Skip to main content
Log in

Neuroanatomy of the optic ganglia and central brain of the water flea Daphnia magna (Crustacea, Cladocera)

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We reveal the neuroanatomy of the optic ganglia and central brain in the water flea Daphnia magna by use of classical neuroanatomical techniques such as semi-thin sectioning and neuronal backfilling, as well as immunohistochemical markers for synapsins, various neuropeptides and the neurotransmitter histamine. We provide structural details of distinct neuropiles, tracts and commissures, many of which were previously undescribed. We analyse morphological details of most neuron types, which allow for unravelling the connectivities between various substructural parts of the optic ganglia and the central brain and of ascending and descending connections with the ventral nerve cord. We identify 5 allatostatin-A-like, 13 FMRFamide-like and 5 tachykinin-like neuropeptidergic neuron types and 6 histamine-immunoreactive neuron types. In addition, novel aspects of several known pigment-dispersing hormone-immunoreactive neurons are re-examined. We analyse primary and putative secondary olfactory pathways and neuronal elements of the water flea central complex, which displays both insect- and decapod crustacean-like features, such as the protocerebral bridge, central body and lateral accessory lobes. Phylogenetic aspects based upon structural comparisons are discussed as well as functional implications envisaging more specific future analyses of ecotoxicological and endocrine disrupting environmental chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andrew DR, Brown SM, Strausfeld NJ (2012) The minute brain of the copepod Tigriopus californicus supports a complex ancestral ground pattern of the tetraconate cerebral nervous systems. J Comp Neurol 520:3446–3470

    Article  PubMed  Google Scholar 

  • Aramant R, Elofsson R (1976) Distribution of monoaminergic neurons in the nervous system of non- malacostracan crustaceans. Cell Tissue Res 166:1–24

    Article  CAS  PubMed  Google Scholar 

  • Binder G (1932) Das Muskelsystem von Daphnia. Int Rev Ges Hydrobiol Hydrograph 26:54–111

    Article  Google Scholar 

  • Blaustein DN, Derby CD, Simmons RB, Beall AC (1988) Structure of the brain and medulla terminalis of the spiny lobster Panulirus argus and the crayfish Procambarus clarkii, with an emphasis on olfactory centers. J Crustacean Biol 8:493–519

    Article  Google Scholar 

  • Boyan G, Williams L, Liu Y (2015) Conserved patterns of axogenesis in the panarthropod brain. Arthropod Struct Dev 44:101–112

    Article  PubMed  Google Scholar 

  • Callaway JC, Stuart AE (1989) Biochemical and physiological evidence that histamine is the transmitter of barnacle photoreceptors. Vis Neurosci 3:311–325

    Article  CAS  PubMed  Google Scholar 

  • Claus C (1876) Zur kenntnis der organisation und des feineren baues der daphniden und verwandter cladoceren. Z Wiss Zool 27:362–402

    Google Scholar 

  • Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, Tokishita S, Aerts A, Arnold GJ, Basu MK, Bauer DJ, Caceres CE, Carmel L, Casola C, Choi JH, Detter JC, Dong Q, Dusheyko S, Eads BD, Fröhlich T, Geiler-Samerotte KA, Gerlach D, Hatcher P, Jogdeo S, Krijgsveld J, Kriventseva EV, Kultz D, Laforsch C, Lindquist E, Lopez J, Manak JR, Muller J, Pangilinan J, Patwardhan RP, Pitluck S, Pritham EJ, Rechtsteiner A, Rho M, Rogozin IB, Sakarya O, Salamov A, Schaack S, Shapiro H, Shiga Y, Skalitzky C, Smith Z, Souvorov A, Sung W, Tang Z, Tsuchiya D, Tu H, Vos H, Wang M, Wolf YI, Yamagata H, Yamada T, Ye Y, Shaw JR, Andrews J, Crease TJ, Tang H, Lucas SM, Robertson HM, Bork P, Koonin EV, Zdobnov EM, Grigoriev IV, Lynch M, Boore JL (2011) The ecoresponsive genome of Daphnia pulex. Science 331:555–561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Consi TR, Macagno ER, Necles N (1987) The oculomotor system of Daphnia magna. the eye muscles and their motor neurons. Cell Tissue Res 247:515–523

