Skip to main content

Advertisement

Log in

Pigment-dispersing hormone in Daphnia interneurons, one type homologous to insect clock neurons displaying circadian rhythmicity

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

We report identification of a beta-type pigment-dispersing hormone (PDH) identical in two water flea species, Daphnia magna and Daphnia pulex. It has been identified by cloning of precursors, chromatographic isolation from tissue extracts followed by immunoassays and de novo-mass spectrometric sequencing. The peptide is restricted to a complex system of distinct interneurons in the brain and visual ganglia, but does not occur in neurosecretory cells projecting to neurohemal organs as in decapod crustaceans. Thirteen neuron types individually identified and reconstructed by immunohistochemistry were almost identical in terms of positions and projection patterns in both species. Several neurons invade and form plexuses in visual ganglia and major brain neuropils including the central body. Five neuron types show contralateral pathways and form plexuses in the lateral, dorsal, or postlateral brain neuropils. Others are local interneurons, and a tritocerebral neuron connects the protocerebrum with the neuropil of the locomotory second antenna. Two visual ganglia neuron types lateral to the medulla closely resemble insect medulla lateral circadian clock neurons containing pigment-dispersing factor based upon positional and projectional criteria. Experiments under 12:12 h light/dark cycles and constant light or darkness conditions showed significant circadian changes in numbers and activities of one type of medulla lateral PDH neuron with an acrophase in the evening. This simple PDH system shows striking homologies to PDH systems in decapod crustaceans and well-known clock neurons in several insects, which suggests evolutionary conservation of an ancient peptidergic interneuronal system that is part of biological clocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a2n1 :

Second antenna nerve 1

BrOG:

Brain-optic ganglia complex

CCAP:

Crustacean cardioactive peptide

CEC:

Circumesophageal commissure

CHH:

Crustacean hyperglycemic hormone

CID:

Collision-induced dissociation

CB:

Central body

CN:

Central neuropil

CNS:

Central nervous system

CT:

Circadian time

DAPI:

4′,6′ Diamino-2-phenylindole-2 HCl

DD:

Constant darkness condition

DN:

Dorsal neuropil

DVM:

Diel vertical migration

ELISA:

Enzyme-linked immunosorbent assay

EPR:

Extra-retinal photoreceptor

EST:

Expressed sequence tag

HPLC:

High-pressure lipid chromatography

IEP:

Isoelectric point

IIF:

Indirect immunofluorescence

La:

Lamina

LD:

Light dark conditions

LL:

Constant light condition

l-LNvs:

Large ventral lateral neurons

LN:

Lateral neuropil

MALDI-TOF:

Matrix-assisted laser desorption/ionization-time of flight

Me:

Medulla

Mel:

Medulla lateral neurons

MLL:

Levator labri muscle

NE:

Nauplius eye

ORF:

Open-reading frame

PAP:

Peroxidase anti-peroxidase

PB:

Protocerebral bridge

PCN:

Precentral neuropil

PDF:

Pigment-dispersing factor

PDH:

Pigment-dispersing hormone

pec:

Post-esophageal commissure

PER:

Period gene product

PLN:

Postlateral neuropils

PPRP:

PDH-precursor-related peptide

RACE:

Rapid amplification of cDNA ends

RPCH:

Red pigment-concentrating hormone

RT:

Room temperature

RT-PCR:

Reverse transcription-polymerase chain reaction

s-LNvs:

Small lateral ventral neurons

SP:

Signal peptide

VNC:

Ventral nerve cord

ZT:

Zeitgeber time

References

  1. Rao KR, Riehm JP (1993) Pigment-dispersing hormones. Ann NY Acad Sci 680:78–88

    Article  PubMed  CAS  Google Scholar 

  2. Rao KR (2001) Crustacean pigmentary-effector hormones: chemistry and functions of RPCH, PDH, and related peptides. Am Zool 41(3):364–379

    Article  CAS  Google Scholar 

  3. Rao KR, Mohrherr CJ, Riehm JP, Zahnow CA, Norton S, Johnson L, Tarr GE (1987) Primary structure of an analog of crustacean pigment-dispersing hormone from the lubber grasshopper Romalea microptera. J Biol Chem 262(6):2672–2675

