers JT, Kalume DE, Kim S-h, Pandey A, Puigserver P (2006) GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α. Cell Metab 3(6):429–438

    Article  PubMed  CAS  Google Scholar 

  80. Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, Alt FW, Wu Z, Puigserver P (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 26(7):1913–1923

    Article  PubMed  CAS  Google Scholar 

  81. Cai L, Sutter BM, Li B, Tu BP (2011) Acetyl-CoA Induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 42(4):426–437

    Article  PubMed  CAS  Google Scholar 

  82. Bandyopadhyay D, Okan NA, Bales E, Nascimento L, Cole PA, Medrano EE (2002) Down-regulation of p300/CBP histone acetyltransferase activates a senescence checkpoint in human melanocytes. Cancer Res 62(21):6231–6239

    PubMed  CAS  Google Scholar 

  83. Russell M, Berardi P, Gong W, Riabowol K (2006) Grow-ING, Age-ING and Die-ING: iNG proteins link cancer, senescence and apoptosis. Exp Cell Res 312(7):951–961

    Article  PubMed  CAS  Google Scholar 

  84. Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S, Higashimoto Y, Appella E, Minucci S, Pandolfi PP, Pelicci PG (2000) PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406(6792):207–210

    Article  PubMed  CAS  Google Scholar 

  85. Das C, Lucia MS, Hansen KC, Tyler JK (2009) CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 459(7243):113–117

    Article  PubMed  CAS  Google Scholar 

  86. Burgess RJ, Zhou H, Han J, Zhang Z (2010) A role for Gcn5 in replication-coupled nucleosome assembly. Mol Cell 37(4):469–480

    Article  PubMed  CAS  Google Scholar 

  87. Atanassov BS, Evrard YA, Multani AS, Zhang Z, Tora L, Devys D, Chang S, Dent SY (2009) Gcn5 and SAGA regulate shelterin protein turnover and telomere maintenance. Mol Cell 35(3):352–364

    Article  PubMed  CAS  Google Scholar 

  88. Kim S, Ohkuni K, Couplan E, Jazwinski SM (2004) The histone acetyltransferase GCN5 modulates the retrograde response and genome stability determining yeast longevity. Biogerontology 5(5):305–316

    Article  PubMed  CAS  Google Scholar 

  89. Avvakumov N, Cote J (2007) The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 26(37):5395–5407

    Article  PubMed  CAS  Google Scholar 

  90. Sun Y, Jiang X, Chen S, Fernandes N, Price BD (2005) A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci U S A 102(37):13182–13187

    Article  PubMed  CAS  Google Scholar 

  91. Niida H, Katsuno Y, Sengoku M, Shimada M, Yukawa M, Ikura M, Ikura T, Kohno K, Shima H, Suzuki H, Tashiro S, Nakanishi M (2010) Essential role of Tip60-dependent recruitment of ribonucleotide reductase at DNA damage sites in DNA repair during G1 phase. Genes Dev 24(4):333–338

    Article  PubMed  CAS  Google Scholar 

  92. Barlow AL, van Drunen CM, Johnson CA, Tweedie S, Bird A, Turner BM (2001) dSIR2 and dHDAC6: two novel, inhibitor-resistant deacetylases in Drosophila melanogaster. Exp Cell Res 265(1):90–103

    Article  PubMed  CAS  Google Scholar 

  93. Ho L, Crabtree GR (2010) Chromatin remodelling during development. Nature 463(7280):474–484

    Article  PubMed  CAS  Google Scholar 

  94. Simboeck E, Ribeiro JD, Teichmann S, Di Croce L (2011) Epigenetics and senescence: learning from the INK4-ARF locus. Biochem Pharmacol 82(10):1361–1370

