Skip to main content

Advertisement

Log in

The NEK family of serine/threonine kinases as a biomarker for cancer

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Cancer is defined by unrestrained cell proliferation due to impaired protein activity. Cell cycle-related proteins are likely to play a role in human cancers, including proliferation, invasion, and therapeutic resistance. The serine/threonine NEK kinases are the part of Never In Mitosis A Kinases (NIMA) family, which are less explored kinase family involved in the cell cycle, checkpoint regulation, and cilia biology. They comprise of eleven members, namely NEK1, NEK2, NEK3, NEK4, NEK5, NEK6, NEK7, NEK8, NEK9, NEK10, and NEK11, located in different cellular regions. Recent research has shown the role of NEK family in various cancers by perversely expressing. Therefore, this review aimed to provide a systematic account of our understanding of NEK kinases; structural details; and its role in the cell cycle regulation. Furthermore, we have comprehensively reviewed the NEK kinases in terms of their expression and regulation in different cancers. Lastly, we have emphasized on some of the potential NEK inhibitors reported so far.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ardito F, Giuliani M, Perrone D, Troiano G, Muzio LL. The crucial role of protein phosphorylation in cell signalingand its use as targeted therapy (Review). Int J Mol Med. 2017;40:271–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bhullar KS, Lagarón NO, McGowan EM, Parmar I, Jha A, Hubbard BP, et al. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer Mol Cancer. 2018;17:1–20.

    Google Scholar 

  3. Cicenas J, Zalyte E, Bairoch A, Gaudet P. Kinases and cancer. Cancers (Basel). 2018;10:1–7.

    Article  Google Scholar 

  4. Clutterbuck AJ. Aspergillus nidulans. Bact Bacteriophages Fungi. 1974;96:447–510.

    Article  Google Scholar 

  5. Oakley BR, Morris NR. A mutation in Aspergillus nidulans that blocks the transition from interphase to prophase. J Cell Biol. 1983;96:1155–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu L, Osmani SA, Mirabito PM. A role for NIMA in the nuclear localization of cyclin B in Aspergillus nidulans. J Cell Biol. 1998;141:1575–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moniz L, Dutt P, Haider N, Stambolic V. Nek family of kinases in cell cycle, checkpoint control and cancer. Cell Div [Internet]. BioMed Central Ltd; 2011;6:18. Available from: http://www.celldiv.com/content/6/1/18

  8. Pavan ICB, Peres de Oliveira A, Dias PRF, Basei FL, Issayama LK, de Ferezin C, et al. On Broken Ne(c)ks and Broken DNA: the role of human NEKs in the DNA damage response. Cells. 2021;10:1–25.

    Article  Google Scholar 

  9. Kokuryo T, Yokoyama Y, Yamaguchi J, Tsunoda N, Ebata T, Nagino M. NEK2 is an effective target for cancer therapy with potential to induce regression of multiple human malignancies. Anticancer Res. 2019;39:2251–8.

    Article  CAS  PubMed  Google Scholar 

  10. Johnson LN, Noble MEM, Owen DJ. Active and inactive protein kinases: structural basis for regulation. Cell. 1996;85:149–58.

    Article  CAS  PubMed  Google Scholar 

  11. Belham C, Roig J, Caldwell JA, Aoyama Y, Kemp BE, Comb M, et al. A mitotic cascade of NIMA family kinases: Nercc1/Nek9 activates the Nek6 and Nek7 kinases. J Biol Chem [Internet]. © 2003 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.; 2003;278:34897–909. https://doi.org/10.1074/jbc.M303663200

  12. Bertran MT, Sdelci S, Regué L, Avruch J, Caelles C, Roig J. Nek9 is a Plk1-activated kinase that controls early centrosome separation through Nek6/7 and Eg5. EMBO J. 2011;30:2634–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kun Ping Lu, Kemp BE, Means AR. Identification of substrate specificity determinants for the cell cycle- regulated NIMA protein kinase. J Biol Chem. 1994;269:6603–7.