    PubMed  CAS  Google Scholar 

  4. Rao KR, Riehm JP (1989) The pigment-dispersing hormone family: chemistry, structure-activity relations, and distribution. Biol Bull 177:225–229

    Article  CAS  Google Scholar 

  5. Dircksen H, Zahnow CA, Gaus G, Keller R, Rao KR, Riehm JP (1987) The ultrastructure of nerve endings containing pigment-dispersing hormone (PDH) in crustacean sinus glands: identification by an antiserum against synthetic PDH. Cell Tissue Res 250:377–387

    Article  CAS  Google Scholar 

  6. Mangerich S, Keller R, Dircksen H, Rao KR, Riehm JP (1987) Immunocytochemical localization of pigment-dispersing hormone (PDH) and its coexistence with FMRFamide-immunoreactive material in the eyestalks of the decapod crustaceans Carcinus maenas and Orconectes limosus. Cell Tissue Res 250:365–375

    Article  Google Scholar 

  7. Hsu Y-WA, Stemmler EA, Messinger DI, Dickinson PS, Christie AE, de la Iglesia HO (2008) Cloning and differential expression of two beta-pigment-dispersing hormone (beta-PDH) isoforms in the crab Cancer productus: evidence for authentic beta-PDH as a local neurotransmitter and beta-PDH II as a humoral factor. J Comp Neurol 508(2):197–211

    Article  PubMed  CAS  Google Scholar 

  8. Mangerich S, Keller R (1988) Localization of pigment-dispersing hormone (PDH) immunoreactivity in the central nervous system of Carcinus maenas and Orconectes limosus (Crustacea), with reference to FMRFamide immunoreactivity in O. limosus. Cell Tissue Res 253(1):199–208

    Article  PubMed  CAS  Google Scholar 

  9. Harzsch S, Dircksen H, Beltz BS (2009) Development of pigment-dispersing hormone-immunoreactive neurons in the American lobster: homology to the insect circadian pacemaker system? Cell Tissue Res 335(2):417–429

    Article  PubMed  CAS  Google Scholar 

  10. Nussbaum T, Dircksen H (1995) Neuronal pathways of classical crustacean neurohormones in the central nervous system of the woodlouse, Oniscus asellus (L). Phil Trans R Soc Lond B 347:139–154

    Article  CAS  Google Scholar 

  11. Helfrich-Förster C (1995) The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. Proc Natl Acad Sci USA 92(2):612–616

    Article  PubMed  Google Scholar 

  12. Helfrich-Förster C (2005) Organization of endogenous clocks in insects. Biochem Soc Trans 33(5):957–961

    Article  PubMed  Google Scholar 

  13. Homberg U, Reischig T, Stengl M (2003) Neural organization of the circadian system of the cockroach Leucophaea maderae. Chronobiol Int 20(4):577–591

    Article  PubMed  CAS  Google Scholar 

  14. Tomioka K, Matsumoto A (2010) A comparative view of insect circadian clock systems. Cell Mol Life Sci 67(9):1397–1406. doi:10.1007/s00018-009-0232-y

    Article  PubMed  CAS  Google Scholar 

  15. Helfrich-Förster C, Stengl M, Homberg U (1998) Organization of the circadian system in insects. Chronobiol Int 15(6):567–594

    Article  PubMed  Google Scholar 

  16. Meinertzhagen IA, Pyza E (1996) Daily rhythms in cells of the fly’s optic lobe: taking time out from the circadian clock. Trends Neurosci 19(7):285–291

    Article  PubMed  CAS  Google Scholar 

  17. Strauß J, Dircksen H (2010) Circadian clocks in crustaceans: identified neuronal and cellular systems. Front Biosci 15:1040–1074

    Article  PubMed  Google Scholar 

  18. Park JH, Helfrich-Förster C, Lee G, Liu L, Rosbash M, Hall JC (2000) Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc Natl Acad Sci USA 97(7):3608–3613. doi:10.1073/pnas.070036197