    Article  CAS  PubMed  Google Scholar 

  • Cunnington WA (1903) Studien an einer Daphnide, Simocephalus sima. Beiträge zur Kenntnis des Centralnervensystems und der feineren Anatomie der Daphniden. Jena Z Naturwiss 37:447–520

  • Dircksen H, Zahnow CA, Gaus G, Keller R, Rao KR, Riehm JP (1987) The ultrastructure of nerve endings containing pigment-dispersing hormone (PDH) in crustacean sinus glands: Identification by an antiserum against synthetic PDH. Cell Tissue Res 250:377–387

    Article  CAS  Google Scholar 

  • Dircksen H, Neupert S, Predel R, Verleyen P, Huybrechts J, Strauss J, et al. (2011) Genomics, transcriptomics, and peptidomics of Daphnia pulex neuropeptides and protein hormones. J Proteome Res 10:4478–4504

  • Downing AC (1974) The hydraulic suspension of the Daphnia eye - a new kind of universal joint? Vision Res 14:647–652

    Article  CAS  PubMed  Google Scholar 

  • Elofsson R (2006) The frontal eyes of crustaceans. Arthropod Struct Dev 35:275–291

    Article  PubMed  Google Scholar 

  • Elofsson R, Dahl E (1970) The optic neuropiles and chiasmata of Crustacea. Z Zellforsch 107:343–360

    Article  CAS  PubMed  Google Scholar 

  • Elofsson R, Nässel D, Myhrberg H (1977) A catecholaminergic neuron connecting the first two optic neuropiles (lamina ganglionaris and medulla externa) of the crayfish Pacifastacus leniusculus. Cell Tissue Res 182:287–297

    CAS  PubMed  Google Scholar 

  • Eriksson BJ, Ungerer P, Stollewerk A (2013) The function of Notch signalling in segment formation in the crustacean Daphnia magna (Branchiopoda). Dev Biol 383:321–330

    Article  CAS  PubMed  Google Scholar 

  • Flaster MS, Macagno ER (1984) Cellular interactions and pattern formation in the visual system of the branchiopod crustacean, Daphnia magna. III. the relationship between cell birth dates and cell fates in the optic lamina. J Neurosci 4:1486–1498

  • Fritsch M, Richter S (2010) The formation of the nervous system during larval development in Triops cancriformis (Bosc) (Crustacea, Branchiopoda): an immunohistochemical survey. J Morphol 271:1457–1481

    Article  PubMed  Google Scholar 

  • Fritsch M, Richter S (2012) Nervous system development in Spinicaudata and Cyclestherida (Crustacea, Branchiopoda)--comparing two different modes of indirect development by using an event pairing approach. J Morphol 273:672–695

    Article  PubMed  Google Scholar 

  • Fritsch M, Bininda-Emonds O, Richter S (2013) Unraveling the origin of Cladocera by identifying heterochrony in the developmental sequences of Branchiopoda. Front Zool 10:35

    Article  PubMed Central  PubMed  Google Scholar 

  • Gicklhorn J (1931) Beobachtungen an den lateralen Frontalorganen von Daphnia magna M. nach elektiver Vitalfärbung. Protoplasma 13:725–739

    Article  Google Scholar 

  • Gupta N, Stopfer M (2012) Functional analysis of a higher olfactory center, the lateral horn. J Neurosci 32:8138–8148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Halcrow K (1969) Sites of presumed neurosecretory activity in Daphnia magna Straus. Can J Zool 47:575–577

    Article  CAS  PubMed  Google Scholar 

  • Hallberg E, Johansson KU, Elofsson R (1992) The aesthetasc concept: structural variations of putative olfactory receptor cell complexes in Crustacea. Microsc Res Tech 22:325–335

    Article  CAS  PubMed  Google Scholar 

  • Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere. Springer, Berlin

  • Harzsch S (2002) The phylogenetic significance of crustacean optic neuropils and chiasmata: a re-examination. J Comp Neurol 453:10–21

