Skip to main content
Log in

Polo-box domain: a versatile mediator of polo-like kinase function

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Members of the polo subfamily of protein kinases have emerged as important regulators in diverse aspects of the cell cycle and cell proliferation. A large body of evidence suggests that a highly conserved polo-box domain (PBD) present in the C-terminal non-catalytic region of polo kinases plays a pivotal role in the function of these enzymes. Recent advances in our comprehension of the mechanisms underlying mammalian polo-like kinase 1 (Plk1)-dependent protein–protein interactions revealed that the PBD serves as an essential molecular mediator that brings the kinase domain of Plk1 into proximity with its substrates, mainly through phospho-dependent interactions with its target proteins. In this review, current understanding of the structure and functions of PBD, mode of PBD-dependent interactions and substrate phosphorylation, and other phospho-independent functions of PBD are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sunkel CL, Glover DM (1988) polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. J Cell Sci 89:25–38

    PubMed  Google Scholar 

  2. Archambault V, Glover DM (2009) Polo-like kinases: conservation and divergence in their functions and regulation. Nat Rev Mol Cell Biol 10:265–275

    Article  CAS  PubMed  Google Scholar 

  3. Barr FA, Sillje HH, Nigg EA (2004) Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol 5:429–440

    Article  CAS  PubMed  Google Scholar 

  4. Winkles JA, Alberts GF (2005) Differential regulation of polo-like kinase 1, 2, 3, and 4 gene expression in mammalian cells and tissues. Oncogene 24:260–266

    Article  CAS  PubMed  Google Scholar 

  5. Clay FJ, McEwen SJ, Bertoncello I, Wilks AF, Dunn AR (1993) Identification and cloning of a protein kinase-encoding mouse gene, Plk, related to the polo gene of Drosophila. Proc Natl Acad Sci USA 90:4882–4886

    Article  CAS  PubMed  Google Scholar 

  6. Hamanaka R, Maloid S, Smith MR, O’Connell CD, Longo DL, Ferris DK (1994) Cloning and characterization of human and murine homologues of the Drosophila polo serine-threonine kinase. Cell Growth Differ 5:249–257

    CAS  PubMed  Google Scholar 

  7. Holtrich U, Wolf G, Bräuninger A, Karn T, Böhme B, Rübsamen-waigmann H, Strebhardt K (1994) Induction and down-regulation of PLK, a human serine/threonine kinase expressed in proliferating cells and tumors. Proc Natl Acad Sci USA 91:1736–1740

    Article  CAS  PubMed  Google Scholar 

  8. Lake RJ, Jelinek WR (1993) Cell cycle- and terminal differentiation-associated regulation of the mouse mRNA encoding a conserved mitotic protein kinase. Mol Cell Biol 13:7793–7801

    CAS  PubMed  Google Scholar 

  9. Simmons DL, Neel BG, Stevens R, Evett G, Erikson RL (1992) Identification of an early-growth-response gene encoding a novel putative protein kinase. Mol Cell Biol 12:4164–4169

    CAS  PubMed  Google Scholar 

  10. Liby K, Wu H, Ouyang B, Wu S, Chen J, Dai W (2001) Identification of the human homologue of the early-growth response gene Snk, encoding a serum-inducible kinase. DNA Seq 11:527–533

    Article  CAS  PubMed  Google Scholar 

  11. Donohue PJ, Alberts GF, Guo Y, Winkles JA (1995) Identification by targeted differential display of an immediate early gene encoding a putative serine/threonine kinase. J Biol Chem 270:10351–10357

    Article  CAS  PubMed  Google Scholar 

  12. Li B, Ouyang B, Pan H, Reissmann PT, Slamon DJ, Arceci R, Lu L, Dai W (1996) prk, a cytokine-inducible human protein serine/threonine kinase whose expression appears to be down-regulated in lung carcinomas. J Biol Chem 271:19402–19408

    Article  CAS  PubMed  Google Scholar 

  13. Fode C, Motro B, Yousefi S, Heffernan M, Dennis JW (1994) Sak, a murine protein-serine/threonine kinase that is related to the Drosophila polo kinase and involved in cell proliferation. Proc Natl Acad Sci USA 91:6388–6392

    Article  CAS  PubMed  Google Scholar 

  14. Kitada K, Johnson AL, Johnston LH, Sugino A (1993) A multicopy suppressor gene of the Saccharomyces cerevisiae G1 cell cycle mutant gene dbf4 encodes a protein kinase and is identified as CDC5. Mol Cell Biol 13:4445–4457