    Article  PubMed  CAS  Google Scholar 

  19. Zavodska R, Wen C-J, Hrdy I, Sauman I, Lee H-J, Sehnal F (2008) Distribution of corazonin and pigment-dispersing factor in the cephalic ganglia of termites. Arthropod Struct Dev 37:273–286

    Article  PubMed  CAS  Google Scholar 

  20. Sullivan JM, Genco MC, Marlow ED, Benton JL, Beltz BS, Sandeman DC (2009) Brain photoreceptor pathways contributing to circadian rhythmicity in crayfish. Chronobiol Int 26(6):1136–1168. doi:10.1080/07420520903217960

    PubMed  CAS  Google Scholar 

  21. Ståhl F (1938) Preliminary report on the colour changes and the incretory organs in the heads of some crustaceans. Ark Zool 30 B 8:1–3

    Google Scholar 

  22. Zaffagnini F (1987) Reproduction in Daphnia. In: Peters RH, De Bernardi R (eds) Daphnia. Memoria dell’ Istituto Italiano di Idrobiologia Dott. Marco de Marchi vol 45. Verbania Pallanza, Italy: Istituto Italiano di Idrobiologia, pp 245–284

  23. Koshida Y, Hiroki M (1980) Artemia as a multipurpose biomaterial for biology education. In: Persoone G, Sorgeloos PM, Roels OEJ (eds) The brine shrimp Artemia. Universa Press, Wetteren, pp 289–298

    Google Scholar 

  24. Fingerman M (1985) The physiology and pharmacology of crustacean chromatophores. Am Zool 25(1):233–252

    CAS  Google Scholar 

  25. Gard AL, Lenz PH, Shaw JR, Christie AE (2009) Identification of putative peptide paracrines/hormones in the water flea Daphnia pulex (Crustacea; Branchiopoda; Cladocera) using transcriptomics and immunohistochemistry. Gen Comp Endocrinol 160(3):271–287

    Article  PubMed  CAS  Google Scholar 

  26. Colbourne JK, Eads BD, Shaw J, Bohuski E, Bauer DJ, Andrews J (2007) Sampling Daphnia’s expressed genes: preservation, expansion and invention of crustacean genes with reference to insect genomes. BMC Genomics 8:217. doi:10.1186/1471-2164-8-217

    Article  PubMed  Google Scholar 

  27. Eads BD, Andrews J, Colbourne JK (2008) Ecological genomics in Daphnia: stress responses and environmental sex determination. Heredity 100(2):184–190. doi:10.1038/sj.hdy.6800999

    Article  PubMed  CAS  Google Scholar 

  28. Tatarazako N, Oda S (2007) The water flea Daphnia magna (Crustacea, Cladocera) as a test species for screening and evaluation of chemicals with endocrine disrupting effects on crustaceans. Ecotoxicology 16(1):197–203. doi:10.1007/s10646-006-0120-2

    Article  PubMed  CAS  Google Scholar 

  29. Persoone G, Baudo R, Cotman M, Blaise C, Thompson KCl, Moreira-Santos M, Vollat B, Törökne A, Han T (2009) Review on the acute Daphnia magna toxicity test—evaluation of the sensitivity and the precision of assays performed with organisms from laboratory cultures or hatched from dormant eggs. Knowl Managt Aquatic Ecosyst 393:01

  30. LeBlanc GA (2007) Crustacean endocrine toxicology: a review. Ecotoxicology 16(1):61–81

    Article  PubMed  CAS  Google Scholar 

  31. Barata C, Alanon P, Gutierrez-Alonso S, Riva MC, Fernandez C, Tarazona JV (2008) A Daphnia magna feeding bioassay as a cost effective and ecological relevant sublethal toxicity test for environmental risk assessment of toxic effluents. Sci Total Environ 405(1–3):78–86. doi:10.1016/j.scitotenv.2008.06.028

    PubMed  CAS  Google Scholar 

  32. Sterba G (1957) Die neurosekretorischen Zellgruppen einiger Cladoceren (Daphnia pulex und magna, Simocephalus vetulus). Zool Jahrb Anat 76:303–310