    Article  Google Scholar 

  14. Lizcano JM, Deak M, Morrice N, Kieloch A, James Hastie C, Dong L, et al. Molecular basis for the substrate specificity of NIMA-related kinase-6 (NEK6). Evidence that NEK6 does not phosphorylate the hydrophobic motif of ribosomal S6 protein kinase and serum- and glucocorticoid-induced protein kinase in vivo. J Biol Chem [Internet]. © 2002 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.; 2002;277:27839–49. https://doi.org/10.1074/jbc.M202042200

  15. Alexander J, Lim D, Joughin BA, Hegemann B, Hutchins JR, Ehrenberger T, Ivins F, Sessa F, Hudecz O, Nigg EA, Fry AM, Musacchio A, Stukenberg PT, Mechtler K, Peters JM, Smerdon SJ, Yaffe MB. Spatial exclusivity combined with positive and negative selection of phosphorylation motifs is the basis for context-dependent mitotic signaling. Sci Signal. 2011;4(179):ra42. https://doi.org/10.1126/scisignal.2001796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zalli D, Bayliss R, Fry AM. The Nek8 protein kinase, mutated in the human cystic kidney disease nephronophthisis, is both activated and degraded during ciliogenesis. Hum Mol Genet. 2012;21:1155–71.

    Article  CAS  PubMed  Google Scholar 

  17. Fry AM, O'Regan L, Sabir SR, Bayliss R. Cell cycle regulation by the NEK family of protein kinases. J Cell Sci. 2012;125(Pt 19):4423–33. https://doi.org/10.1242/jcs.111195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pu RT, Osmani SA. Mitotic destruction of the cell cycle regulated NIMA protein kinase of Aspergillus nidulans is required for mitotic exit. EMBO J. 1995;14:995–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sedgwick GG, Hayward DG, Di Fiore B, Pardo M, Yu L, Pines J, et al. Mechanisms controlling the temporal degradation of Nek2A and Kif18A by the APC/C-Cdc20 complex. EMBO J. 2013;32:303–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vaz Meirelles G, Ferreira Lanza DC, da Silva JC, Santana Bernachi J, Paes Leme AF, Kobarg J. Characterization of hNek6 interactome reveals an important role for its short N-terminal domain and colocalization with proteins at the centrosome. J Proteome Res United States. 2010;9:6298–316.

    Article  CAS  Google Scholar 

  21. Fry AM, Schultz SJ, Bartek J, Nigg EA. Substrate specificity and cell cycle regulation of the Nek2 protein kinase, a potential human homolog of the mitotic regulator NIMA of Aspergillus nidulans. J Biol Chem [Internet]. © 1995 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.; 1995;270:12899–905. https://doi.org/10.1074/jbc.270.21.12899

  22. Hardy T, Lee M, Hames RS, Prosser SL, Cheary D-M, Samant MD, et al. Multisite phosphorylation of C-Nap1 releases it from Cep135 to trigger centrosome disjunction. J Cell Sci [Internet]. 2014/04/02. The Company of Biologists; 2014;127:2493–506. https://pubmed.ncbi.nlm.nih.gov/24695856

  23. Bahmanyar S, Kaplan DD, DeLuca JG, Giddings TH, O’Toole ET, Winey M, et al. β-catenin is a Nek2 substrate involved in centrosome separation. Genes Dev. 2008;22:91–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O’Regan L, Fry AM. The Nek6 and Nek7 protein kinases are required for robust mitotic spindle formation and cytokinesis. Mol Cell Biol. 2009;29:3975–90.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sdelci S, Bertran MT, Roig J. Nek9, Nek6, Nek7 and the separation of centrosomes. Cell Cycle. 2011;10:3816–7. https://doi.org/10.4161/cc.10.22.18226.