    Article  PubMed  Google Scholar 

  • Harzsch S (2006) Neurophylogeny: architecture of the nervous system and a fresh view on arthropod phyologeny. Integr Comp Biol 46:162–194

    Article  PubMed  Google Scholar 

  • Harzsch S, Dawirs RR (1996) Development of neurons exhibiting FMRFamide-related immunoreactivity in the central nervous system of larvae of the spider crab Hyas araneus L. (Decapoda: Majidae). J Crustacean Biol 16:10–19

    Article  Google Scholar 

  • Harzsch S, Glötzner J (2002) An immunohistochemical study of structure and development of the nervous system in the brine shrimp Artemia salina Linnaeus, 1758 (Branchiopoda, Anostraca) with remarks on the evolution of the arthropod brain. Arthropod Struct Dev 30:251–270

    Article  PubMed  Google Scholar 

  • Harzsch S, Hansson BS (2008) Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell. BMC Neurosci 9:58

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Harzsch S, Walossek D (2001) Neurogenesis in the developing visual system of the branchiopod crustacean Triops longicaudatus (LeConte, 1846): corresponding patterns of compound-eye formation in Crustacea and Insecta? Dev Genes Evol 211:37–43

    Article  CAS  PubMed  Google Scholar 

  • Harzsch S, Dircksen H, Beltz BS (2009) Development of pigment-dispersing hormone-immunoreactive neurons in the American lobster: homology to the insect circadian pacemaker system? Cell Tissue Res 335:417–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harzsch S, Sandeman D, Chaigneau J (2012) Morphology and development of the central nervous system. In: Forest J, von Vaupel Klein JC (eds) Treatise on zoology – anatomy, taxonomy, biology. the crustacea, vol 3. Brill, Leiden, pp 9–236

    Chapter  Google Scholar 

  • Hausen K (1993) Decoding of retinal image flow in insects. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 203–235

    Google Scholar 

  • Helfrich-Förster C (2009) Neuropeptide PDF plays multiple roles in the circadian clock of Drosophila melanogaster. Sleep Biol Rhythms 7:130–143

    Article  Google Scholar 

  • Helfrich-Förster C, Homberg U (1993) Pigment-dispersing hormone-immunoreactive neurons in the nervous system of wild-type Drosophila melanogaster and of several mutants with altered circadian rhythmicity. J Comp Neurol 337:177–190

    Article  PubMed  Google Scholar 

  • Homberg U (2008) Evolution of the central complex in the arthropod brain with respect to the visual system. Arthropod Struct Dev 37:347–362

    Article  PubMed  Google Scholar 

  • Homberg U, Hildebrand JG (1991) Histamine-immunoreactive neurons in the midbrain and suboesophageal ganglion of sphinx moth Manduca sexta. J Comp Neurol 307:647–657

    Article  CAS  PubMed  Google Scholar 

  • Homberg U, Würden S, Dircksen H, Rao KR (1991) Comparative anatomy of pigment-dispersing hormone- immunoreactive neurons in the brain of orthopteroid insects. Cell Tissue Res 266:343–357

    Article  Google Scholar 

  • Jefferis GS, Potter CJ, Chan AM, Marin EC, Rohlfing T, Maurer CR Jr, Luo L (2007) Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128:1187–1203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kenning M, Müller C, Wirkner CS, Harzsch S (2013) The Malacostraca (Crustacea) from a neurophylogenetic perspective: new insights from brain architecture in Nebalia herbstii Leach, 1814 (Leptostraca, Phyllocarida). Zool Anz 252:319–336

    Article  Google Scholar 

  • Kirsch R, Richter S (2007) The nervous system of Leptodora kindtii (Branchiopoda, Cladocera) surveyed with confocal scanning microscopy (cLSM), including general remarks on the branchiopod neuromorphological ground pattern. Arthropod Struct Dev 36:143–156

    Article  PubMed  Google Scholar 

  • Klagges BR, Heimbeck G, Godenschwege TA, Hofbauer A, Pflugfelder GO, Reifegerste R, Reisch D, Schaupp M, Buchner S, Buchner E (1996) Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. J Neurosci 16:3154–3165

