Skip to main content
Log in

Development of a Whole-organism Model to Screen New Compounds for Sun Protection

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

We used zebrafish as a whole-organism model to screen new compounds for sun protection activity. First of all, we designed a series of UVB exposure experiments and recorded the phenotypic changes of zebrafish embryos. Results showed that 100 mJ/cm2 of UVB given six times separated by 30 min intervals is the best condition. Fin malformation (reduced and/or absent fin) phenotypes are the most evident consequences after exposure to UVB. Each fin was affected by UVB, including pelvic, ventral, caudal, and dorsal fin, but pelvic fin seemed to be the most sensitive target after UVB exposure. We furthermore carried out “prevention” and “treatment” experiments using green tea extract and/or (−)-epigallocatechin (EGCG) to test this whole-organism model by observing the morphological changes of all fins (especially pelvic fin) after UVB exposure. Effects of UVB, green tea extract and EGCG on fin development were assessed using the Kaplan–Meier analysis, log-rank test and Cox proportional hazards regression. Results showed that a zebrafish pelvic fin in the UVB + green tea (treatment) group is 5.51 (range from 2.39 to 14.90) times, one in the UVB + green tea (prevention) group is 7.04 (range from 3.11 to 18.92) times, and one in the 25 ppm of EGCG (prevention) group is 22.19 (range from 9.40 to 61.50) times more likely to return to normal fin than one in the UVB only group. On the basis of these observations, we believe this model is effective for screening the higher stability and lower toxicity of new compounds, such as small chemicals which are derivative from EGCG or other dietary agents for sun protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal R, Katiyar SK, Khan SG, Mukhtar H (1993) Protection against ultraviolet B radiation-induced effects in the skin of SKH-1 hairless mice by a polyphenolic fraction isolated from green tea. Photochem Photobiol 58:695–700

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71:1397–1421

    Article  PubMed  CAS  Google Scholar 

  • Athar M, Back JH, Tang X, Kim KH, Kopelovich L, Bickers DR, Kim AL (2007) Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol Appl Pharmacol 224:274–283

    Article  PubMed  CAS  Google Scholar 

  • Aziz MH, Reagan-Shaw S, Wu J, Longley BJ, Ahmad N (2005) Chemoprevention of skin cancer by grape constituent resveratrol: relevance to human disease? FASEB J 19:1193–1195

    PubMed  CAS  Google Scholar 

  • Bernerd F, Vioux C, Asselineau D (2000) Evaluation of the protective effect of sunscreens on in vitro reconstructed human skin exposed to UVB or UVA irradiation. Photochem Photobiol 71:314–320

    Article  PubMed  CAS  Google Scholar 

  • Chen YH, Wang YH, Chang MY, Lin CY, Weng CW, Westerfield M, Tsai HJ (2007a) Multiple upstream modules regulate zebrafish myf5 expression. BMC Dev Biol 7:1

    Article  PubMed  CAS  Google Scholar 

  • Chen YH, Chen WL, Wang YH, Huang MY, Chern MK (2007b) Spatiotemporal expression of zebrafish D-amino acid oxidase during early embryogenesis. Fish Physiol Biochem 33:73–80

    Article  CAS  Google Scholar 

  • Chung JH, Han JH, Hwang EJ, Seo JY, Cho KH, Kim KH, Youn JI, Eun HC (2003) Dual mechanisms of green tea extract (EGCG)-induced cell survival in human epidermal keratinocytes. FASEB J 17:1913–1915

    PubMed  CAS  Google Scholar 

  • Cimino F, Cristani M, Saija A, Bonina FP, Virgili F (2007) Protective effects of a red orange extract on UVB-induced damage in human keratinocytes. Biofactors 30:129–138

    Article  PubMed  CAS  Google Scholar 

  • Diffey BL, Farr PM (1991) Sunscreen protection against UVB, UVA and blue light: an in vivo and in vitro comparison. Br J Dermatol 124:258–263

    Article  PubMed  CAS  Google Scholar 

  • Dong Q, Svoboda K, Tiersch TR, Monroe WT (2007) Photobiological effects of UVA and UVB light in zebrafish embryos: evidence for a competent photorepair system. Photochem Photobiol 88:137–146

    Article  CAS  Google Scholar 

  • Eberlein-König B, Placzek M, Przybilla B (1998) Protective effect against sunburn of combined systemic ascorbic acid (vitamin C) and d-alpha-tocopherol (vitamin E). J Am Acad Dermatol 38:45–48

    Article  PubMed  Google Scholar 

  • Fourtanier A, Labat-Robert J, Kern P, Berrebi C, Gracia AM, Boyer B (1992) In vivo evaluation of photoprotection against chronic ultraviolet-A irradiation by a new sunscreen Mexorylt SX. Photochem Photobiol 55:549–560

    Article  PubMed  CAS  Google Scholar 

  • Goihman-Yahr M (1996) Skin aging and photoaging: an outlook. Clin Dermatol 14:153–160

    Article  PubMed  CAS  Google Scholar 

  • Harriger MD, Hull BE (1994) Characterization of ultraviolet radiation-induced damage to keratinocytes in a skin equivalent in vitro. Arch Dermatol Res 286:319–324

    Article  PubMed  CAS  Google Scholar 

  • Katiyar SK, Elmets CA (2001) Green tea polyphenolic antioxidants and skin photoprotection. Int J Oncol 18:1307–1313