    Google Scholar 

  33. Halcrow K (1969) Sites of presumed neurosecretory activity in Daphnia magna Straus. Can J Zool 47:575–577

    Article  PubMed  CAS  Google Scholar 

  34. Van den Bosch de Aguilar P (1972) Les charactéristiques tinctoriales des cellules neurosécrétrices chez Daphnia pulex (Crustacea:Cladocera). Gen Comp Endocrinol 18:140–145

    Google Scholar 

  35. Montagné N, Desdevises Y, Soyez D, Toullec JY (2010) Molecular evolution of the crustacean hyperglycemic hormone family in ecdysozoans. BMC Evol Biol 10. doi:10.1186/1471-2148-10–62

  36. Zhang Q, Keller R, Dircksen H (1993) Immunocytochemical mapping of peptidergic neurons in the nervous system of Daphnia magna (Crustacea; Cladocera). In: Elsner N, Heisenberg M (eds) Genes-brain-behaviour. Thieme, Stuttgart, p 545

    Google Scholar 

  37. Zhang Q, Keller R, Dircksen H (1997) Crustacean hyperglycaemic hormone in the nervous system of the primitive crustacean species Daphnia magna and Artemia salina (Crustacea: Branchiopoda). Cell Tissue Res 287(3):565–576

    Article  PubMed  CAS  Google Scholar 

  38. Zhang Q, Dircksen H (1999) Immunocytochemical mapping of crustacean cardioactive peptide in the nervous system of Daphnia magna and Artemia salina (Crustacea: Cladocera, Anostraca). Comp Biochem Physiol 124A:S86

    Google Scholar 

  39. Dircksen H, Zhang Q (2006) Neuropeptide-containing neurons in the central nervous system of the waterflea Daphnia magna. Comp Biochem Physiol 143A:S118

    Google Scholar 

  40. Van Harreveld A (1936) A physiological solution for freshwater crustaceans. Proc Soc Exp Biol Med 34:428–432

    Google Scholar 

  41. Stefanini M, De Martino C, Zamboni L (1967) Fixation of ejaculated spermatozoa for electron microscopy. Nature 216:173–174

    Article  PubMed  CAS  Google Scholar 

  42. Dircksen H, Webster SG, Keller R (1988) Immunocytochemical demonstration of the neurosecretory systems containing putative moult-inhibiting and hyperglycemic hormone in the eyestalk of brachyuran crustaceans. Cell Tissue Res 251:3–12

    Article  CAS  Google Scholar 

  43. Boer HH, Schot LPC, Roubos EW, ter Maat A, Lodder JC, Reichelt D, Swaab DF (1979) ACTH-like immunoreactivity in two electronically coupled giant neurons in pond snail Lymnaea stagnalis. Cell Tissue Res 202:231–240

    Article  PubMed  CAS  Google Scholar 

  44. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  45. Löhr J, Klein J, Webster SG, Dircksen H (1993) Quantification, immunoaffinity purification and sequence analysis of a pigment-dispersing hormone of the shore crab, Carcinus maenas (L.). Comp Biochem Physiol B 104(4):699–706

    Article  PubMed  Google Scholar 

  46. Honda T, Matsushima A, Sumida K, Chuman Y, Sakaguchi K, Onoue H, Meinertzhagen IA, Shimohigashi Y, Shimohigashi M (2006) Structural isoforms of the circadian neuropeptide PDF expressed in the optic lobes of the cricket Gryllus bimaculatus: immunocytochemical evidence from specific monoclonal antibodies. J Comp Neurol 499(3):404–421

    Article  PubMed  CAS  Google Scholar 

  47. Sternberger LA (1974) Immunocytochemistry. Prentice Hall Inc., Englewood Cliffs, NJ

    Google Scholar 

  48. Dircksen H, Müller A, Keller R (1991) Crustacean cardioactive peptide in the nervous system of the locust, Locusta migratoria: an immunocytochemical study on the ventral nerve cord and peripheral innervation. Cell Tissue Res 263:439–457

    Article  Google Scholar 

  49. Rieger D, Shafer OT, Tomioka K, Helfrich-Förster C (2006) Functional analysis of circadian pacemaker neurons in Drosophila melanogaster. J Neurosci 26(9):2531–2543. doi:10.1523/JNEUROSCI.1234-05.2006