    Article  CAS  PubMed  Google Scholar 

  26. Roig J, Mikhailov A, Belham C, Avruch J. Nercc1, a mammalian NIMA-family kinase, binds the Ran GTPase and regulates mitotic progression. Genes Dev. 2002;16:1640–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rapley J, Nicolàs M, Groen A, Regué L, Bertran MT, Caelles C, Avruch J, Roig J. The NIMA-family kinase Nek6 phosphorylates the kinesin Eg5 at a novel site necessary for mitotic spindle formation. J Cell Sci. 2008;121(Pt 23):3912–21. https://doi.org/10.1242/jcs.035360.

    Article  CAS  PubMed  Google Scholar 

  28. Kim S, Lee K, Rhee K. NEK7 is a centrosomal kinase critical for microtubule nucleation. Biochem Biophys Res Commun. 2007;360:56–62.

    Article  CAS  PubMed  Google Scholar 

  29. Goshima G, Kimura A. New look inside the spindle: microtubule-dependent microtubule generation within the spindle. Curr Opin Cell Biol. 2010;22:44–9. https://doi.org/10.1016/j.ceb.2009.11.012.

    Article  CAS  PubMed  Google Scholar 

  30. Slangy A, Lane HA, d’Hérin P, Harper M, Kress M, Niggt EA. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell. 1995;83:1159–69.

    Article  Google Scholar 

  31. Gao Y, Cao D, Pawnikar S, John KP, Ahn HM, Hill S, Ha JM, Parikh P, Ogilvie C, Swain A, Yang A, Bell A, Salazar A, Miao Y, Liang B. Structure of the Human Respiratory Syncytial Virus M2–1 Protein in Complex with a Short Positive-Sense Gene-End RNA. Structure. 2020;28(9):979–990.e4. https://doi.org/10.1016/j.str.2020.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Helfand BT, Mendez MG, Pugh J, Delsert C, Goldman RD. Maintaining the shape of nerve cells. Mol Biol Cell. 2003;14:5069–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Laurell E, Beck K, Krupina K, Theerthagiri G, Bodenmiller B, Horvath P, et al. Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell [Internet]. Elsevier Inc.; 2011;144:539–50. https://doi.org/10.1016/j.cell.2011.01.012

  34. Holland PM, Milne A, Garka K, Johnson RS, Willis C, Sims JE, et al. Purification, cloning, and characterization of Nek8, a novel nima-related kinase, and its candidate substrate Bicd2. J Biol Chem [Internet]. © 2002 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.; 2002;277:16229–40. https://doi.org/10.1074/jbc.M108662200

  35. Wei R, Ngo B, Wu G, Lee WH. Phosphorylation of the Ndc80 complex protein, HEC1, by Nek2 kinase modulates chromosome alignment and signaling of the spindle assembly checkpoint. Mol Biol Cell. 2011;22:3584–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang B, Zhang H, Wang D, Han S, Wang K, Yao A, et al. Never in mitosis gene A-related kinase 6 promotes cell proliferation of hepatocellular carcinoma via cyclin B modulation. Oncol Lett. 2014;8:1163–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  38. Hayward DG, Clarke RB, Faragher AJ, Pillai MR, Hagan IM, Fry AM. The centrosomal kinase Nek2 displays elevated levels of protein expression in human breast cancer. Cancer Res. 2004;64:7370–6.

    Article  CAS  PubMed  Google Scholar 

  39. Marina M, Saavedra HI. Nek2 and Plk4: Prognostic markers, drivers of breast tumorigenesis and drug resistance. Front Biosci Landmark. 2014;19:352–65.

    Article  Google Scholar 

  40. Harrison Pitner MK, Saavedra HI. Cdk4 and Nek2 signal Binucleation and centrosome amplification in a Her2+ breast cancer model. PLoS ONE. 2013;8:32–5.

    Article  Google Scholar 

  41. Lee J, Gollahon L. Mitotic perturbations induced by Nek2 overexpression require interaction with TRF1 in breast cancer cells. Cell Cycle. 2013;12:3599–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cappello P, Blaser H, Gorrini C, Lin DCC, Elia AJ, Wakeham A, et al. Role of Nek2 on centrosome duplication and aneuploidy in breast cancer cells. Oncogene Nat Publ Group. 2014;33:2375–84.

