Skip to main content
Log in

Essential roles of basic helix-loop-helix transcription factors, Capsulin and Musculin, during craniofacial myogenesis of zebrafish

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Capsulin and Musculin are basic helix-loop-helix transcription factors, but their biophysiological roles in zebrafish cranial myogenesis are unclear. Expressions of endogenous capsulin transcripts are detected at the central- (~24-hpf) and at dorsal- and ventral-mesoderm cores (~30–72 hpf) of branchial arches. In contrast, musculin transcripts are expressed as a two-phase manner: early phase (20–22 hpf) expressions of musculin are detected at the head mesoderm, whereas late-phase (36–72 hpf) are detected at all presumptive head-muscle precursors. Knockdown of either capsulin or musculin leads to loss of all cranial muscles without affecting trunk muscle development. The defective phenotypes of Capsulin- and Musculin-morphant can be rescued by co-injection of mRNA of each other. Both myf5 and myod transcripts are down-regulated in the Capsulin-morphant while myod transcripts are up-regulated in the Musculin-morphant. Therefore, we propose a putative regulatory network to understand how capsulin/musculin regulate distinctly either myf5 or myod during zebrafish craniofacial myogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yelick PC, Schilling TF (2002) Molecular dissection of craniofacial development using zebrafish. Crit Rev Oral Biol Med 13:308–322

    Article  PubMed  Google Scholar 

  2. Noden DM, Trainor PA (2005) Relations and interactions between cranial mesoderm and neural crest populations. J Anat 207:575–601

    Article  PubMed  Google Scholar 

  3. Rinon A, Lazar S, Marshall H, Büchmann-Møller S, Neufeld A, Elhanany-Tamir H, Taketo MM, Sommer L, Krumlauf R, Tzahor E (2007) Cranial neural crest cells regulate head muscle patterning and differentiation during vertebrate embryogenesis. Development 134:3065–3075

    Article  PubMed  CAS  Google Scholar 

  4. Berkes CA, Tapscott SJ (2005) MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol 16:585–595

    Article  PubMed  CAS  Google Scholar 

  5. Chen YH, Tsai HJ (2008) Myogenic regulatory factors Myf5 and Mrf4 of fish: current status and perspective. J Fish Biol 73:1872–1890

    Article  CAS  Google Scholar 

  6. Lin CY, Yung RF, Lee HC, Chen WT, Chen YH, Tsai HJ (2006) Myogenic regulatory factor Myf5 and MyoD function distinctly during craniofacial myogenesis of zebrafish. Dev Biol 299:594–608

    Article  PubMed  CAS  Google Scholar 

  7. Lu J, Richardson JA, Olson EN (1998) Capsulin: a novel bHLH transcription factor expressed in epicardial progenitors and mesenchyme of visceral organs. Mech Dev 73:23–32

    Article  PubMed  CAS  Google Scholar 

  8. Quaggin SE, Vanden Heuvel GB, Igarashi P (1998) Pod-1, a mesoderm-specific basic-helix-loop-helix protein expressed in mesenchymal and glomerular epithelial cells in the developing kidney. Mech Dev 71:37–48

    Article  PubMed  CAS  Google Scholar 

  9. Robb L, Mifsud L, Hartley L, Biben C, Copeland NG, Gilbert DJ, Jenkins NA, Harvey RP (1998) Epicardin: A novel basic helix-loop-helix transcription factor gene expressed in epicardium, branchial arch myoblasts, and mesenchyme of developing lung, gut, kidney, and gonads. Dev Dyn 213:105–113

    Article  PubMed  CAS  Google Scholar 

  10. Miyagishi M, Nakajima T, Fukamizu A (2000) Molecular characterization of mesoderm-restricted basic helix-loop-helix protein, POD-1/Capsulin. Int J Mol Med 5:27–31

    PubMed  CAS  Google Scholar 

  11. Klein SL, Strausberg RL, Wagner L, Pontius J, Clifton SW, Richardson P (2002) Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative. Dev Dyn 225:384–391

    Article  PubMed  CAS  Google Scholar 

  12. von Scheven G, Bothe I, Ahmed MU, Alvares LE, Dietrich S (2006) Protein and genomic organization of vertebrate MyoR and Capsulin genes and their expression during avian development. Gene Expr Patterns 6:383–393

    Article  Google Scholar 

  13. Lu JR, Bassel-Duby R, Hawkins A, Chang P, Valdez R, Wu H, Gan L, Shelton JM, Richardson JA, Olson EN (2002) Control of facial muscle development by MyoR and capsulin. Science 298:2378–2381