    Article  PubMed  CAS  Google Scholar 

  50. Aramant R, Elofsson R (1976) Distribution of monoaminergic neurons in the nervous system of non-malacostracan crustaceans. Cell Tissue Res 166(1):1–24

    Article  PubMed  CAS  Google Scholar 

  51. Cunnington WA (1903) Studien an einer Daphnide, Simocephalus sima. Beiträge zur Kenntnis des Centralnervensystems und der feineren Anatomie der Daphniden. Jena Z Naturwiss 37:447–520

    Google Scholar 

  52. Leder H (1915) Untersuchungen über den feineren Bau des Nervensystems der Cladoceren. Arb Zool Inst Univ Wien u Triest 20:297–392

    Google Scholar 

  53. Binder G (1932) Das Muskelsystem von Daphnia. Int Rev ges Hydrobiol Hydrograph 26:54–111

    Article  Google Scholar 

  54. Nässel DR, Elofsson R, Odselius R (1978) Neuronal connectivity patterns in the compound eyes of Artemia salina and Daphnia magna (Crustacea: Branchiopoda). Cell Tissue Res 190(3):435–437

    Article  PubMed  Google Scholar 

  55. Strausfeld NJ, Nässel DR (1980) Neuroarchitecture of brain regions that subserve the compound eyes of Crustacea and insects. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6b: comparative physiology and evolution of vision in invertebrates. Springer, Berlin Heidelberg New York, pp 1–133

    Google Scholar 

  56. Helfrich-Förster C (1993) Pigment-dispersing hormone-immunoreactive neurons in the nervous system of wild-type Drosophila melanogaster and of several mutants with altered circadian rhythmicity. J Comp Neurol 337(2):177–190

    Article  PubMed  Google Scholar 

  57. Fernandez MP, Berni J, Ceriani MF (2008) Circadian remodeling of neuronal circuits involved in rhythmic behavior. PLoS Biol 6(3):e69. doi:10.1371/journal.pbio.0060069

    Article  PubMed  Google Scholar 

  58. Ohira T, Tsutsui N, Kawazoe I, Wilder MN (2006) Isolation and characterization of two pigment-dispersing hormones from the whiteleg shrimp, Litopenaeus vannamei. Zool Sci 23(7):601–606

    Article  PubMed  CAS  Google Scholar 

  59. Park JH, Hall JC (1998) Isolation and chronobiological analysis of a neuropeptide pigment-dispersing factor gene in Drosophila melanogaster. J Biol Rhythms 13(3):219–228

    Article  PubMed  CAS  Google Scholar 

  60. Rao KR, Riehm JP (1988) Pigment-dispersing hormones: a novel family of neuropeptides from arthropods. Peptides 1:153–159

    Google Scholar 

  61. Yang WJ, Aida K, Nagasawa H (1999) Characterization of chromatophorotropic neuropeptides from the kuruma prawn Penaeus japonicus. Gen Comp Endocrinol 114(3):415–424

    Article  PubMed  CAS  Google Scholar 

  62. Bulau P, Meisen I, Schmitz T, Keller R, Peter-Katalinic J (2004) Identification of neuropeptides from the sinus gland of the crayfish Orconectes limosus using nanoscale on-line liquid chromatography tandem mass spectrometry. Mol Cell Proteomics 3(6):558–564

    Article  PubMed  CAS  Google Scholar 

  63. Janssen T, Husson SJ, Meelkop E, Temmerman L, Lindemans M, Verstraelen K, Rademakers S, Mertens I, Nitabach M, Jansen G, Schoofs L (2009) Discovery and characterization of a conserved pigment-dispersing factor-like neuropeptide pathway in Caenorhabditis elegans. J Neurochem 111(1):228–241. doi:10.1111/j.1471-4159.2009.06323.x

    Article  PubMed  CAS  Google Scholar 

  64. Lehman N, Pfrender ME, Morin PA, Crease TJ, Lynch M (1995) A hierarchical molecular phylogeny within the genus Daphnia. Mol Phylogenet Evol 4(4):395–407. doi:10.1006/mpev.1995.1037