    CAS  PubMed  Google Scholar 

  • Krieger J, Sandeman RE, Sandeman DC, Hansson BS, Harzsch S (2010) Brain architecture of the largest living land arthropod, the Giant Robber Crab Birgus latro (Crustacea, Anomura, Coenobitidae): evidence for a prominent central olfactory pathway? Front Zool 7:25

    Article  PubMed Central  PubMed  Google Scholar 

  • LeBlanc GA (2007) Crustacean endocrine toxicology: a review. Ecotoxicology 16:61–81

    Article  CAS  PubMed  Google Scholar 

  • Leder H (1915) Untersuchungen über den feineren Bau des Nervensystems der Cladoceren. Arb Zool Inst Univ Wien Triest 20:297–392

  • Leydig F (1860) Naturgeschichte der Daphniden. Laupp & Siebeck Verlag, Tübingen

  • Loesel R, Homberg U (1999) Histamine-immunoreactive neurons in the brain of the cockroach Leucophaea maderae. Brain Res 842:408–418

    Article  CAS  PubMed  Google Scholar 

  • Loesel R, Nässel DR, Strausfeld NJ (2002) Common design in a unique midline neuropil in the brains of arthropods. Arthropod Struct Dev 31:77–91

    Article  PubMed  Google Scholar 

  • Loesel R, Wolf H, Kenning M, Harzsch S, Sombke A (2013) Architectural principles and evolution of the arthropod central nervous system. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution: molecules, development, morphology. Springer, Berlin, pp 299–342

    Chapter  Google Scholar 

  • Lopresti V, Macagno ER, Levinthal C (1973) Structure and development of neuronal connections in isogenic organisms: cellular interactions in the development of the optic lamina of Daphnia. Proc Natl Acad Sci U S A 70:433–437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lopresti V, Macagno ER, Levinthal C (1974) Structure and development of neuronal connections in isogenic organisms: transient gap junctions between growing optic axons and lamina neuroblasts. Proc Natl Acad Sci U S A 71:1098–1102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lundquist CT, Clottens FL, Holman GM, Riehm JP, Bonkale W, Nässel DR (1994) Locustatachykinin immunoreactivity in the blowfly central nervous system and intestine. J Comp Neurol 341:225–240

    Article  CAS  PubMed  Google Scholar 

  • Macagno ER (1979) Cellular interactions and pattern formation in the development of the visual system of Daphnia magna (Crustacea, Branchiopoda). I. Interactions between embryonic retinular fibers and laminar neurons. Dev Biol 73:206–238

  • Macagno ER (1981) Cellular interactions and pattern formation in the development of the visual system of Daphnia magna (Crustacea, Branchiopoda). II. Induced retardation of optic axon ingrowth results in a delay in laminar neuron differentiation. J Neurosci 1:945–955

  • Macagno E (1984) Formation of ordered connections in the visual system of Daphnia magna. Bioscience 34:308–312

    Article  Google Scholar 

  • Macagno ER, Levinthal C (1973) Synaptic organization of visual complex of Daphnia magna. J Gen Physiol 61:265–265

    Google Scholar 

  • Macagno ER, Lopresti V, Levinthal C (1973) Structure and development of neuronal connections in isogenic organisms: variations and similarities in the optic system of Daphnia magna. Proc Natl Acad Sci U S A 70:57–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mangerich S, Keller R (1988) Localization of pigment-dispersing hormone (PDH) immunoreactivity in the central nervous system of Carcinus maenas and Orconectes limosus (Crustacea), with reference to FMRFamide immunoreactivity in O. limosus. Cell Tissue Res 253:199–208

    Article  CAS  PubMed  Google Scholar 

  • Mangerich S, Keller R, Dircksen H, Rao KR, Riehm JP (1987) Immunocytochemical localization of pigment-dispersing hormone (PDH) and its coexistence with FMRFamide-immunoreactive material in the eyestalks of the decapod crustaceans Carcinus maenas and Orconectes limosus. Cell Tissue Res 250:365–375