    Article  PubMed  CAS  Google Scholar 

  14. Cui S, Schwartz L, Quaggin SE (2003) Pod1 is required in stromal cells for glomerulogenesis. Dev Dyn 226:512–522

    Article  PubMed  CAS  Google Scholar 

  15. Cui S, Ross A, Stallings N, Parker KL, Capel B, Quaggin SE (2004) Disrupted gonadogenesis and male-to-female sex reversal in Pod1 knockout mice. Development 131:4095–4105

    Article  PubMed  CAS  Google Scholar 

  16. Chou CY, Hsu CH, Wang YH, Chang MY, Chen LC, Cheng SC, Chen YH (2011) Biochemical and structural properties of zebrafish Capsulin produced by Escherichia coli. Protein Expr Purif 75:21–27

    Article  PubMed  CAS  Google Scholar 

  17. Chen YH, Wang YH, Chang MY, Lin CY, Weng CW, Westerfield M, Tsai HJ (2007) Multiple upstream modules regulate zebrafish myf5 expression. BMC Dev Biol 7:1

    Article  PubMed  CAS  Google Scholar 

  18. Chen YH, Lin YT, Lee GH (2009) Novel and unexpected functions of zebrafish CCAAT box binding transcription factor (NF-Y) B subunit during cartilages development. Bone 44:777–784

    Article  PubMed  CAS  Google Scholar 

  19. Chen YH, Lee WC, Liu CF, Tsai HJ (2001) Molecular structure, dynamic expression and promoter analysis of zebrafish (Danio rerio) myf-5 gene. Genesis 29:22–35

    Article  PubMed  CAS  Google Scholar 

  20. Weinberg ES, Allende ML, Kelly CS, Abdelhamid A, Murakami T, Andermann P, Doerre OG, Grunwald DJ, Riggleman B (1996) Developmental regulation of zebrafish MyoD in wild-type, no-tail and spadetail embryos. Development 122:2711–2780

    Google Scholar 

  21. Chen YH, Lee WC, Cheng CH, Tsai HJ (2000) Muscle regulatory factor gene: zebrafish (Danio rerio) myogenin cDNA. Comp Biochem Physiol B: Biochem Mol Biol 127:97–103

    Article  CAS  Google Scholar 

  22. Xu YF, He JY, Wang XK, Lim TM, Gong ZY (2000) Asynchronous activation of 10 muscle-specific protein (MSP) genes during zebrafish somitogenesis. Dev Dyn 219:201–215

    Article  PubMed  CAS  Google Scholar 

  23. Akimenko MA, Ekker M, Wegner J, Lin W, Westerfield M (1994) Combinatorial expression of three zebrafish genes related to distal-less: part of a homeobox gene code for the head. J Neurosci 14:3475–3486

    PubMed  CAS  Google Scholar 

  24. Odenthal J, Nusslein-Volhard C (1998) Fork head domain genes in zebrafish. Dev Genes Evol 208:245–258

    Article  PubMed  CAS  Google Scholar 

  25. Kimmel CB, Ullmann B, Walker M, Miller CT, Crump JG (2003) Endothelin 1-mediated regulation of pharyngeal bone development in zebrafish. Development 130:1339–1351

    Article  PubMed  CAS  Google Scholar 

  26. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  PubMed  CAS  Google Scholar 

  27. Lin CY, Chen WT, Lee HC, Yang PH, Yang HJ, Tsai HJ (2009) The transcription factor Six1a plays an essential role in the craniofacial myogenesis of zebrafish. Dev Biol 331:152–166

    Article  PubMed  CAS  Google Scholar 

  28. Wang YH, Wen CC, Yang ZS, Cheng CC, Tsai JN, Ku CC, Wu HJ, Chen YH (2009) Development of a whole-organism model to screen new compounds for sun protection. Mar Biotechnol 11:419–429

    Article  PubMed  CAS  Google Scholar 

  29. Wang YH, Cheng CC, Lee WJ, Chiou ML, Pai CW, Wen CC, Chen WL, Chen YH (2009) A novel phenotype-based approach for systematically screening antiproliferation metallodrugs. Chem-Biol Interact 182:84–91

    Article  PubMed  CAS  Google Scholar 

  30. Noden DM (1983) The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev Biol 96:144–165

    Article  PubMed  CAS  Google Scholar 

  31. Yamagishi C, Yamagishi H, Maeda J, Tsuchihashi T, Ivey K, Hu T, Srivastava S (2006) Sonic hedgehog is essential for first pharyngeal arch development. Pediatr Res 59:349–354

