Skip to main content

Advertisement

Log in

Tumor-derived exosomes in the regulation of macrophage polarization

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

This review focuses on exosomes derived from various cancer cells. The review discusses the possibility of differentiating macrophages in alternatively activated anti-inflammatory pro-tumorigenic M2 macrophage phenotypes and classically activated pro-inflammatory, anti-tumorigenic M1 macrophage phenotypes in the tumor microenvironment (TME). The review is divided into two main parts, as follows: (1) role of exosomes in alternatively activating M2-like macrophages-breast cancer-derived exosomes, hepatocellular carcinoma (HCC) cell-derived exosomes, lung cancer-derived exosomes, prostate cancer-derived exosomes, Oral squamous cell carcinoma (OSCC)—derived exosomes, epithelial ovarian cancer (EOC)—derived exosomes, Glioblastoma (GBM) cell-derived exosomes, and colorectal cancer-derived exosomes, (2) role of exosomes in classically activating M1-like macrophages, oral squamous cell carcinoma-derived exosomes, breast cancer-derived exosomes, Pancreatic-cancer derived modified exosomes, and colorectal cancer-derived exosomes, and (3) exosomes and antibody-dependent cellular cytotoxicity (ADCC). This review addresses the following subjects: (1) crosstalk between cancer-derived exosomes and recipient macrophages, (2) the role of cancer-derived exosome payload(s) in modulating macrophage fate of differentiation, and (3) intracellular signaling mechanisms in macrophages regarding the exosome’s payload(s) upon its uptake and regulation of the TME.

Evidence

Under the electron microscope, nanoscale exosomes appear as specialized membranous vesicles that emerge from the endocytic cellular compartments. Exosomes harbor proteins, growth factors, cytokines, lipids, miRNA, mRNA, and DNAs. Exosomes are released by many cell types, including reticulocytes, dendritic cells, B-lymphocytes, platelets, mast cells, and tumor cells. It is becoming clear that exosomes can impinge upon signal transduction pathways, serve as a mediator of signaling crosstalk, thereby regulating cell-to-cell wireless communications.

Conclusion

Based on the vesicular cargo, the molecular constituents, the exosomes have the potential to change the fate of macrophage phenotypes, either M1, classically activated macrophages, or M2, alternatively activated macrophages. In this review, we discuss and describe the ability of tumor-derived exosomes in the mechanism of macrophage activation and polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

Not applicable, all information in this review can be found in the reference list.

References

  1. Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113:1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Crescitelli R, Lasser C, Szabo TG, Kittel A, Eldh M, Dianzani I, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013;2013:2.

    Google Scholar 

  3. Liu YC, Zou XB, Chai YF, Yao YM. Macrophage polarization in inflammatory diseases. Int J Biol Sci. 2014;10:520–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pulliam L, Sun B, Mustapic M, Chawla S, Kapogiannis D. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer’s disease. J Neurovirol. 2019;2019:1–8.

    Google Scholar 

  5. Urbanelli L, Magini A, Buratta S, Brozzi A, Sagini K, Polchi A, et al. Signaling pathways in exosomes biogenesis, secretion and fate. Genes. 2013;4:152–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bae S, Brumbaugh J, Bonavida B. Exosomes derived from cancerous and non-cancerous cells regulate the anti-tumor response in the tumor microenvironment. Genes Cancer. 2018;9:87–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rajagopal C, Harikumar KB. The origin and functions of exosomes in cancer. Front Oncol. 2018;8:66.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nonnenmacher Y, Hiller K. Biochemistry of proinflammatory macrophage activation. Cell Mol Life Sci. 2018;75:2093–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cohen HB, Mosser DM. Extrinsic and intrinsic control of macrophage inflammatory responses. J Leukoc Biol. 2013;94:913–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med. 2011;13:e23.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lichtnekert J, Kawakami T, Parks WC, Duffield JS. Changes in macrophage phenotype as the immune response evolves. Curr Opin Pharmacol. 2013;13:555–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu B, Zhang M, Zhao J, Zheng M, Yang H. Imbalance of M1/M2 macrophages is linked to severity level of knee osteoarthritis. Exp Therapeut Med. 2018;16:5009–144.

    CAS  Google Scholar 

  14. Saqib U, Sarkar S, Suk K, Mohammad O, Baig MS, Savai R. Phytochemicals as modulators of M1–M2 macrophages in inflammation. Oncotarget. 2018;9:17937.

    PubMed  PubMed Central  Google Scholar 

  15. Zhou X, Li W, Wang S, Zhang P, Wang Q, Xiao J, et al. YAP aggravates inflammatory bowel disease by regulating M1/M2 macrophage polarization and Gut microbial homeostasis. Cell Rep. 2019;27(1176–1189):e5.

    Google Scholar 

  16. Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44:450–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brown M, O'Reilly S. The immunopathogenesis of fibrosis in systemic sclerosis. Clin Exp Immunol. 2019;195:310–21.

    CAS  PubMed  Google Scholar 

  18. Laurent P, Sisirak V, Lazaro E, Richez C, Duffau P, Blanco P, et al. Innate immunity in systemic sclerosis fibrosis: recent advances. Front Immunol. 2018;9:1702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mori S, Chang JT, Andrechek ER, Matsumura N, Baba T, Yao G, et al. Anchorage-independent cell growth signature identifies tumors with metastatic potential. Oncogene. 2009;28:2796–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schwartz MA. Integrins, oncogenes, and anchorage independence. J Cell Biol. 1997;139:575–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen Z, Yang L, Cui Y, Zhou Y, Yin X, Guo J, et al. Cytoskeleton-centric protein transportation by exosomes transforms tumor-favorable macrophages. Oncotarget. 2016;7:67387–402.