    CAS  Google Scholar 

  43. Nuncia-Cantarero M, Martinez-Canales S, Andrés-Pretel F, Santpere G, Ocaña A, Galan-Moya EM. Functional transcriptomic annotation and protein–protein interaction network analysis identify NEK2, BIRC5, and TOP2A as potential targets in obese patients with luminal A breast cancer. Breast Cancer Res Treat [Internet]. Springer US; 2018;168:613–23. https://doi.org/10.1007/s10549-017-4652-3

  44. Miller SL, DeMaria JE, Freier DO, Riegel AM, Clevenger CV. Novel association of Vav2 and Nek3 modulates signaling through the human prolactin receptor. Mol Endocrinol. 2005;19:939–49.

    Article  CAS  PubMed  Google Scholar 

  45. Pei J, Zhang J, Yang X, Wu Z, Sun C, Wang Z, et al. NEK5 promotes breast cancer cell proliferation through up-regulation of Cyclin A2. Mol Carcinog U S. 2019;58:933–43.

    Article  CAS  Google Scholar 

  46. Raj CTD, Kumar D, Chandra R, Reddy S, Raju D, James RA. COVID—19: molecular pathophysiology, genetic evolution and prospective therapeutics—a review. Arch Microbiol. 2021. https://doi.org/10.1007/s00203-021-02183-z.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Eisa NH, Jilani Y, Kainth K, Redd P, Lu S, Bougrine O, et al. The co-chaperone UNC45A is essential for the expression of mitotic kinase NEK7 and tumorigenesis. J Biol Chem. 2019;294:5246–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Milne RL, Burwinkel B, Michailidou K, Arias Perez JI, Pilar Zamora M, Menéndez-Rodríguez P, et al. Common non-synonymous SNPs associated with breast cancer susceptibility: Findings from the Breast Cancer Association Consortium. Hum Mol Genet. 2014;23:6096–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lai XB, Nie YQ, Huang HL, Li YF, Cao CY, Yang H, et al. NIMA-related kinase 2 regulates hepatocellular carcinoma cell growth and proliferation. Oncol Lett. 2017;13:1587–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin S, Zhou S, Jiang S, Liu X, Wang Y, Zheng X, et al. NEK2 regulates stem-like properties and predicts poor prognosis in hepatocellular carcinoma. Oncol Rep. 2016;36:853–62.

    Article  CAS  PubMed  Google Scholar 

  51. Wen S, Liu Y, Yang M, Yang K, Huang J, Feng D. Increased NEK2 in hepatocellular carcinoma promotes cancer progression and drug resistance by promoting PP1/Akt and Wnt activation. Oncol Rep. 2016;36:2193–9.

    Article  CAS  PubMed  Google Scholar 

  52. Li G, Zhong Y, Shen Q, Zhou Y, Deng X, Li C, et al. NEK2 serves as a prognostic biomarker for hepatocellular carcinoma. Int J Oncol. 2017;50:405–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang Y, Wang W, Wang Y, Huang X, Zhang Z, Chen B, et al. NEK2 promotes hepatocellular carcinoma migration and invasion through modulation of the epithelial-mesenchymal transition. Oncol Rep. 2018;39:1023–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou L, Wang Z, Xu X, Wan Y, Qu K, Fan H, et al. Nek7 is overexpressed in hepatocellular carcinoma and promotes hepatocellular carcinoma cell proliferation in vitro and in vivo. Oncotarget. 2016;7:18620–30.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lu L, Zhai X, Yuan R. Clinical significance and prognostic value of Nek2 protein expression in colon cancer. Int J Clin Exp Pathol. 2015;8:15467–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kasap E, Gerceker E, Boyacıoglu SÖ, Yuceyar H, Yıldırm H, Ayhan S, et al. The potential role of the NEK6, AURKA, AURKB, and PAK1 genes in adenomatous colorectal polyps and colorectal adenocarcinoma. Tumor Biol. 2016;37:3071–80. https://doi.org/10.1007/s13277-015-4131-6.