    PubMed  CAS  Google Scholar 

  • Katiyar SK, Mukhtar H (2001) Green tea polyphenol (−)-epigallocatechin-3-gallate treatment to mouse skin prevents UVB-induced infiltration of leukocytes, depletion of antigen-presenting cells, and oxidative stress. J Leukoc Biol 69:719–726

    PubMed  CAS  Google Scholar 

  • Katiyar SK, Elmets CA, Agarwal R, Mukhtar H (1995) Protection against ultraviolet-B radiation-induced local and systemic suppression of contact hypersensitivity and edema responses in C3H/HeN mice by green tea polyphenols. Photochem Photobiol 62:855–861

    Article  PubMed  CAS  Google Scholar 

  • Katiyar SK, Afaq F, Perez A, Mukhtar H (2001) Green tea polyphenol (−)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis 22:287–294

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Hwang JS, Cho YK, Han Y, Jeon YJ, Yang KH (2001) Protective effects of (−)-epigallocatechin-3-gallate on UVA and UVB-induced skin damage. Skin Pharmacol Appl Skin Physiol 14:11–19

    PubMed  CAS  Google Scholar 

  • Kim SY, Kim DS, Kwon SB, Park ES, Huh CH, Youn SW, Kim SW, Park KC (2005) Protective effects of EGCG on UVB-induced damage in living skin equivalents. Arch Pharm Res 28:784–790

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    PubMed  CAS  Google Scholar 

  • Kligman L, Akin FJ, Kligman AM (1982) Prevention of ultraviolet damage to the dermis of hairless mice by sunscreens. J Invest Dermatol 78:181–189

    Article  PubMed  CAS  Google Scholar 

  • Koo SW, Hirakawa S, Fujii S, Kawasumi M, Nghiem P (2007) Protection from photodamage by topical application of caffeine after ultraviolet irradiation. Br J Dermatol 156:957–964

    Article  PubMed  CAS  Google Scholar 

  • Langheinrich U, Hennen E, Stott G, Vacun G (2002) Zebrafish as a model organism for the identification and characterization of drugs and genes affecting p53 signaling. Curr Biol 12:2023–2028

    Article  PubMed  CAS  Google Scholar 

  • Lin JY, Tournas JA, Burch JA, Monteiro-Riviere NA, Zielinski J (2008) Topical isoflavones provide effective photoprotection to skin. Photodermatol Photoimmunol Photomed 24:61–66

    Article  PubMed  CAS  Google Scholar 

  • Lu YP, Lou YR, Li XH, Xie JG, Brash D, Huang MT, Conney AH (2000) Stimulatory effect of oral administration of green tea or caffeine on ultraviolet light-induced increases in epidermal wild-type p53, p21(WAF1/CIP1), and apoptotic sunburn cells in SKH-1 mice. Cancer Res 60:4785–4791

    PubMed  CAS  Google Scholar 

  • Miyachi Y (1995) Photoaging from an oxidative standpoint. J Dermatol Sci 9:79–86

    Article  PubMed  CAS  Google Scholar 

  • Narayanan BA (2006) Chemopreventive agents alters global gene expression pattern: predicting their mode of action and targets. Curr Cancer Drug Targets 6:711–727

    Article  PubMed  CAS  Google Scholar 

  • Naylor MF (1997) Erythema, skin cancer risk and sunscreens. Arch Dermatol 133:373–375

    Article  PubMed  CAS  Google Scholar 

  • Nowak M, Köster C, Hammerschmidt M (2005) Perp is required for tissue-specific cell survival during zebrafish development. Cell Death Differ 2:52–64

    Article  CAS  Google Scholar 

  • Peterson RT, Link BA, Dowling JE, Schreiber SL (2000) Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc Natl Acad Sci USA 97:12965–12969

    Article  PubMed  CAS  Google Scholar 

  • Ravi D, Muniyappa H, Das KC (2008) Caffeine inhibits UV-mediated NF-kappaB activation in A2058 melanoma cells: an ATM-PKCdelta-p38 MAPK-dependent mechanism. Mol Cell Biochem 308:193–200

    Article  PubMed  CAS  Google Scholar 

  • Sinha RP, Häder DP (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236

    Article  PubMed  CAS  Google Scholar 

  • Stahl W, Sies H (2007) Carotenoids and flavonoids contribute to nutritional protection against skin damage from sunlight. Mol Biotechnol 37:26–30

    Article  PubMed  CAS  Google Scholar 

  • Tamai TK, Vardhanabhuti V, Foulkes NS, Whitmore D (2004) Early embryonic light detection improves survival. Curr Biol 14:R104–R105

    Article  PubMed  CAS  Google Scholar 

  • Young AR (1990) Cumulative effects of ultraviolet on the skin: cancer and photoaging. Semin Dermatol 9:25–31

    PubMed  CAS  Google Scholar 

  • Yusuf N, Irby C, Katiyar SK, Elmets CA (2007) Photoprotective effects of green tea polyphenols. Photodermatol Photoimmunol Photomed 23:48–56

    Article  PubMed  Google Scholar 

  • Zon LI, Peterson RT (2005) In vivo drug discovery in the zebrafish. Nature Rev 4:35–44

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Science Council, Republic of China, under grant numbers of NSC 96-2313-B-032-001-MY3 and NSC 97-2313-B-032-001-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yau-Hung Chen.

Additional information

Yun-Hsin Wang and Chi-Chung Wen contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YH., Wen, CC., Yang, ZS. et al. Development of a Whole-organism Model to Screen New Compounds for Sun Protection. Mar Biotechnol 11, 419–429 (2009). https://doi.org/10.1007/s10126-008-9159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-008-9159-9

Keywords

Navigation