    Article  Google Scholar 

  • McCoole MD, Baer KN, Christie AE (2011) Histaminergic signaling in the central nervous system of Daphnia and a role for it in the control of phototactic behavior. J Exp Biol 214:1773–1782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mellon D Jr (2000) Convergence of multimodal sensory input onto higher-level neurons of the crayfish olfactory pathway. J Neurophysiol 84:3043–3055

    PubMed  Google Scholar 

  • Mellon D Jr (2007) Combining dissimilar senses: central processing of hydrodynamic and chemosensory inputs in aquatic crustaceans. Biol Bull 213:1–11

    Article  PubMed  Google Scholar 

  • Mittmann B, Ungerer P, Klann M, Stollewerk A, Wolff C (2014) Development and staging of the water flea Daphnia magna (Straus, 1820; Cladocera, Daphniidae) based on morphological landmarks. EvoDevo 5:12

    Article  PubMed Central  PubMed  Google Scholar 

  • Müller M, Homberg U, Kühn A (1997) Neuroarchitecture of the lower division of the central body in the brain of the locust (Schistocerca gregaria). Cell Tissue Res 288:159–176

    Article  PubMed  Google Scholar 

  • Nässel DR (1999) Histamine in the brain of insects: a review. Microsc Res Tech 44:121–136

    Article  PubMed  Google Scholar 

  • Nässel DR, Elekes K (1992) Aminergic neurons in the brain of blowflies and Drosophila: dopamine- and tyrosine hydroxylase-immunoreactive neurons and their relationship with putative histaminergic neurons. Cell Tissue Res 267:147–167

    Article  PubMed  Google Scholar 

  • Nässel DR, Elofsson R, Odselius R (1978) Neural connectivity patterns in the compound eyes of Artemia salina and Daphnia magna. Cell Tissue Res 190:435–457

    Article  PubMed  Google Scholar 

  • Nässel DR, Shiga S, Mohrherr CJ, Rao KR (1993) Pigment-dispersing hormone-like peptide in the nervous system of the flies Phormia and Drosophila: immunocytochemistry and partial characterization. J Comp Neurol 331:183–198

    Article  PubMed  Google Scholar 

  • Nilsson DE, Osorio D (1998) Homology and parallelism in arthropod sensory processing. In: Fortey RA, Thomas RH (eds) Arthropod relationships. The Systematics Association Special Volume Series, vol 55. Springer, Dordrecht, pp 333–347

    Chapter  Google Scholar 

  • Olesen J, Martin JW, Roessler EW (1996) External morphology of the male of Cyclestheria hislopi (Baird, 1859) (Crustacea, Branchiopoda, Spinicaudata), with a comparison of male claspers among the Conchostraca and Cladocera and its bearing on phylogeny of the ‘bivalved’ Branchiopoda. Zool Scripta 25:291–316

    Article  Google Scholar 

  • Polanska MA, Yasuda A, Harzsch S (2007) Immunolocalisation of crustacean-SIFamide in the median brain and eyestalk neuropils of the marbled crayfish. Cell Tissue Res 330:331–344

    Article  CAS  PubMed  Google Scholar 

  • Polanska M, Tuchina O, Agricola H, Hansson B, Harzsch S (2012) Neuropeptide complexity in the crustacean central olfactory pathway: immunolocalization of A-type allatostatins and RFamide-like peptides in the brain of a terrestrial hermit crab. Mol Brain 5:1–17

    Article  CAS  Google Scholar 

  • Rádl E (1912) Neue Lehre vom zentralen Nervensystem. Engelmann, Leipzig

  • Retzius G (1906) Zur Kenntnis des Nervensystems der Daphniden. Biol Unters N F 13:107–116

  • Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Doring C, Faller S, Fritsch M, Grobe P, Heuer C, Kaul S, Moller O, Müller C, Rothe B, Stegner M, Harzsch S (2010) Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool 29:1–49

  • Samassa P (1891) Untersuchungen über das centrale Nervensystem der Cladoceren. Arch Mikrosk Anat 38:100–141

