Skip to main content
Log in

The histone acetyltransferase GCN5 modulates the retrograde response and genome stability determining yeast longevity

  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Transcriptional silencing decreases at both subtelomeric and silent mating-type loci and increases at the ribosomal DNA locus during the replicative life span of the yeastSaccharomyces cerevisiae. Evidence exists that epigenetic changes in the regulatory state of chromatin may be a causal factor in determining yeast longevity and that histone deacetylases play a role. The significance of histone acetylation has been examined here in more detail. Deletion of the histone acetyltransferase gene GCN5 suppressed the extension of replicative life span afforded by the induction of the retrograde response, which signals mitochondrial dysfunction and leads to changes in nuclear gene expression. It was difficult to ascribe this effect to changes in transcriptional silencing in any of the three known types of heterochromatin. However, a promoter related effect was uncovered by the participation of GCN5 in the induction of the retrograde response. Gcn5p and the retrograde signal transducer Rtg2p are components of the histone acetyltransferase coactivator complex SLIK. Rtg2p blocks the production of extrachromosomal ribosomal DNA circles when it is not engaged in transmission of the retrograde signal. Deletion of GCN5, which disrupts the integrity of SLIK, suppressed circle accumulation. The results indicate that Gcn5p and SLIK impact the interplay between the retrograde response signal and Rtg2p with consequences for the induction of the response and circle production. Rtg2p and Gcn5p in the SLIK complex link metabolism to stress responses, chromatin-dependent gene regulation, and genome stability in yeast aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allsopp R, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW and Harley CB (1992) Telomere length predicts replicative capacity of human broblasts. Proc Natl Acad Sci USA 89: 10114–10118

    PubMed  Google Scholar 

  • Borghouts C, Benguria A, Wawryn J and Jazwinski SM (2004) Rtg2 protein links metabolism and genome stability in yeast longevity. Genetics 166: 765–777

    PubMed  Google Scholar 

  • Braunstein M, Rose AB, Holmes SG, Allis CD and Broach JR (1993) Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev 7: 592–604

    PubMed  Google Scholar 

  • Braunstein M, Sobel RE, Allis CD, Turner BM and Broach JR (1996) Effcient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol Cell Biol 16: 4349–4356

    PubMed  Google Scholar 

  • Brownell JE and Allis CD (1996) Special HATs for special occasions: linking acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev 6: 176–184

    PubMed  Google Scholar 

  • Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY and Allis CD (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking hi-stone acetylation to gene activation. Cell 84: 843–851

    PubMed  Google Scholar 

  • Bryk M, Briggs SD, Strahl BD, Curcio MJ, Allis CD and Winston F (2002) Evidence that Set1, a factor required for methylation of histone H3, regulates rDNA silencing in S. cerevisiae in a Sir2-independent mechanism. Curr Biol 12: 165–170

    PubMed  Google Scholar 

  • Butow RA (2002) Cellular responses to mitochondrial dys-function: it 's not always downhill. Cell Growth Differen 9: 1043–1045

    Google Scholar 

  • Carrozza MJ, Utley RT, Workman JL and Côté J (2003) The diverse functions of histone acetyltransferase complexes. Trends Genet 19: 321–329

    PubMed  Google Scholar 

  • Chiang YC, Komarnitsky P, Chase D and Denis CL (1996) ADR1 activation domains contact the histone acetyltrans-ferase GCN5 and the core transcriptional factor TFIIB. J Biol Chem 271: 32359–32365

    PubMed  Google Scholar 

  • Collier JJ, Doan T-TT, Daniels MC, Schurr JR, Kolls JK and Scott DK (2003) c-Myc is required for the glucose-mediated induction of metabolic enzyme genes. J Biol Chem 278: 6588–6595

    PubMed  Google Scholar 

  • Cost GJ and Boeke JD (1996) A useful colony colour pheno-type associated with the yeast selectable/counterselectable marker MET15. Yeast 12: 939–941

    PubMed  Google Scholar 

  • D'mello NP and Jazwinski SM (1991) Telomere length con-stancy during aging of Saccharomyces cerevisiae. J Bacteriol 173: 6709–6713

    PubMed  Google Scholar 

  • Durrin LK, Mann RK, Kayne PS and Grunstein M (1991) Yeast histone H4 N-terminal sequence is required for pro-moter activation in vivo. Cell 65: 1023–1031