    CAS  PubMed  Google Scholar 

  15. Ohkura H, Hagan IM, Glover DM (1995) The conserved Schizosaccharomyces pombe kinase plo1, required to form a bipolar spindle, the actin ring, and septum, can drive septum formation in G1 and G2 cells. Genes Dev 9:1059–1073

    Article  CAS  PubMed  Google Scholar 

  16. Petronczki M, Lénárt P, Peters JM (2008) Polo on the rise-from mitotic entry to cytokinesis with Plk1. Dev Cell 14:646–659

    Article  CAS  PubMed  Google Scholar 

  17. Takaki T, Trenz K, Costanzo V, Petronczki M (2008) Polo-like kinase 1 reaches beyond mitosis–cytokinesis, DNA damage response, and development. Curr Opin Cell Biol 20:650–660

    Article  CAS  PubMed  Google Scholar 

  18. Lee KS, Grenfell TZ, Yarm FR, Erikson RL (1998) Mutation of the polo-box disrupts localization and mitotic functions of the mammalian polo kinase Plk. Proc Natl Acad Sci USA 95:9301–9306

    Article  CAS  PubMed  Google Scholar 

  19. Strebhardt K, Ullrich A (2006) Targeting polo-like kinase 1 for cancer therapy. Nat Rev Cancer 6:321–330

    Article  CAS  PubMed  Google Scholar 

  20. Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, Wong KK, Elledge SJ (2009) A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137:835–848

    Article  CAS  PubMed  Google Scholar 

  21. Sur S, Pagliarini R, Bunz F, Rago C, Diaz LAJ, Kinzler KW, Vogelstein B, Papadopoulos N (2009) A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc Natl Acad Sci USA 106:3964–3969

    Article  CAS  PubMed  Google Scholar 

  22. Lu LY, Wood JL, Minter-Dykhouse K, Ye L, Saunders TL, Yu X, Chen J (2008) Polo-like kinase 1 is essential for early embryonic development and tumor suppression. Mol Cell Biol 28:6870–6876

    Article  CAS  PubMed  Google Scholar 

  23. Simizu S, Osada H (2000) Mutations in the Plk gene lead to instability of Plk protein in human tumour cell lines. Nat Cell Biol 2:852–854

    Article  CAS  PubMed  Google Scholar 

  24. Golsteyn RM, Mundt KE, Fry AM, Nigg EA (1995) Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function. J Cell Biol 129(6):1617–1628

    Article  CAS  Google Scholar 

  25. Lee KS, Yuan Y-L, Kuriyama R, Erikson RL (1995) Plk is an M-phase-specific protein kinase and interacts with a kinesin-like protein, CHO1/MKLP-1. Mol Cell Biol 15:7143–7151

    CAS  PubMed  Google Scholar 

  26. Ma S, Liu MA, Yuan Y-L, Erikson RL (2003) The serum-inducible protein kinase Snk is a G1 phase polo-like kinase that is inhibited by the calcium- and integrin-binding protein CIB Mol Cancer Res 1:376–384

    CAS  PubMed  Google Scholar 

  27. Ma S, Charron J, Erikson RL (2003) Role of Plk2 (Snk) in mouse development and cell proliferation. Mol Cell Biol 23:6936–6943

    Article  CAS  PubMed  Google Scholar 

  28. Burns TF, Fei P, Scata KA, Dicker DT, El-Deiry WS (2003) Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)-exposed cells. Mol Cell Biol 23:5556–5571

    Article  CAS  PubMed  Google Scholar 

  29. Chase D, Feng Y, Hanshew B, Winkles JA, Longo DL, Ferris DK (1998) Expression and phosphorylation of fibroblast-growth-factor-inducible kinase (Fnk) during cell-cycle progression. Biochem J 333:655–660

    CAS  PubMed  Google Scholar 

  30. Ouyang B, Li W, Pan H, Meadows J, Hoffmann I, Dai W (1999) The physical association and phosphorylation of Cdc25C protein phosphatase by Prk. Oncogene 18:6029–6036

    Article  CAS  PubMed  Google Scholar 

  31. Conn CW, Hennigan RF, Dai W, Sanchez Y, Stambrook PJ (2000) Incomplete cytokinesis and induction of apoptosis by overexpression of the mammalian polo-like kinase, Plk3. Cancer Res 60:6826–6831

    CAS  PubMed  Google Scholar 

  32. Bahassi EM, Conn CW, Myer DL, Hennigan RF, McGowan CH, Sanchez Y, Stambrook PJ (2002) Mammalian Polo-like kinase 3 (Plk3) is a multifunctional protein involved in stress response pathways. Oncogene 21:6633–6640