  • Sandeman D, Mellon D Jr (2002) Olfactory centers in the brain of freshwater crayfish. In: Wiese K (ed) The crustacean nervous system. Springer, Berlin, pp 386–404

    Chapter  Google Scholar 

  • Sandeman DC, Scholtz G (1995) Ground plans, evolutionary changes and homologies in crustacean brains. In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates: an evolutionary and comparative approach. Birkhäuser, Basel, pp 329–347

    Chapter  Google Scholar 

  • Sandeman D, Sandeman R, Derby C, Schmidt M (1992) Morphology of the brain of crayfish, crabs, and spiny lobsters - a common nomenclature for homologous structures. Biol Bull 183:304–326

    Article  Google Scholar 

  • Sandeman DC, Scholtz G, Sandeman RE (1993) Brain evolution in decapod Crustacea. J Exp Zool 265:112–133

    Article  Google Scholar 

  • Sandeman D, Kenning M, Harzsch S (2014) Adaptive trends in malacostracan brain form and function related to behaviour. In: Derby C, Thiel M (eds) Crustacean nervous system and their control of behaviour. The natural history of the Crustacea, vol 3. Oxford University Press, Oxford, pp 11–48

  • Schachtner J, Schmidt M, Homberg U (2005) Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea + Hexapoda). Arthropod Struct Dev 34:257–299

    Article  Google Scholar 

  • Schmidt M, Ache BW (1994) Descending neurons with dopamine-like or with substance P/FMRFamide-like immunoreactivity target the somata of olfactory interneurons in the brain of the spiny lobster, Panulirus argus. Cell Tissue Res 278:337–352

    CAS  PubMed  Google Scholar 

  • Schmidt M, Mellon D Jr (2011) Neuronal processing of chemical information in crustaceans. In: Breithaupt TMT (ed) Chemical communication in crustaceans. Springer, New York, pp 123–147

    Google Scholar 

  • Schnell B, Joesch M, Forstner F, Raghu SV, Otsuna H, Ito K, Borst A, Reiff DF (2010) Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. J Neurophysiol 103:1646–1657

    Article  CAS  PubMed  Google Scholar 

  • Seda J, Petrusek A (2011) Daphnia as a model organism in limnology and aquatic biology: some aspects of its reproduction and development. J Limnol 70:337–344

  • Sims SJ, Macagno ER (1985) Computer reconstruction of all the neurons in the optic ganglion of Daphnia magna. J Comp Neurol 233:12–29

    Article  CAS  PubMed  Google Scholar 

  • Sinakevitch I, Douglass JK, Scholtz G, Loesel R, Strausfeld NJ (2003) Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa. J Comp Neurol 467:150–172

    Article  CAS  PubMed  Google Scholar 

  • Smith KC, Macagno ER (1990) UV photoreceptors in the compound eye of Daphnia magna (Crustacea, Branchiopoda). a fourth spectral class in single ommatidia. J Comp Physiol A 166:597–606

    Article  CAS  PubMed  Google Scholar 

  • Sombke A, Harzsch S (2015) Immunolocalization of histamine in the optic neuropils of Scutigera coleoptrata (Myriapoda: Chilopoda) reveals the basal organization of visual systems in Mandibulata. Neurosci Lett 594:111–116

    Article  CAS  PubMed  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  CAS  PubMed  Google Scholar 

  • Stegner MEJ, Fritsch M, Richter S (2014) The central complex in Crustacea. In: Wägele JW, Bartolomaeus T (eds) Deep metazoan phylogeny: the backbone of the tree of life. De Gruyter, Berlin, pp 361–384

    Google Scholar 

  • Sterba G (1957) Die neurosekretorischen Zellgruppen einiger Cladoceren (Daphnia pulex und magna, Simocephalus vetulus). Zool Jahrb Anat 76:303–310

  • Stocker RF, Lienhard MC, Borst A, Fischbach KF (1990) Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res 262:9–34

    Article  CAS  PubMed  Google Scholar 

  • Stollewerk A (2010) The water flea Daphnia - a ‘new’ model system for ecology and evolution? J Biol 9:21