    Article  PubMed  CAS  Google Scholar 

  95. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602

    Article  PubMed  CAS  Google Scholar 

  96. Berger JH, Bardeesy N (2007) Modeling INK4/ARF tumor suppression in the mouse. Curr Mol Med 7(1):63–75

    Article  PubMed  CAS  Google Scholar 

  97. Wang X, Feng Y, Xu L, Chen Y, Zhang Y, Su D, Ren G, Lu J, Huang B (2008) YY1 restrained cell senescence through repressing the transcription of p16. Biochim Biophys Acta 1783(10):1876–1883

    Article  PubMed  CAS  Google Scholar 

  98. He J, Kallin EM, Tsukada Y, Zhang Y (2008) The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nat Struct Mol Biol 15(11):1169–1175

    Article  PubMed  CAS  Google Scholar 

  99. Huang J, Gan Q, Han L, Li J, Zhang H, Sun Y, Zhang Z, Tong T (2008) SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts. PLoS One 3(3):e1710

    Article  PubMed  CAS  Google Scholar 

  100. Chua KF, Mostoslavsky R, Lombard DB, Pang WW, Saito S, Franco S, Kaushal D, Cheng HL, Fischer MR, Stokes N, Murphy MM, Appella E, Alt FW (2005) Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress. Cell Metab 2(1):67–76

    Article  PubMed  CAS  Google Scholar 

  101. Narala SR, Allsopp RC, Wells TB, Zhang G, Prasad P, Coussens MJ, Rossi DJ, Weissman IL, Vaziri H (2008) SIRT1 acts as a nutrient-sensitive growth suppressor and its loss is associated with increased AMPK and telomerase activity. Mol Biol Cell 19(3):1210–1219

    Article  PubMed  CAS  Google Scholar 

  102. Herranz D, Munoz-Martin M, Canamero M, Mulero F, Martinez-Pastor B, Fernandez-Capetillo O, Serrano M (2010) Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun 1:3

    Article  PubMed  CAS  Google Scholar 

  103. Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T (2002) Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 21(10):2383–2396

    Article  PubMed  CAS  Google Scholar 

  104. Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D (2004) Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 16(1):93–105

    Article  PubMed  CAS  Google Scholar 

  105. Haigis MC, Yankner BA (2010) The aging stress response. Mol Cell 40(2):333–344

    Article  PubMed  CAS  Google Scholar 

  106. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236

    Article  PubMed  CAS  Google Scholar 

  107. Feser J, Tyler J (2011) Chromatin structure as a mediator of aging. FEBS Lett 585(13):2041–2048

    Article  PubMed  CAS  Google Scholar 

  108. Feser J, Truong D, Das C, Carson JJ, Kieft J, Harkness T, Tyler JK (2010) Elevated histone expression promotes life span extension. Mol Cell 39(5):724–735

    Article  PubMed  CAS  Google Scholar 

  109. O’Sullivan RJ, Kubicek S, Schreiber SL, Karlseder J (2010) Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat Struct Mol Biol 17(10):1218–1225

    Article  PubMed  CAS  Google Scholar 

  110. Celona B, Weiner A, Di Felice F, Mancuso FM, Cesarini E, Rossi RL, Gregory L, Baban D, Rossetti G, Grianti P, Pagani M, Bonaldi T, Ragoussis J, Friedman N, Camilloni G, Bianchi ME, Agresti A (2011) Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output. PLoS Biol 9(6):e1001086

    Article  PubMed  CAS  Google Scholar 

  111. Das C, Tyler JK (2012) Histone exchange and histone modifications during transcription and aging. Biochim Biophys Acta 1819(3-4):332–342

    Article  PubMed  CAS  Google Scholar 

  112. Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, Salinas-Riester G, Dettenhofer M, Kang H, Farinelli L, Chen W, Fischer A (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328(5979):753–756

    Article  PubMed  CAS  Google Scholar 

  113. Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, Erzberger JP, Serebriiskii IG, Canutescu AA, Dunbrack RL, Pehrson JR, Berger JM, Kaufman PD, Adams PD (2005) Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8(1):19–30