    Article  CAS  Google Scholar 

  33. Xie S, Wu H, Wang Q, Kunicki J, Thomas RO, Hollingsworth RE, Cogswell J, Dai W (2002) Genotoxic stress-induced activation of Plk3 is partly mediated by Chk2. Cell Cycle 1:424–429

    CAS  PubMed  Google Scholar 

  34. Xie S, Wu H, Wang Q, Cogswell JP, Husain I, Conn C, Stambrook P, Jhanwar-Uniyal M, Dai W (2001) Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway. J Biol Chem 276:43305–43312

    Article  CAS  PubMed  Google Scholar 

  35. Xie S, Wang Q, Wu H, Cogswell J, Lu L, Jhanwar-Uniyal M, Dai W (2001) Reactive oxygen species-induced phosphorylation of p53 on serine 20 is mediated in part by polo-like kinase-3. J Biol Chem 276:36194–36199

    Article  CAS  PubMed  Google Scholar 

  36. Xie S, Xie B, Lee MY, Dai W (2005) Regulation of cell cycle checkpoints by polo-like kinases. Oncogene 24:277–286

    Article  PubMed  CAS  Google Scholar 

  37. Yang Y, Bai J, Shen R, Brown SA, Komissarova E, Huang Y, Jiang N, Alberts GF, Costa M, Lu L, Winkles JA, Dai W (2008) Polo-like kinase 3 functions as a tumor suppressor and is a negative regulator of hypoxia-inducible factor-1 alpha under hypoxic conditions. Cancer Res 68:4077–4085

    Article  CAS  PubMed  Google Scholar 

  38. Smith P, Syed N, Crook T (2006) Epigenetic inactivation implies a tumor suppressor function in hematologic malignancies for polo-like kinase 2 but not polo-like kinase 3. Cell Cycle 5:1262–1264

    CAS  PubMed  Google Scholar 

  39. Lee KS, Erikson RL (1997) Plk is a functional homolog of Saccharomyces cerevisiae Cdc5, and elevated Plk activity induces multiple septation structures. Mol Cell Biol 17:3408–3417

    CAS  PubMed  Google Scholar 

  40. Ouyang B, Pan H, Lu L, Li J, Stambrook P, Li B, Dai W (1997) Human Prk is a conserved protein serine/threonine kinase involved in regulating M phase functions. J Biol Chem 272:28646–28651

    Article  CAS  PubMed  Google Scholar 

  41. Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA (2005) The polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 7:1140–1146

    Article  CAS  PubMed  Google Scholar 

  42. Duensing A, Liu Y, Perdreau SA, Kleylein-Sohn J, Nigg EA, Duensing S (2007) Centriole overduplication through the concurrent formation of multiple daughter centrioles at single maternal templates. Oncogene 26:6280–6288

    Article  CAS  PubMed  Google Scholar 

  43. Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA (2007) Plk4-induced centriole biogenesis in human cells. Dev Cell 13:190–202

    Article  CAS  PubMed  Google Scholar 

  44. Bettencourt-Dias M, Rodrigues-Martins A, Carpenter L, Riparbelli M, Lehmann L, Gatt MK, Carmo N, Balloux F, Callaini G, Glover DM (2005) SAK/PLK4 is required for centriole duplication and flagella development. Curr Biol 15:2199–2207

    Article  CAS  PubMed  Google Scholar 

  45. Arnaud L, Pines J, Nigg EA (1998) GFP tagging reveals human polo-like kinase 1 at the kinetochore/centromere region of mitotic chromosomes. Chromosoma 107:424–429

    Article  CAS  PubMed  Google Scholar 

  46. Seong YS, Kamijo K, Lee JS, Fernandez E, Kuriyama R, Miki T, Lee KS (2002) A spindle checkpoint arrest and a cytokinesis failure by the dominant-negative polo-box domain of Plk1 in U-2 OS cells. J Biol Chem 277:32282–32293

    Article  CAS  PubMed  Google Scholar 

  47. Warnke S, Kemmler S, Hames RS, Tsai HL, Hoffmann-Rohrer U, Fry AM, Hoffmann I (2004) Polo-like kinase-2 is required for centriole duplication in mammalian cells. Curr Biol 14:1200–1207

    Article  CAS  PubMed  Google Scholar 

  48. Ruan Q, Wang Q, Xie S, Fang Y, Darzynkiewicz Z, Guan K, Jhanwar-Uniyal M, Dai W (2004) Polo-like kinase 3 is Golgi localized and involved in regulating Golgi fragmentation during the cell cycle. Exp Cell Res 294:51–59

    Article  CAS  PubMed  Google Scholar 

  49. Wang Q, Xie S, Chen J, Fukasawa K, Naik U, Traganos F, Darzynkiewicz Z, Jhanwar-Uniyal M, Dai W (2002) Cell cycle arrest and apoptosis induced by human Polo-like kinase 3 is mediated through perturbation of microtubule integrity. Mol Cell Biol 22:3450–3459