    Article  PubMed Central  PubMed  Google Scholar 

  • Strausfeld NJ (2005) The evolution of crustacean and insect optic lobes and the origins of chiasmata. Arthropod Struct Dev 34:235–256

    Article  Google Scholar 

  • Strausfeld NJ (2009) Brain organization and the origin of insects: an assessment. Proc R Soc Lond B 276:1929–1937

    Article  Google Scholar 

  • Strausfeld NJ (2012) Arthropod brains - evolution, functional elegance, and historical significance. Belknap Press, Cambridge

    Google Scholar 

  • Strausfeld NJ, Andrew DR (2011) A new view of insect-crustacean relationships I. Inferences from neural cladistics and comparative neuroanatomy. Arthropod Struct Dev 40:276–288

  • Strausfeld NJ, Nässel DR (1980) Neuroarchitecture of brain regions that subserve the compound eyes of Crustacea and insects. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6b: comparative physiology and evolution of vision in invertebrates. Springer, Berlin, pp 1–132

    Google Scholar 

  • Strauß J, Dircksen H (2010) Circadian clocks in crustaceans: identified neuronal and cellular systems. Front Biosci 15:1040–1074

    Article  Google Scholar 

  • Strauß J, Zhang Q, Verleyen P, Huybrechts J, Neupert S, Predel R, Pauwels K, Dircksen H (2011) Pigment-dispersing hormone in Daphnia interneurons, one type homologous to insect clock neurons displaying circadian rhythmicity. Cell Mol Life Sci 68:3403–3423

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JM, Beltz BS (2001a) Development and connectivity of olfactory pathways in the brain of the lobster Homarus americanus. J Comp Neurol 441:23–43

    Article  CAS  PubMed  Google Scholar 

  • Sullivan JM, Beltz BS (2001b) Neural pathways connecting the deutocerebrum and lateral protocerebrum in the brains of decapod crustaceans. J Comp Neurol 441:9–22

    Article  CAS  PubMed  Google Scholar 

  • Sullivan JM, Genco MC, Marlow ED, Benton JL, Beltz BS, Sandeman DC (2009) Brain photoreceptor pathways contributing to circadian rhythmicity in crayfish. Chronobiol Int 26:1136–1168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka NK, Awasaki T, Shimada T, Ito K (2004) Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr Biol 14:449–457

    Article  CAS  PubMed  Google Scholar 

  • Tatarazako N, Oda S (2007) The water flea Daphnia magna (Crustacea, Cladocera) as a test species for screening and evaluation of chemicals with endocrine disrupting effects on crustaceans. Ecotoxicology 16:197–203

    Article  CAS  PubMed  Google Scholar 

  • Threlkeld ST (1979) Estimating cladoceran birth rates: the importance of egg mortality and the egg age distribution. Limnol Oceanogr 24:601–612

    Article  Google Scholar 

  • Ungerer P, Eriksson BJ, Stollewerk A (2011) Neurogenesis in the water flea Daphnia magna (Crustacea, Branchiopoda) suggests different mechanisms of neuroblast formation in insects and crustaceans. Dev Biol 357:42–52

    Article  CAS  PubMed  Google Scholar 

  • Utting M, Agricola HJ, Sandeman R, Sandeman D (2000) Central complex in the brain of crayfish and its possible homology with that of insects. J Comp Neurol 416:245–261

    Article  CAS  PubMed  Google Scholar 

  • van den Bosch de Aguilar P (1969) New morphological data and hypotheses on the role of the neurosecretory system in Daphnia pulex (Crustacea: Cladocera). Ann Soc R Zool Belg 99:27–44

    Google Scholar 

  • van den Bosch de Aguilar P (1971) The neurosecretory system of Podon intermedius (Crustacea: Cladocera). Ann Soc R Zool Belg 101:57–63

    Google Scholar 

  • van den Bosch de Aguilar P (1972) Les caractéristiques tinctoriales des cellules neurosécrétrices chez Daphnia pulex (Crustacea: Cladocera). Gen Comp Endocrinol 18:140–145