    PubMed  Google Scholar 

  • Epstein CB, Walker JA, Hale W, Davé V, Thornton J, Macatee TL, Garner HR and Butow RA (2001) Genome-wide re-sponses to mitochondrial dysfunction. Mol Biol Cell 12: 297–308

    PubMed  Google Scholar 

  • Feng J, Funks WD, Wang S-S, Weinrich SL, Avilion AA, Chiu C-P, Adams RR, Chang E, Allsopp RC, Tu J, Le S, West MD, Harley CB, Andrews WH, Greider CW and Villeponteau B (1995) The RNA component of human telomerase. Science 269: 1236–1241

    PubMed  Google Scholar 

  • Georgakopoulos T and Thireos G (1992) Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J 11: 4145–4152

    PubMed  Google Scholar 

  • Gottschling DE, Aparicio OM, Billington BL and Zakian VA (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63: 751–762

    PubMed  Google Scholar 

  • Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389: 349–352

    PubMed  Google Scholar 

  • Harley CB (1991) Telomere loss: mitotic clock or genetic time bomb? Mutat Res 256: 271–282

    PubMed  Google Scholar 

  • Harley CB, Futcher AB and Greider CW(1990) Telomeres shorten during ageing of human broblasts. Nature 345: 458–460

    PubMed  Google Scholar 

  • Hecht A, Laroche T, Strahl-Bolsinger S, Gasser SM and Grunstein M (1995) Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80: 583–592

    PubMed  Google Scholar 

  • Hecht A, Strahl-Bolsinger S and Grunstein M (1996) Spreading of transcriptional repressor SIR3 from telomeric hetero-chromatin. Nature 383: 92–96

    PubMed  Google Scholar 

  • Huisinga KL and Pugh BF (2004) A genome-wide housekeep-ing role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol Cell 13: 573–585

    PubMed  Google Scholar 

  • Jazwinski SM (1990) An experimental system for the molecular analysis of the aging process: the budding yeast Saccharo-myces cerevisiae. J Gerontol 45: B68–B74

    PubMed  Google Scholar 

  • Jazwinski SM (1996) Longevity, genes, and aging. Science 273: 54–59

    PubMed  Google Scholar 

  • Jazwinski SM (2000) Metabolic control and gene dysregulation in yeast aging. Ann NY Acad Sci 908: 21–30

    PubMed  Google Scholar 

  • Jazwinski SM (2003) Mitochondria, metabolism, and aging in yeast. In: Nyström T and Osiewacz HD (eds) Model Systems in Aging, pp 39–59. Springer, Berlin

    Google Scholar 

  • Jenuwein T and Allis CD (2001) Translating the histone code. Science 293: 1074–1080

    PubMed  Google Scholar 

  • Jiang JC, Jaruga E, Repnevskaya MV and Jazwinski SM (September 8, 2000) An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J 10.1096/fj. 00–242fje

  • Jiang JC, Wawryn J, Shantha Kumara HMC and Jazwinski SM (2002) Distinct roles of processes modulated by histone deacetylases Rpd3p, Hda1p, and Sir2p in life extension by caloric restriction in yeast. Exp Gerontol 37: 1023–1030

    PubMed  Google Scholar 

  • Jiang YW and Stillman DJ (1996) Epigenetic effects on yeast transcription caused by mutations in an actin-related protein present in the nucleus. Genes Dev 10: 604–619

    PubMed  Google Scholar 

  • Kaeberlein M, McVey M and Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomy-ces cerevisiae by two different mechanisms. Genes Dev 13: 2570–2580

    PubMed  Google Scholar 

  • Kim S, Villeponteau B and Jazwinski SM (1996) Effect of replicative age on transcriptional silencing near telomeres in Saccharomyces cerevisie. Biochem Biophy Res Comm 219: 370–376

    Google Scholar 

  • Kim S, Kirchman PA, Benguria A and Jazwinski SM (1998) Experimentation with the yeast model. In: Yu BP (ed) Methods in Aging Research, pp 191–213. CRC Press, Boca Raton

    Google Scholar 

  • Kim S, Benguria A, Lai C-Y and Jazwinski SM (1999) Mod-ulation of life-span by histone deacetylase genes in Saccha-romyces cerevisiae. Mol Biol Cell 10: 3125–3136