    Article  CAS  PubMed  Google Scholar 

  50. Zimmerman WC, Erikson RL (2007) Polo-like kinase 3 is required for entry into S phase. Proc Natl Acad Sci USA 104:1847–1852

    Article  CAS  PubMed  Google Scholar 

  51. López-Sánchez I, Sanz-García M, Lazo PA (2009) Plk3 interacts with and specifically phosphorylates VRK1 in Ser342, a downstream target in a pathway that induces Golgi fragmentation. Mol Cell Biol 29:1189–1201

    Article  PubMed  CAS  Google Scholar 

  52. Hudson JW, Kozarova A, Cheung P, Macmillan JC, Swallow CJ, Cross JC, Dennis JW (2001) Late mitotic failure in mice lacking Sak, a polo-like kinase. Curr Biol 11:441–446

    Article  CAS  PubMed  Google Scholar 

  53. Song S, Grenfell TZ, Garfield S, Erikson RL, Lee KS (2000) Essential function of the polo box of Cdc5 in subcellular localization and induction of cytokinetic structures. Mol Cell Biol 20:286–298

    Article  CAS  PubMed  Google Scholar 

  54. Archambault V, D’Avino PP, Deery MJ, Lilley KS, Glover DM (2008) Sequestration of polo kinase to microtubules by phosphopriming-independent binding to Map205 is relieved by phosphorylation at a CDK site in mitosis. Genes Dev 22:2707–2720

    Article  CAS  PubMed  Google Scholar 

  55. Jiang N, Wang X, Jhanwar-Uniyal M, Darzynkiewicz Z, Dai W (2006) Polo box domain of Plk3 functions as a centrosome localization signal, overexpression of which causes mitotic arrest, cytokinesis defects, and apoptosis. J Biol Chem 281:10577–10582

    Article  CAS  PubMed  Google Scholar 

  56. Jang YJ, Lin CY, Ma S, Erikson RL (2002) Functional studies on the role of the C-terminal domain of mammalian polo-like kinase. Proc Natl Acad Sci USA 99:1984–1989

    Article  CAS  PubMed  Google Scholar 

  57. Hanisch A, Wehner A, Nigg EA, Sillje HH (2006) Different Plk1 functions show distinct dependencies on polo-box domain-mediated targeting. Mol Biol Cell 17:448–459

    Article  CAS  PubMed  Google Scholar 

  58. Elia AE, Cantley LC, Yaffe MB (2003) Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 299:1228–1231

    Article  CAS  PubMed  Google Scholar 

  59. Elia AE, Rellos P, Haire LF, Chao JW, Ivins FJ, Hoepker K, Mohammad D, Cantley LC, Smerdon SJ, Yaffe MB (2003) The molecular basis for phospho-dependent substrate targeting and regulation of Plks by the polo-box domain. Cell 115:83–95

    Article  CAS  PubMed  Google Scholar 

  60. Cheng KY, Lowe ED, Sinclair J, Nigg EA, Johnson LN (2003) The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. EMBO J 22:5757–5768

    Article  CAS  PubMed  Google Scholar 

  61. Yun SM, Moulaei T, Lim D, Bang JK, Park JE, Shenoy SR, Liu F, Kang YH, Liao C, Soung NK, Lee S, Yoon DY, Lim Y, Lee DH, Otaka A, Appella E, McMahon JB, Nicklaus MC, Burke TRJ, Yaffe MB, Wlodawer A, Lee KS (2009) Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1. Nat Struct Mol Biol 16:876–882

    Article  CAS  PubMed  Google Scholar 

  62. Leung GC, Hudson JW, Kozarova A, Davidson A, Dennis JW, Sicheri F (2002) The Sak polo-box comprises a structural domain sufficient for mitotic subcellular localization. Nat Struct Biol 9:719–724

    Article  CAS  PubMed  Google Scholar 

  63. Lowery DM, Clauser KR, Hjerrild M, Lim D, Alexander J, Kishi K, Ong SE, Gammeltoft S, Carr SA, Yaffe MB (2007) Proteomic screen defines the polo-box domain interactome and identifies Rock2 as a Plk1 substrate. EMBO J 26:2262–2273

    Article  CAS  PubMed  Google Scholar 

  64. van de Weerdt BC, Littler DR, Klompmaker R, Huseinovic A, Fish A, Perrakis A, Medema RH (2008) Polo-box domains confer target specificity to the polo-like kinase family. Biochim Biophys Acta 1783:1015–1022