    Article  PubMed  CAS  Google Scholar 

  114. Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113(6):703–716

    Article  PubMed  CAS  Google Scholar 

  115. Kosar M, Bartkova J, Hubackova S, Hodny Z, Lukas J, Bartek J (2011) Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16(ink4a). Cell Cycle 10(3):457–468

    Article  PubMed  CAS  Google Scholar 

  116. Baird DM (2008) Telomere dynamics in human cells. Biochimie 90(1):116–121

    Article  PubMed  CAS  Google Scholar 

  117. Masutomi K, Yu EY, Khurts S, Ben-Porath I, Currier JL, Metz GB, Brooks MW, Kaneko S, Murakami S, DeCaprio JA, Weinberg RA, Stewart SA, Hahn WC (2003) Telomerase maintains telomere structure in normal human cells. Cell 114(2):241–253

    Article  PubMed  CAS  Google Scholar 

  118. Pickett HA, Henson JD, Au AY, Neumann AA, Reddel RR (2011) Normal mammalian cells negatively regulate telomere length by telomere trimming. Hum Mol Genet 20(23):4684–4692

    Article  PubMed  CAS  Google Scholar 

  119. Donate LE, Blasco MA (2010) Telomeres in cancer and ageing. Philos Trans R Soc Lond B Biol Sci 366(1561):76–84

    Google Scholar 

  120. Blasco MA (2007) The epigenetic regulation of mammalian telomeres. Nat Rev Genet 8(4):299–309

    Article  PubMed  CAS  Google Scholar 

  121. Sahin E, Colla S, Liesa M, Moslehi J, Müller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C, Maser RS, Tonon G, Foerster F, Xiong R, Wang YA, Shukla SA, Jaskelioff M, Martin ES, Heffernan TP, Protopopov A, Ivanova E, Mahoney JE, Kost-Alimova M, Perry SR, Bronson R, Liao R, Mulligan R, Shirihai OS, Chin L, DePinho RA (2011) Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470(7334):359–365

    Article  PubMed  CAS  Google Scholar 

  122. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM (2006) p53 regulates mitochondrial respiration. Science 312(5780):1650–1653

    Article  PubMed  CAS  Google Scholar 

  123. Jaskelioff M, Muller FL, Paik JH, Thomas E, Jiang S, Adams AC, Sahin E, Kost-Alimova M, Protopopov A, Cadinanos J, Horner JW, Maratos-Flier E, Depinho RA (2010) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469(7328):102–106

    Article  PubMed  CAS  Google Scholar 

  124. Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E (2006) Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci U S A 103(27):10224–10229

    Article  PubMed  CAS  Google Scholar 

  125. Hallows WC, Lee S, Denu JM (2006) Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci U S A 103(27):10230–10235

    Article  PubMed  CAS  Google Scholar 

  126. Shimazu T, Hirschey MD, Huang JY, Ho LT, Verdin E (2010) Acetate metabolism and aging: an emerging connection. Mech Ageing Dev 131(7–8):511–516

    Article  PubMed  CAS  Google Scholar 

  127. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481(7381):380–384

    PubMed  Google Scholar 

  128. Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB (2005) ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24(41):6314–6322

    Article  PubMed  CAS  Google Scholar 

  129. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324(5930):1076–1080

    Article  PubMed  CAS  Google Scholar 

  130. Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA, Thompson CB (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8(4):311–321

    Article  PubMed  CAS  Google Scholar 

  131. Cyr AR, Domann FE (2011) The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid Redox Signal 15(2):551–589

    Article  PubMed  CAS  Google Scholar 

  132. Kim D, Frank CL, Dobbin MM, Tsunemoto RK, Tu W, Peng PL, Guan JS, Lee BH, Moy LY, Giusti P, Broodie N, Mazitschek R, Delalle I, Haggarty SJ, Neve RL, Lu Y, Tsai LH (2008) Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron 60(5):803–817

    Article  PubMed  CAS  Google Scholar 

  133. Kruman II, Wersto RP, Cardozo-Pelaez F, Smilenov L, Chan SL, Chrest FJ, Emokpae R Jr, Gorospe M, Mattson MP (2004) Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 41(4):549–561