    Article  PubMed  CAS  Google Scholar 

  65. Webster SG (1998) Peptidergic neurons in barnacles: an immunohistochemical study using antisera raised against crustacean neuropeptides. Biol Bull 195(3):282–289

    Article  CAS  Google Scholar 

  66. Sousa GL, Lenz PH, Hartline DK, Christie AE (2008) Distribution of pigment-dispersing hormone- and tachykinin-related peptides in the central nervous system of the copepod crustacean Calanus finmarchicus. Gen Comp Endocrinol 156(3):454–459. doi:10.1016/j.ygcen.2008.03.008

    Article  PubMed  CAS  Google Scholar 

  67. Mangerich S, Keller R, Dircksen H (1986) Immunocytochemical identification of structures containing putative red pigment-concentrating hormone in two species of decapod crustaceans. Cell Tissue Res 245:377–386

    Article  CAS  Google Scholar 

  68. Yasuyama K, Meinertzhagen IA (2010) Synaptic connections of PDF-immunoreactive lateral neurons projecting to the dorsal protocerebrum of Drosophila melanogaster. J Comp Neurol 518(3):292–304. doi:10.1002/cne.22210

    Article  PubMed  Google Scholar 

  69. Sandeman DC, Wilkens LA (1983) Motor control of movements of the antennal flagellum in the Australian crayfish, Euastacus armatus. J Exp Biol 105:253–273

    Google Scholar 

  70. Angel MV (1967) A histological and experimental approach to neurosecretion in Daphnia magna. In: Stutinsky F (ed) Neurosecretion. Springer, Berlin Heidelberg New York, pp 230–237

    Google Scholar 

  71. Van den Bosch de Aguilar P (1969) Nouvelles données morphologiques et hypothèses sur le rôle du système neurosécréteur chez Daphnia pulex (Crustacea: Cladocera). Ann Soc Roy Zool Belg 99 (1–2):27–44

    Google Scholar 

  72. Retzius G (1906) Zur Kenntnis des Nervensystems der Daphniden. Biol Unters N F 13:107–116

    Google Scholar 

  73. Gorgels-Kallen JL, Voorter CEM (1985) The secretory dynamics of the CHH-producing cell group in the eyestalk of the crayfish, Astacus leptodactylus, in the course of the day/night cycle. Cell Tissue Res 241:361–366

    Article  Google Scholar 

  74. Kallen JL, Abrahamse SL, van Herp F (1990) Circadian rhythmicity of the crustacean hyperglycemic hormone (CHH) in the hemolymph of the crayfish. Biol Bull 179:351–357

    Article  CAS  Google Scholar 

  75. Fanjul-Moles ML, Escamilla-Chimal EG, Salceda R, Giulianini PG, Sanchez-Chavez G (2010) Circadian modulation of crustacean hyperglycemic hormone in crayfish eyestalk and retina. Chronobiol Int 27(1):34–51

    Article  PubMed  CAS  Google Scholar 

  76. Aréchiga H, Rodriguez-Sosa L (2002) Distributed circadian rhythmicity in the crustacean nervous system. In: Wiese K (ed) The crustacean nervous system. Springer, Berlin Heidelberg New York, pp 113–122

    Google Scholar 

  77. Fanjul-Moles ML, Prieto-Sagredo J (2003) The circadian system of crayfish: a developmental approach. Microsc Res Tech 60:291–301

    Article  PubMed  Google Scholar 

  78. Dini ML, Carpenter SR (1992) Fish predators, food availability and diel vertical migration in Daphnia. J Plankton Res 14(3):359–377

    Article  Google Scholar 

  79. Makino W, Haruna H, Ban S (1996) Diel vertical migration and feeding rhythm of Daphnia longispina and Bosmina coregoni in Lake Toya, Hokkaido, Japan. Hydrobiologia 337(1–3):133–143

    Article  Google Scholar 

  80. Young S, Watt PJ (1996) Daily and seasonal vertical migration rhythms in Daphnia. Freshwater Biol 36(1):17–22

    Article  Google Scholar 

  81. Ringelberg J (1999) The photobehaviour of Daphnia spp. as a model to explain diel vertical migration in zooplankton. Biol Rev Cambridge Phil Soc 74(4):397–423