    Article  CAS  Google Scholar 

  57. Gerçeker E, Boyacioglu SO, Kasap E, Baykan A, Yuceyar H, Yildirim H, et al. Never in mitosis gene A-related kinase 6 and aurora kinase A: new gene biomarkers in the conversion from ulcerative colitis to colorectal cancer. Oncol Rep. 2015;34:1905–14.

    Article  PubMed  Google Scholar 

  58. Sabir SR, Sahota NK, Jones GDD, Fry AM. Loss of Nek11 prevents G2/M arrest and promotes cell death in HCT116 colorectal cancer cells exposed to therapeutic DNA damaging agents. PLoS ONE. 2015;10:1–19.

    Article  Google Scholar 

  59. Singh V, Jaiswal PK, Ghosh I, Koul HK, Yu X, De Benedetti A. The TLK1-Nek1 axis promotes prostate cancer progression. Cancer Lett. 2019;453:131–41. https://doi.org/10.1016/j.canlet.2019.03.041.

    Article  CAS  PubMed  Google Scholar 

  60. Singh V, Jaiswal PK, Ghosh I, Koul HK, Yu X, De Benedetti A. Targeting the TLK1/NEK1 DDR axis with Thioridazine suppresses outgrowth of androgen independent prostate tumors. Int J Cancer. 2019;145:1055–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Atish DC, Anna CS, Maura BC, Rosina TL, Katherine L, Ying JL, et al. Castration resistance in prostate cancer is mediated by the kinase NEK6. Cancer Res. 2017;77:753–65.

    Article  Google Scholar 

  62. Shi Y-X, Yin J-Y, Shen Y, Zhang W, Zhou H-H, Liu Z-Q. Genome-scale analysis identifies NEK2, DLGAP5 and ECT2 as promising diagnostic and prognostic biomarkers in human lung cancer. Sci Rep. 2017;7:8072. https://doi.org/10.1038/s41598-017-08615-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. The American Cancer Society medical and editorial content team. Colorectal Cancer Stages. Am Cancer Soc Med Inf [Internet]. 2017;1–11. Available from: https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/staged.html#references

  64. Liu X, Gao Y, Lu Y, Zhang J, Li L, Yin F. Upregulation of NEK2 is associated with drug resistance in ovarian cancer. Oncol Rep Greece. 2014;31:745–54.

    Article  Google Scholar 

  65. De Donato M, Fanelli M, Mariani M, Raspaglio G, Pandya D, He S, et al. Nek6 and Hif-1α cooperate with the cytoskeletal gateway of drug resistance to drive outcome in serous ovarian cancer. Am J Cancer Res. 2015;5:1862–77.

    PubMed  PubMed Central  Google Scholar 

  66. Liu X, Gao Y, Lu Y, Zhang J, Li L, Yin F. Downregulation of NEK11 is associated with drug resistance in ovarian cancer. Int J Oncol. 2014;45:1266–74.

    Article  CAS  PubMed  Google Scholar 

  67. Kokuryo T, Hibino S, Suzuki K, Watanabe K, Yokoyama Y, Nagino M, et al. Nek2 siRNA therapy using a portal venous port–catheter system for liver metastasis in pancreatic cancer. Cancer Sci. 2016;107:1315–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yan Z, Qu J, Li Z, Yi J, Su Y, Lin Q, et al. NEK7 promotes pancreatic cancer progression and its expression is correlated with poor prognosis. Front Oncol. 2021;11:1–13.

    Article  Google Scholar 

  69. Chen F, Feng Z, Zhu J, Liu P, Yang C, Huang R, et al. Emerging roles of circRNA_NEK6 targeting miR-370–3p in the proliferation and invasion of thyroid cancer via Wnt signaling pathway. Cancer Biol Ther. 2018;19:1139–52. https://doi.org/10.1080/15384047.2018.1480888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cao Y, Song J, Chen J, Xiao J, Ni J, Wu C. Overexpression of NEK3 is associated with poor prognosis in patients with gastric cancer. Med (U S). 2018;97:1–5.