    Article  PubMed  CAS  Google Scholar 

  32. Lu J, Webb R, Richardson JA, Olson EN (1999) MyoR: a muscle restricted basic helix–loop–helix transcription factor that antagonizes the actions of MyoD. Proc Natl Acad Sci USA 96:552–557

    Article  PubMed  CAS  Google Scholar 

  33. Yu L, Mikloocich J, Sangster N, Perez A, McCormick PJ (2003) MyoR is expressed in nonmyogenic cells and can inhibit their differentiation. Exp Cell Res 289:162–173

    Article  PubMed  CAS  Google Scholar 

  34. Hishikawa K, Marumo T, Miura S, Nakanishi A, Matsuzaki Y, Shibata K, Ichiyanagi T, Kohike H, Komori T, Takahashi I, Takase O, Imai N, Yoshikawa M, Inowa T, Hayashi M, Nakaki T, Nakauchi H, Okano H, Fujita T (2005) Musculin/MyoR is expressed in kidney side population cells and can regulate their function. J Cell Biol 169:921–928

    Article  PubMed  CAS  Google Scholar 

  35. Yu L, Sangster N, Perez A, McCormick PJ (2004) The bHLH protein MyoR inhibits the differentiation of early embryonic endoderm. Differentiation 72:341–347

    Article  PubMed  CAS  Google Scholar 

  36. Noden DM, Francis-West P (2006) The differentiation and morphogenesis of craniofacial muscles. Dev Dyn 235:1194–1218

    Article  PubMed  CAS  Google Scholar 

  37. Mackenzie S, Walsh FS, Graham A (1998) Migration of hypoglossal myoblast precursors. Dev Dyn 213:349–358

    Article  PubMed  CAS  Google Scholar 

  38. Miller CT, Schilling TF, Lee K, Parker J, Kimmel CB (2000) sucker encodes a zebrafish endothelin-1 required for ventral pharyngeal arch development. Development 127:3815–3828

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council, Republic of China, under grant number of NSC 97-2313-B-032-001-MY3. We are also grateful to the Zebrafish Core in Academia Sinica (ZCAS) for providing tbx1 plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yau-Hung Chen.

Additional information

G.-H. Lee and M.-Y. Chang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 33 kb)

18_2011_637_MOESM2_ESM.tif

Fig. S1. Comparison of the deduced amino acid sequence of zebrafish Musculin with those of other known species. The information was obtained from the GenBank nucleotide sequence database with the following accession numbers: human (NP_005089.2), cattle (NM_001192146), rat (XP_001063707.1), mouse (NP_034957.1), and Xenopus (NP_001096235.1) Musculin. Amino acid residues similar to those of the zebrafish Musculin are presented in gray. (TIFF 535 kb)

18_2011_637_MOESM3_ESM.tif

Fig. S2. Molecular phylogenic analysis of zebrafish Capsulin and Musculin with those of other known species. Data were obtained from GenBank nucleotide sequence database with the following accession numbers: human (Capsulin: NM_003206; Musculin: NP_005089.2), cattle (NM_001014899; NM_001192146), rat (XM_419734; XP_001063707.1), mouse (NM_011545; NP_034957.1), and Xenopus (AY660871; NP_001096235.1). (TIFF 161 kb)

18_2011_637_MOESM4_ESM.tif

Fig. S3. Myogenic genes, myogenin and α-actin, were affected in the Capsulin-morphant. The transcripts of myogenin (A-B) and α-actin (C-D) in Uninjected embryos, and Capsulin-morphants at the embryonic stages (hpf) indicated were analyzed by whole-mount in situ hybridization. (TIFF 353 kb)

18_2011_637_MOESM5_ESM.tif

Fig. S4. Upstream signals regulate capsulin expression. The expression patterns of capsulin in (A) vehicle-treated, (B) cyclopamine-treated and (C) SU5402-treated embryos at 24 and 30 hpf. (TIFF 849 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, GH., Chang, MY., Hsu, CH. et al. Essential roles of basic helix-loop-helix transcription factors, Capsulin and Musculin, during craniofacial myogenesis of zebrafish. Cell. Mol. Life Sci. 68, 4065–4078 (2011). https://doi.org/10.1007/s00018-011-0637-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0637-2

Keywords

Navigation