    PubMed  Google Scholar 

  • Kirchman PA, Kim S, Lai C-Y and Jazwinski SM (1999) In-terorganelle signaling is a determinant of longevity in Sac-charomyces cerevisiae. Genetics 152: 179–190

    PubMed  Google Scholar 

  • Lai C-Y, Jaruga E, Borghouts C and Jazwinski SM (2002) A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharo-myces cerevisiae. Genetics 162: 73–87

    PubMed  Google Scholar 

  • Laurenson P and Rine J (1992) Silencers, silencing, and heri-table transcriptional states. Microbiol Rev 56: 543–560

    PubMed  Google Scholar 

  • Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR and Guarente L (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418: 344–348

    PubMed  Google Scholar 

  • Loo S and Rine J (1995) Silencing and heritable domains of gene expression. Annu Rev Cell Dev Biol 11: 519–548

    PubMed  Google Scholar 

  • McMahon SB, Wood MA and Cole MD (2000) The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol Cell Biol 20: 556–562

    PubMed  Google Scholar 

  • Mortimer RK and Johnston JR (1959) Life span of individual yeast cells. Nature 183: 1751–1752

    PubMed  Google Scholar 

  • Müller I, Zimmermann M, Becker D and Flömer M (1980) Calendar life span versus budding life span of Saccharomyces cerevisiae. Mech Ageing Dev 12: 47–52

    PubMed  Google Scholar 

  • Peterson CL and Workman JL (2000) Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr Opin Genet Dev 10: 187–192

    PubMed  Google Scholar 

  • Pray-Grant MG, Shieltz D, McMahon SJ, Wood JM, Kennedy EL, Cook RG, Workman JL, Yates JR and Grant PA (2002) The novel SLIK histone acetyltransferase complex functions in the yeast retrograde response pathway. Mol Cell Biol 22: 8774–8786

    PubMed  Google Scholar 

  • Rose MD, Winston F and Hieter P (1990) Methods in Yeast Genetics. A Laboratory Course Mannual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Roth SY, Denu JM and Allis CD (2001) Histone acety-ltransferases. Annu Rev Biochem 70: 81–120

    PubMed  Google Scholar 

  • Ruiz-Carrillo A, Wangh LJ and Allfrey V (1975) Processing of newly synthesized histone molecules. Science 190: 117–128

    PubMed  Google Scholar 

  • Schmitt ME, Brown TA and Trumpower BL (1990) A rapid and simple method for preparation of RNA from Saccha-romyces cerevisiae. Nucl Acids Res 18: 3091–3092

    PubMed  Google Scholar 

  • Sikorski RS and Hieter P (1989) A system of shuttle vectors and yeast host strains designed for effcient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27

    PubMed  Google Scholar 

  • Simon M, Adam G, Rapatz W, Spevak W and Ruis H (1991) The Saccharomyces cerevisiae ADR1 gene is a positive regulator of transcription of genes encoding peroxisomal proteins. Mol Cell Biol 11: 699–704

    PubMed  Google Scholar 

  • Sinclair DA and Guarente L (1997) Extrachromosomal rDNA circles-a cause of aging in yeast. Cell 91: 1033–1042

    PubMed  Google Scholar 

  • Smeal T, Claus J, Kennedy B, Cole F and Guarente L (1996) Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell 84: 633–642

    PubMed  Google Scholar 

  • Smith JS and Boeke JD (1997) An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 11: 241–254

    PubMed  Google Scholar 

  • Struhl K (1998) Histone acetylation and transcriptional regu-latory mechanisms. Genes Dev 12: 599–606

    PubMed  Google Scholar 

  • Sussel L, Vannier D and Shore D (1995) Suppressors of defective silencing in yeast: Effects on transcriptional repression at the HMR locus, cell growth and telomere structure. Genetics 141: 873–888

    PubMed  Google Scholar 

  • Vogelauer M, Wu J, Suka N and Grunstein M (2000) Global histone acetylation and deacetylation in yeast. Nature 408: 495–498

    PubMed  Google Scholar 

  • Workman JL and Kingston RE (1998) Alteration of nucleo-some structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67: 545–579

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Ohkuni, K., Couplan, E. et al. The histone acetyltransferase GCN5 modulates the retrograde response and genome stability determining yeast longevity. Biogerontology 5, 305–316 (2004). https://doi.org/10.1007/s10522-004-2568-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-004-2568-x

Navigation