    Article  Google Scholar 

  • van den Bosch de Aguilar P (1979) Neurosecretion in the entomostracan crustaceans. La Cellule 73:1–21

    Google Scholar 

  • Viallanes H (1893) Etudes histologiques et organologiques sur les organes des sens des animaux articulés. Ann Sci Nat, Série 7 14:405–456

  • Weiss LC, Tollrian R, Herbert Z, Laforsch C (2012) Morphology of the Daphnia nervous system: a comparative study on Daphnia pulex, Daphnia lumholtzi, and Daphnia longicephala. J Morphol 273:1392–1405

    Article  PubMed  Google Scholar 

  • Weiss LC, Laforsch C, Ioannidou I, Herbert Z, Tollrian R (2014) Daphnia longicephala neuropeptides: morphological description of crustacean cardioactive peptide (CCAP) and periviscerokinins in the Ctenodaphnia central nervous system. Neuropeptides 48:287–293

    Article  CAS  PubMed  Google Scholar 

  • Wildt M, Harzsch S (2002) A new look at an old visual system: structure and development of the compound eyes and optic ganglia of the brine shrimp Artemia salina Linnaeus, 1758 (Branchiopoda, Anostraca). J Neurobiol 52:117–132

    Article  PubMed  Google Scholar 

  • Wolff JR, Güldner FH (1970) Über die Ultrastruktur des “Nervus opticus” und des Ganglion opticum I von Daphnia pulex. Z Zellforsch Mikrosk Anat 103:526–543

  • Wolff G, Harzsch S, Hansson BS, Brown S, Strausfeld N (2012) Neuronal organization of the hemiellipsoid body of the land hermit crab, Coenobita clypeatus: correspondence with the mushroom body ground pattern. J Comp Neurol 520:2824–2846

    Article  PubMed  Google Scholar 

  • Yasuda-Kamatani Y, Yasuda A (2006) Characteristic expression patterns of allatostatin-like peptide, FMRFamide-related peptide, orcokinin, tachykinin-related peptide, and SIFamide in the olfactory system of crayfish Procambarus clarkii. J Comp Neurol 496:135–147

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Keller R, Dircksen H (1997) Crustacean hyperglycaemic hormone in the nervous system of the primitive crustacean species Daphnia magna and Artemia salina (Crustacea: Branchiopoda). Cell Tissue Res 287:565–576

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

T.K. gratefully acknowledges receiving a stipend from the Faculty of Natural Sciences, Stockholm University. H.D. is grateful to the Faculty of Natural Sciences, Stockholm University and the Carl-Tryggers Foundation, Stockholm, for support. We thank Prof. Dick R. Nässel, Stockholm University, for providing the Locusta-tachykinin antiserum. The monoclonal antibodies 3C11 (anti SYNORF1)(Klagges et al. 1996) and 5 F10 (anti-Dippu-allatostatin-7, deposited by Barbara Stay) were obtained from the Developmental Studies Hybridoma Bank, created by the NICHD of the NIH and maintained at the University of Iowa, Department of Biology, Iowa City, IA 52242, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Dircksen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Terminology and synonyms of Daphnia and other branchiopodan optic ganglia and brain neuropiles. (DOCX 34.9 kb)

Fig. S1

SYN-ir neuropiles in the central brain of Daphnia magna. The video shows a rotating stack of confocal micrographs depth-coded from the dorsal (red) to ventral (blue) side of the brain. Note especially on the ventral side the inner and outer domains of the protocerebral bridge (PB isd, osd) and the central body and on the dorsal side the anterior and posterior dorsal neuropiles (aDN, pDN) and the lateral and tritocerebral neuropiles (LN, TCN). For more explanations see text and of text Figs. 4–7 (GIF 33370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kress, T., Harzsch, S. & Dircksen, H. Neuroanatomy of the optic ganglia and central brain of the water flea Daphnia magna (Crustacea, Cladocera). Cell Tissue Res 363, 649–677 (2016). https://doi.org/10.1007/s00441-015-2279-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2279-4

Keywords

Navigation