    Article  PubMed  CAS  Google Scholar 

  65. Neef R, Preisinger C, Sutcliffe J, Kopajtich R, Nigg EA, Mayer TU, Barr FA (2003) Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J Cell Biol 162:863–875

    Article  CAS  PubMed  Google Scholar 

  66. Kang YH, Park J-E, Yu L-R, Soung N-K, Yun S-M, Bang JK, Seong YS, Yu H, Veenstra TD, Lee KS (2006) Self-regulation of Plk1 recruitment to the kinetochores is critical for chromosome congression and spindle checkpoint signaling. Mol Cell 24:409–422

    Article  CAS  PubMed  Google Scholar 

  67. Lee KS, Park JE, Kang YH, Zimmerman W, Soung NK, Seong YS, Kwak SJ, Erikson RL (2008) Mechanisms of mammalian polo-like kinase 1 (Plk1) localization: self- versus non-self-priming. Cell Cycle 7:141–145

    CAS  PubMed  Google Scholar 

  68. Park J-E, Li L, Park J, Knecht R, Strebhardt K, Yuspa SH, Lee KS (2008) Direct quantification of polo-like kinase 1 activity in cells and tissues using a highly sensitive and specific ELISA assay. Proc Natl Acad Sci USA 106:1725–1730

    Article  Google Scholar 

  69. Neef R, Gruneberg U, Kopajtich R, Li X, Nigg EA, Sillje H, Barr FA (2007) Choice of Plk1 docking partners during mitosis and cytokinesis is controlled by the activation state of Cdk1. Nat Cell Biol 9:436–444

    Article  CAS  PubMed  Google Scholar 

  70. Wolfe BA, Takaki T, Petronczki M, Glotzer M (2009) Polo-like kinase 1 directs assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation. PLoS Biol 7:e1000110

    Article  PubMed  CAS  Google Scholar 

  71. Burkard ME, Maciejowski J, Rodriguez-Bravo V, Repka M, Lowery DM, Clauser KR, Zhang C, Shokat KM, Carr SA, Yaffe MB, Jallepalli PV (2009) PLoS Biol 7:e1000111

  72. Soung NK, Park JE, Yu LR, Lee KH, Lee JM, Bang JK, Veenstra TD, Rhee K, Lee KS (2009) Plk1-dependent and -independent roles of an ODF2 splice variant, hCenexin1, at the centrosome of somatic cells. Dev Cell 16:539–550

    Article  CAS  PubMed  Google Scholar 

  73. Lowery DM, Mohammad DH, Elia AE, Yaffe MB (2004) The polo-box domain: a molecular integrator of mitotic kinase cascades and Polo-like kinase function. Cell Cycle 3:128–131

    CAS  PubMed  Google Scholar 

  74. Mayer BJ, Hirai H, Sakai R (1995) Evidence that SH2 domains promote processive phosphorylation by protein–tyrosine kinases. Curr Biol 5:296–305

    Article  CAS  PubMed  Google Scholar 

  75. Pellicena P, Stowell KR, Miller WT (1998) Enhanced phosphorylation of Src family kinase substrates containing SH2 domain binding sites. J Biol Chem 273:15325–15328

    Article  CAS  PubMed  Google Scholar 

  76. Scott MP, Miller WT (2000) A peptide model system for processive phosphorylation by Src family kinases. Biochemistry 39:14531–14537

    Article  CAS  PubMed  Google Scholar 

  77. Cohen P, Frame S (2001) The renaissance of GSK3. Nat Rev Mol Cell Biol 2:769–776

    Article  CAS  PubMed  Google Scholar 

  78. Frame S, Cohen P (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359:1–16

    Article  CAS  PubMed  Google Scholar 

  79. García-Alvarez B, de Cárcer G, Ibañez S, Bragado-Nilsson E, Montoya G (2007) Molecular and structural basis of polo-like kinase 1 substrate recognition: implications in centrosomal localization. Proc Natl Acad Sci USA 104:3107–3112

    Article  PubMed  CAS  Google Scholar 

  80. Seki A, Coppinger JA, Jang CY, Yates JR, Fang G (2008) Bora and the kinase Aurora A cooperatively activate the kinase Plk1 and control mitotic entry. Science 320:1655–1658

    Article  CAS  PubMed  Google Scholar 

  81. Mundt KE, Golsteyn RM, Lane HA, Nigg EA (1997) On the regulation and function of human polo-like kinase 1(PLK1): effects of overexpression on cell cycle progression. Biochem Biophys Res Comm 239:377–385

    Article  CAS  PubMed  Google Scholar 

  82. Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE (1998) Crystal structure of the tyrosine phosphatase SHP-2. Cell 92:441–450