    Article  PubMed  CAS  Google Scholar 

  134. Rouaux C, Jokic N, Mbebi C, Boutillier S, Loeffler JP, Boutillier AL (2003) Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J 22(24):6537–6549

    Article  PubMed  CAS  Google Scholar 

  135. Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, Delalle I, Baur JA, Sui G, Armour SM, Puigserver P, Sinclair DA, Tsai LH (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26(13):3169–3179

    Article  PubMed  CAS  Google Scholar 

  136. Green KN, Steffan JS, Martinez-Coria H, Sun X, Schreiber SS, Thompson LM, LaFerla FM (2008) Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J Neurosci 28(45):11500–11510

    Article  PubMed  CAS  Google Scholar 

  137. Liu D, Gharavi R, Pitta M, Gleichmann M, Mattson MP (2009) Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromol Med 11(1):28–42

    Article  CAS  Google Scholar 

  138. Dietz KC, Casaccia P (2010) HDAC inhibitors and neurodegeneration: at the edge between protection and damage. Pharmacol Res 62(1):11–17

    Article  PubMed  CAS  Google Scholar 

  139. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  PubMed  CAS  Google Scholar 

  140. Wang RH, Sengupta K, Li C, Kim HS, Cao L, Xiao C, Kim S, Xu X, Zheng Y, Chilton B, Jia R, Zheng ZM, Appella E, Wang XW, Ried T, Deng CX (2008) Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14(4):312–323

    Article  PubMed  CAS  Google Scholar 

  141. Zhao G, Cui J, Zhang J-G, Qin Q, Chen Q, Yin T, Deng S-C, Liu Y, Liu L, Wang B, Tian K, Wang G-B, Wang C-Y (2011) SIRT1 RNAi knockdown induces apoptosis and senescence, inhibits invasion and enhances chemosensitivity in pancreatic cancer cells. Gene Ther 18(9):920–928

    Article  PubMed  CAS  Google Scholar 

  142. Herranz D, Serrano M (2010) SIRT1: recent lessons from mouse models. Nat Rev Cancer 10(12):819–823

    Article  PubMed  CAS  Google Scholar 

  143. Li Y, Daniel M, Tollefsbol TO (2011) Epigenetic regulation of caloric restriction in aging. BMC Med 9(1):98

    Article  PubMed  CAS  Google Scholar 

  144. Chauhan D, Bandi M, Singh AV, Ray A, Raje N, Richardson P, Anderson KC (2011) Preclinical evaluation of a novel SIRT1 modulator SRT1720 in multiple myeloma cells. Br J Haematol 155(5):588–598

    Article  PubMed  CAS  Google Scholar 

  145. Van Meter M, Mao Z, Gorbunova V, Seluanov A (2011) SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells. Cell Cycle 10(18):3153–3158

    Article  PubMed  CAS  Google Scholar 

  146. Leggatt GR, Gabrielli B (2012) Histone deacetylase inhibitors in the generation of the anti-tumour immune response. Immunol Cell Biol 90(1):33–38

    Article  PubMed  CAS  Google Scholar 

  147. Woan KV, Sahakian E, Sotomayor EM, Seto E, Villagra A (2012) Modulation of antigen-presenting cells by HDAC inhibitors: implications in autoimmunity and cancer. Immunol Cell Biol 90(1):55–65

    Article  PubMed  CAS  Google Scholar 

  148. Duvic M, Vu J (2007) Vorinostat: a new oral histone deacetylase inhibitor approved for cutaneous T-cell lymphoma. Expert Opin Investig Drugs 16(7):1111–1120

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul Mostoslavsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cosentino, C., Mostoslavsky, R. Metabolism, longevity and epigenetics. Cell. Mol. Life Sci. 70, 1525–1541 (2013). https://doi.org/10.1007/s00018-013-1295-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1295-3

Keywords

Navigation