    Article  Google Scholar 

  82. Rammner W (1929) Über periodische Erscheinungen am Cladoceren-Individuum (Häutung, Fortpflanzung, Wachstum). Internat Rev Ges Hydrobiol u Hydrograph 21(5/6):402–420

    Google Scholar 

  83. Sed’a J (1992) Diurnal periodicity in Daphnia reproduction. Hydrobiologia 246(2):119–127

    Article  Google Scholar 

  84. Stross RG (1996) Significance of photoperiodism and diapause control in the multicycle crustacean Daphnia pulex Leydig. Hydrobiologia 320:107–117

    Article  Google Scholar 

  85. Cellier-Michel S, Berthon JL (2003) Rhythmicity of the pigments in the compound eye of Daphnia longispina (Cladocera). J Freshw Ecol 18(3):445–450

    Article  Google Scholar 

  86. Ringelberg J, Seruaas H (1971) A circadian rhythm in Daphnia magna. Oecologia 6(3):289–292

    Article  Google Scholar 

  87. Helfrich-Förster C (1998) Robust circadian rhythmicity of Drosophila melanogaster requires the presence of lateral neurons: a brain-behavioral study of disconnected mutants. J Comp Physiol [A] 182(4):435–453

    Article  Google Scholar 

  88. Sehadova H, Sauman I, Sehnal F (2003) Immunocytochemical distribution of pigment-dispersing hormone in the cephalic ganglia of polyneopteran insects. Cell Tissue Res 312:113–125

    PubMed  CAS  Google Scholar 

  89. Helfrich-Förster C (2009) Neuropeptide PDF plays multiple roles in the circadian clock of Drosophila melanogaster. Sleep Biol Rhythms 7:130–143

    Article  Google Scholar 

  90. Helfrich-Förster C (2003) The neuroarchitecture of the circadian clock in the brain of Drosophila melanogaster. Microsc Res Tech 62(2):94–102

    Article  PubMed  Google Scholar 

  91. McTaggart SJ, Conlon C, Colbourne JK, Blaxter ML, Little TJ (2009) The components of the Daphnia pulex immune system as revealed by complete genome sequencing. BMC Genomics 10:175. doi:10.1186/1471-2164-10-175

    Article  PubMed  Google Scholar 

  92. Fernlund P (1976) Structure of a light-adapting hormone from the shrimp, Pandalus borealis. Biochim Biophys Acta 439(1):17–25

    PubMed  CAS  Google Scholar 

  93. Mohrherr CJ, Rao KR, Riehm JP (1991) Characterization of a pigment-dispersing factor from the American cockroach. Soc Neurosci Abstr 17:276

    Google Scholar 

Download references

Acknowledgments

The Carl Tryggers Foundation, Stockholm, Sweden (to J.S. and H.D.), the Faculty of Sciences, Stockholm University (to H.D.), the Federal ministry for research and technology, Germany (BMFT, to Q.Z.), and postdoctoral research grants from the Fund for Scientific Research—Flanders, Belgium (F.W.O.-Vlaanderen, to P.V., J.H., K.P.), and the German Research Foundation (DFG to R.P.) are gratefully acknowledged by the authors. We are greatly indebted to Achim Stommel, State office for nature, environment, and customer protection, North-Rhine Westphalia (LaNUV), Bonn, Germany, for providing Daphnia magna and green algae stocks and many useful rearing advises. The authors also wish to thank Dr. S.G. Webster, University of North Wales, Bangor, UK for his generous gift of synthetic Uca-beta-PDH. The authors wish to thank our facility manager Dr. Stina Höglund, Wenner-Gren institute, Stockholm University, for technical help with confocal microscopy, and Dr. Anthony Poole, Department of Molecular Biology and Functional Genomics, Stockholm University, for help with final stylistical polishing of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Dircksen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1874 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strauß, J., Zhang, Q., Verleyen, P. et al. Pigment-dispersing hormone in Daphnia interneurons, one type homologous to insect clock neurons displaying circadian rhythmicity. Cell. Mol. Life Sci. 68, 3403–3423 (2011). https://doi.org/10.1007/s00018-011-0636-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0636-3

Keywords

Navigation