    Article  CAS  PubMed  Google Scholar 

  83. Marshall CJ (1994) Hot lips and phosphorylation of protein kinases. Nature 367:686

    Article  CAS  PubMed  Google Scholar 

  84. Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300:445–452

    Article  CAS  PubMed  Google Scholar 

  85. Manke IA, Lowery DM, Nguyen A, Yaffe MB (2003) BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 302:636–639

    Article  CAS  PubMed  Google Scholar 

  86. Macůrek L, Lindqvist A, Lim D, Lampson MA, Klompmaker R, Freire R, Clouin C, Taylor SS, Yaffe MB, Medema RH (2008) Polo-like kinase-1 is activated by Aurora A to promote checkpoint recovery. Nature 455:119–123

    Article  PubMed  CAS  Google Scholar 

  87. Tamura Y, Simizu S, Muroi M, Takagi S, Kawatani M, Watanabe N, Osada H (2009) Polo-like kinase 1 phosphorylates and regulates Bcl-x(L) during pironetin-induced apoptosis. Oncogene 28:107–116

    Article  CAS  PubMed  Google Scholar 

  88. Arai T, Haze K, Iimura-Morita Y, Machida T, Iida M, Tanaka K, Komatani H (2008) Identification of beta-catenin as a novel substrate of polo-like kinase 1. Cell Cycle 7:3556–3563

    CAS  PubMed  Google Scholar 

  89. Seki A, Coppinger JA, Du H, Jang CY, Yates JR, Fang G (2008) Plk1- and beta-TrCP-dependent degradation of Bora controls mitotic progression. J Cell Biol 181:65–78

    Article  CAS  PubMed  Google Scholar 

  90. Lin HR, Ting NS, Qin J, Lee WH (2003) M phase-specific phosphorylation of BRCA2 by polo-like kinase 1 correlates with the dissociation of the BRCA2-P/CAF complex. J Biol Chem 278:35979–35987

    Article  CAS  PubMed  Google Scholar 

  91. Zhang H, Shi X, Paddon H, Hampong M, Dai W, Pelech S (2004) B23/nucleophosmin serine 4 phosphorylation mediates mitotic functions of polo-like kinase 1. J Biol Chem 279:35726–35734

    Article  CAS  PubMed  Google Scholar 

  92. Qi W, Tang Z, Yu H (2006) Phosphorylation- and polo-box-dependent binding of Plk1 to Bub1 is required for the kinetochore localization of Plk1. Mol Biol Cell 17:3705–3716

    Article  CAS  PubMed  Google Scholar 

  93. Elowe S, Hümmer S, Uldschmid A, Li X, Nigg EA (2007) Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev 21:2205–2219

    Article  CAS  PubMed  Google Scholar 

  94. Toyoshima-Morimoto F, Taniguchi E, Nishida E (2002) Plk1 promotes nuclear translocation of human Cdc25C during prophase. EMBO Rep 3:341–348

    Article  CAS  PubMed  Google Scholar 

  95. Fabbro M, Zhou BB, Takahashi M, Sarcevic B, Lal P, Graham ME, Gabrielli BG, Robinson PJ, Nigg EA, Ono Y, Khanna KK (2005) Cdk1/Erk2- and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis. Dev Cell 9:477–488

    Article  CAS  PubMed  Google Scholar 

  96. Guarguaglini G, Duncan PI, Stierhof YD, Holmstrom T, Duensing S, Nigg EA (2005) The forkhead-associated domain protein Cep170 interacts with polo-like kinase 1 and serves as a marker for mature centrioles. Mol Biol Cell 16:1095–1107

    Article  CAS  PubMed  Google Scholar 

  97. Toyoshima-Morimoto F, Taniguchi E, Shinya N, Iwamatsu A, Nishida E (2001) Polo-like kinase 1 phosphorylates cyclin B1 and targets it to the nucleus during prophase. Nature 410:215–220

    Article  CAS  PubMed  Google Scholar 

  98. Jackman M, Lindon C, Nigg EA, Pines J (2003) Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat Cell Biol 5:143–148

    Article  CAS  PubMed  Google Scholar 

  99. Moshe Y, Boulaire J, Pagano M, Hershko A (2004) Role of polo-like kinase in the degradation of early mitotic inhibitor 1, a regulator of the anaphase promoting complex/cyclosome. Proc Natl Acad Sci USA 101:7937–7942

    Article  CAS  PubMed  Google Scholar 

  100. Fu Z, Malureanu L, Huang J, Wang W, Li H, van Deursen JM, Tindal DJ, Chen J (2008) Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nat Cell Biol 10:1076–1082