    Google Scholar 

  71. Orenay-Boyacioglu S, Kasap E, Gerceker E, Yuceyar H, Demirci U, Bilgic F, et al. Expression profiles of histone modification genes in gastric cancer progression. Mol Biol Rep. 2018;45:2275–82. https://doi.org/10.1007/s11033-018-4389-z.

    Article  CAS  PubMed  Google Scholar 

  72. Xu J, He Q, He X, Shao Q, Tao H, Ye Z. Expression of NEK-6 in gastric cancer and its clinical significance. Zhonghua Wei Chang Wai Ke Za Zhi China. 2015;18:1036–40.

    Google Scholar 

  73. Takeno A, Takemasa I, Doki Y, Yamasaki M, Miyata H, Takiguchi S, et al. Integrative approach for differentially overexpressed genes in gastric cancer by combining large-scale gene expression profiling and network analysis. Br J Cancer. 2008;99:1307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ding XF, Chen J, Zhou J, Chen G, Wu YL. Never-in-mitosis a-related kinase 8, a novel targof von-hippel-lindau tumor suppressor protein, promotes gastric cancer cell proliferation. Oncol Lett. 2018;16:5900–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Connell NT, Berliner N. Fostamatinib for the treatment of chronic immune thrombocytopenia. Blood. 2019;133:2027–30.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang Z, Fang C, Wang Y, Zhang J, Yu J, Zhang Y, et al. COL1A1: a potential therapeutic target for colorectal cancer expressing wild-Type or mutant KRAS. Int J Oncol. 2018;53:1869–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rheault TR, Stellwagen JC, Adjabeng GM, Hornberger KR, Petrov KG, Waterson AG, et al. Discovery of dabrafenib: a selective inhibitor of Raf Kinases with antitumor activity against B-Raf-driven tumors. ACS Med Chem Lett. 2013;4:358–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhou X, Zhang P, Wang Q, Ji N, Xia S, Ding Y, et al. Metformin ameliorates experimental diabetic periodontitis independently of mammalian target of rapamycin (mTOR) inhibition by reducing NIMA-related kinase 7(Nek7) expression. J Periodontol U S. 2019;90:1032–42.

    Article  CAS  Google Scholar 

  79. De Donato M, Righino B, Filippetti F, Battaglia A, Petrillo M, Pirolli D, et al. Identification and antitumor activity of a novel inhibitor of the NIMA-related kinase NEK6. Sci Rep. 2018;8:1–13. https://doi.org/10.1038/s41598-018-34471-y.

    Article  CAS  Google Scholar 

  80. Perera AP, Fernando R, Shinde T, Gundamaraju R, Southam B, Sohal SS, et al. MCC950, a specific small molecule inhibitor of NLRP3 inflammasome attenuates colonic inflammation in spontaneous colitis mice. Sci Rep. 2018;8:1–15. https://doi.org/10.1038/s41598-018-26775-w.

    Article  CAS  Google Scholar 

  81. Xi J-B, Fang Y-F, Frett B, Zhu M-L, Zhu T, Kong Y-N, et al. Structure-based design and synthesis of imidazo[1,2-a]pyridine derivatives as novel and potent Nek2 inhibitors with in vitro and in vivo antitumor activities. Eur J Med Chem France. 2017;126:1083–106.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Vellore Institute of Technology, Vellore, India, for providing the necessary facilities to carry out this work.

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

Nagesh Kishan Panchal involved in giving idea for the article, literature survey, and manuscript writing. Sabina Evan Prince involved in giving idea for the article, manuscript editing, and correcting.

Corresponding author

Correspondence to Sabina Evan Prince.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest for this work.

Consent to participate

Not applicable. No human/animal subjects were involved in study.

Consent to publish

Not applicable. No human/animal subjects were involved in study.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchal, N.K., Evan Prince, S. The NEK family of serine/threonine kinases as a biomarker for cancer. Clin Exp Med 23, 17–30 (2023). https://doi.org/10.1007/s10238-021-00782-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-021-00782-0

Keywords

Navigation