    Article  CAS  PubMed  Google Scholar 

  101. Lin CY, Madsen ML, Yarm FR, Jang YJ, Liu X, Erikson RL (2000) Peripheral Golgi protein GRASP65 is a target of mitotic polo-like kinase (Plk) and Cdc2. Proc Natl Acad Sci USA 97:12589–12594

    Article  CAS  PubMed  Google Scholar 

  102. Preisinger C, Korner R, Wind M, Lehmann WD, Kopajtich R, Barr FA (2005) Plk1 docking to GRASP65 phosphorylated by Cdk1 suggests a mechanism for Golgi checkpoint signalling. EMBO J 24:753–765

    Article  CAS  PubMed  Google Scholar 

  103. Wu ZQ, Liu X (2008) Role for Plk1 phosphorylation of Hbo1 in regulation of replication licensing. Proc Natl Acad Sci USA 105:1919–1924

    Article  CAS  PubMed  Google Scholar 

  104. Kim SA, Yoon JH, Lee SH, Ahn SG (2005) Polo-like kinase 1 phosphorylates heat shock transcription factor 1 and mediates its nuclear translocation during heat stress. J Biol Chem 280:12653–12657

    Article  CAS  PubMed  Google Scholar 

  105. Lee YJ, Kim EH, Lee JS, Jeoung D, Bae S, Kwon SH, Lee YS (2008) HSF1 as a mitotic regulator: phosphorylation of HSF1 by Plk1 is essential for mitotic progression. Cancer Res 68:7550–7560

    Article  CAS  PubMed  Google Scholar 

  106. Higashimoto T, Chan N, Lee YK, Zandi E (2008) Regulation of I(kappa)B kinase complex by phosphorylation of (gamma)-binding domain of I(kappa)B kinase (beta) by polo-like kinase 1. J Biol Chem 283:35354–35367

    Article  CAS  PubMed  Google Scholar 

  107. Jang CY, Coppinger JA, Seki A, Yates JR, Fang G (2009) Plk1 and Aurora A regulate the depolymerase activity and the cellular localization of Kif2a. J Cell Sci 122:1334–1341

    Article  CAS  PubMed  Google Scholar 

  108. Oshimori N, Ohsugi M, Yamamoto T (2006) The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity. Nat Cell Biol 8:1095–1101

    Article  CAS  PubMed  Google Scholar 

  109. Liu X, Zhou T, Kuriyama R, Erikson RL (2004) Molecular interactions of polo-like-kinase 1 with the mitotic kinesin-like protein CHO1/MKLP-1. J Cell Sci 117:3233–3246

    Article  CAS  PubMed  Google Scholar 

  110. Nakajima H, Toyoshima-Morimoto F, Taniguchi E, Nishida E (2003) Identification of a consensus motif for Plk (polo-like kinase) phosphorylation reveals Myt1 as a Plk1 substrate. J Biol Chem 278:25277–25280

    Article  CAS  PubMed  Google Scholar 

  111. Asiedu M, Wu D, Matsumura F, Wei Q (2008) Phosphorylation of MyoGEF on Thr-574 by Plk1 promotes MyoGEF localization to the central spindle. J Biol Chem 283:28392–28400

    Article  CAS  PubMed  Google Scholar 

  112. Zhang X, Chen Q, Feng J, Hou J, Yang F, Liu J, Jiang Q, Zhang C (2009) Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the gammaTuRC to the centrosome. J Cell Sci 122:2240–2251

    Article  CAS  PubMed  Google Scholar 

  113. Casenghi M, Meraldi P, Weinhart U, Duncan PI, Korner R, Nigg EA (2003) Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev Cell 5:113–125

    Article  CAS  PubMed  Google Scholar 

  114. Zhou T, Aumais JP, Liu X, Yu-Lee LY, Erikson RL (2003) A role for Plk1 phosphorylation of NudC in cytokinesis. Dev Cell 5:127–138

    Article  CAS  PubMed  Google Scholar 

  115. Baumann C, Körner R, Hofmann K, Nigg EA (2007) PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell 128:101–114

    Article  CAS  PubMed  Google Scholar 

  116. Eckerdt F, Yuan J, Saxena K, Martin B, Kappel S, Lindenau C, Kramer A, Naumann S, Daum S, Fischer G, Dikic I, Kaufmann M, Strebhardt K (2005) Polo-like kinase 1-mediated phosphorylation stabilizes Pin1 by inhibiting its ubiquitination in human cells. J Biol Chem 280:36575–36583

    Article  CAS  PubMed  Google Scholar 

  117. Feng Y, Yuan JH, Maloid SC, Fisher R, Copeland TD, Longo DL, Conrads TP, Veenstra TD, Ferris A, Hughes S, Dimitrov DS, Ferris DK (2006) Polo-like kinase 1-mediated phosphorylation of the GTP-binding protein Ran is important for bipolar spindle formation. Biochem Biophys Res Commun 349:144–152

    Article  CAS  PubMed  Google Scholar 

  118. Soond SM, Barry SP, Melino G, Knight RA, Latchman DS, Stephanou A (2008) p73-mediated transcriptional activity is negatively regulated by polo-like kinase 1. Cell Cycle 7:1214–1223

    CAS  PubMed  Google Scholar 

  119. Yarm FR (2002) Plk phosphorylation regulates the microtubule-stabilizing protein TCTP. Mol Cell Biol 22:6209–6221

    Article  CAS  PubMed  Google Scholar 

  120. Yang X, Li H, Zhou Z, Wang WH, Deng A, Andrisani O, Liu X (2009) Plk1-mediated phosphorylation of Topors regulates p53 stability. J Biol Chem 284:18588–18592

    Article  CAS  PubMed  Google Scholar 

  121. Li H, Wang Y, Liu X (2008) Plk1-dependent phosphorylation regulates functions of DNA topoisomerase IIalpha in cell cycle progression. J Biol Chem 283:6209–6221

    Article  CAS  PubMed  Google Scholar 

  122. Wu ZQ, Yang X, Weber G, Liu X (2008) Plk1 phosphorylation of TRF1 is essential for its binding to telomeres. J Biol Chem 283:25503–25513

    Article  CAS  PubMed  Google Scholar 

  123. Yamaguchi T, Goto H, Yokoyama T, Silljé H, Hanisch A, Uldschmid A, Takai Y, Oguri T, Nigg EA, Inagaki M (2005) Phosphorylation by Cdk1 induces Plk1-mediated vimentin phosphorylation during mitosis. J Cell Biol 171:431–436

    Article  CAS  PubMed  Google Scholar 

  124. Watanabe N, Arai H, Iwasaki J, Shiina M, Ogata K, Hunter T, Osada H (2005) Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways. Proc Natl Acad Sci USA 102:11663–11668

    Article  CAS  PubMed  Google Scholar 

  125. Inglis KJ, Chereau D, Brigham EF, Chiou SS, Schöbel S, Frigon NL, Yu M, Caccavello RJ, Nelson S, Motter R, Wright S, Chian D, Santiago P, Soriano F, Ramos C, Powell K, Goldstein JM, Babcock M, Yednock T, Bard F, Basi GS, Sham H, Chilcote TJ, McConlogue L, Griswold-Prenner I, Anderson JP (2009) Polo-like kinase 2 (PLK2) phosphorylates alpha-synuclein at serine 129 in central nervous system. J Biol Chem 284:2598–2602

    Article  CAS  PubMed  Google Scholar 

  126. Seeburg DP, Feliu-Mojer M, Gaiottino J, Pak DT, Sheng M (2008) Critical role of CDK5 and polo-like kinase 2 in homeostatic synaptic plasticity during elevated activity. Neuron 58:571–583

    Article  CAS  PubMed  Google Scholar 

  127. Bahassi EM, Hennigan RF, Myer DL, Stambrook PJ (2004) Cdc25C phosphorylation on serine 191 by Plk3 promotes its nuclear translocation. Oncogene 23:2658–2663

    Article  CAS  Google Scholar 

  128. Bahassi EM, Myer DL, McKenney RJ, Hennigan RF, Stambrook PJ (2006) Priming phosphorylation of Chk2 by polo-like kinase 3 (Plk3) mediates its full activation by ATM and a downstream checkpoint in response to DNA damage. Mutat Res 596:166–176

    Google Scholar 

  129. Sang M, Ando K, Okoshi R, Koida N, Li Y, Zhu Y, Shimozato O, Geng C, Shan B, Nakagawara A, Ozaki T (2009) Plk3 inhibits pro-apoptotic activity of p73 through physical interaction and phosphorylation. Genes Cells 14:775–788

    Article  CAS  PubMed  Google Scholar 

  130. Iida M, Matsuda M, Komatani H (2008) Plk3 phosphorylates topoisomerase IIalpha at Thr(1342), a site that is not recognized by Plk1. Biochem J 411:27–32

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the present and past members of our laboratory for their great work and stimulating discussions, and to many colleagues for generously sharing their views and insights. We apologize to all authors whose work could not be cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung S. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JE., Soung, NK., Johmura, Y. et al. Polo-box domain: a versatile mediator of polo-like kinase function. Cell. Mol. Life Sci. 67, 1957–1970 (2010). https://doi.org/10.1007/s00018-010-0279-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0279-9

Keywords

Navigation