    PubMed  PubMed Central  Google Scholar 

  22. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, et al. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8:761–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers. 2014;6:1670–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ireland LV, Mielgo A. Macrophages and fibroblasts, key players in cancer chemoresistance. Front Cell Dev Biol. 2018;6:131.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol. 2014;5:75.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Owen JL, Mohamadzadeh M. Macrophages and chemokines as mediators of angiogenesis. Front Physiol. 2013;4:159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis. Development. 2018;2018:145.

    Google Scholar 

  28. Bhattacharjee O, Ayyangar U, Kurbet AS, Ashok D, Raghavan S. Unraveling the ECM-immune cell crosstalk in skin diseases. Front Cell Dev Biol. 2019;7:68.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hwang I. Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells. 2013;36:105–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mittelbrunn M, Sanchez-Madrid F. Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol. 2012;13:328–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2:569–79.

    Article  CAS  PubMed  Google Scholar 

  32. Brinton LT, Sloane HS, Kester M, Kelly KA. Formation and role of exosomes in cancer. Cell Mol Life Sci. 2015;72:659–71.

    Article  CAS  PubMed  Google Scholar 

  33. Lobb RJ, Lima LG, Moller A. Exosomes: key mediators of metastasis and pre-metastatic niche formation. Semin Cell Dev Biol. 2017;67:3–10.

    Article  CAS  PubMed  Google Scholar 

  34. Jang JY, Lee JK, Jeon YK, Kim CW. Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization. BMC Cancer. 2013;13:421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shao Y, Chen T, Zheng X, Yang S, Xu K, Chen X, et al. Colorectal cancer-derived small extracellular vesicles establish an inflammatory premetastatic niche in liver metastasis. Carcinogenesis. 2018;39:1368–79.

    Article  CAS  PubMed  Google Scholar 

  36. Panigrahi GK, Praharaj PP, Peak TC, Long J, Singh R, Rhim JS, et al. Hypoxia-induced exosome secretion promotes survival of African-American and Caucasian prostate cancer cells. Sci Rep. 2018;8:3853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Piao YJ, Kim HS, Hwang EH, Woo J, Zhang M, Moon WK. Breast cancer cell-derived exosomes and macrophage polarization are associated with lymph node metastasis. Oncotarget. 2018;9:7398–410.

    Article  PubMed  Google Scholar 

  38. Ham S, Lima LG, Chai EPZ, Muller A, Lobb RJ, Krumeich S, et al. Breast cancer-derived exosomes alter macrophage polarization via gp130/STAT3 signaling. Front Immunol. 2018;9:871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kanda T, Ogasawara S, Chiba T, Haga Y, Omata M, Yokosuka O. Current management of patients with hepatocellular carcinoma. World J Hepatol. 2015;7:1913–20.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kanda T, Yasui S, Nakamura M, Suzuki E, Arai M, Ooka Y, et al. Real-world experiences with the combination treatment of ledipasvir plus sofosbuvir for 12 weeks in HCV genotype 1-infected Japanese Patients: achievement of a sustained virological response in previous users of peginterferon plus ribavirin with HCV NS3/4A inhibitors. Int J Mol Sci. 2017;2017:18.

    Google Scholar 

  41. Zhang HG, Grizzle WE. Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions. Am J Pathol. 2014;184:28–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 2014;2014:3.

    Google Scholar 

  43. Li X, Lei Y, Wu M, Li N. Regulation of Macrophage Activation and Polarization by HCC-Derived Exosomal lncRNA TUC339. Int J Mol Sci. 2018;2018:19.

    Google Scholar 

  44. Oser MG, Niederst MJ, Sequist LV, Engelman JA. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin. Lancet Oncol. 2015;16:e165–e172172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. Cancer J Clin. 2016;66:7–30.

    Article  Google Scholar 

  46. Hsu YL, Hung JY, Chang WA, Lin YS, Pan YC, Tsai PH, et al. Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene. 2017;36:4929–42.

    Article  CAS  PubMed  Google Scholar 

  47. Hsu YL, Hung JY, Chang WA, Jian SF, Lin YS, Pan YC, et al. Hypoxic Lung-cancer-derived extracellular vesicle microRNA-103a increases the oncogenic effects of macrophages by targeting PTEN. Mol Therapy. 2018;26:568–81.

    Article  CAS  Google Scholar 

  48. Deep G, Panigrahi GK (2015) Hypoxia-induced signaling promotes prostate cancer progression: exosomes role as messenger of hypoxic response in tumor microenvironment. Critical Reviews™ in Oncogenesis, p 20

  49. Ragnum HB, Vlatkovic L, Lie AK, Axcrona K, Julin CH, Frikstad KM, et al. The tumour hypoxia marker pimonidazole reflects a transcriptional programme associated with aggressive prostate cancer. Br J Cancer. 2015;112:382–90.

    Article  CAS  PubMed  Google Scholar 

  50. Stewart GD, Gray K, Pennington CJ, Edwards DR, Riddick AC, Ross JA, et al. Analysis of hypoxia-associated gene expression in prostate cancer: lysyl oxidase and glucose transporter-1 expression correlate with Gleason score. Oncol Rep. 2008;20:1561–7.

    CAS  PubMed  Google Scholar 

  51. Turaka A, Buyyounouski MK, Hanlon AL, Horwitz EM, Greenberg RE, Movsas B. Hypoxic prostate/muscle PO2 ratio predicts for outcome in patients with localized prostate cancer: long-term results. Int J Radiat Oncol Biol Phys. 2012;82:e433–e439439.

    Article  PubMed  Google Scholar 

  52. Vergis R, Corbishley CM, Norman AR, Bartlett J, Jhavar S, Borre M, et al. Intrinsic markers of tumour hypoxia and angiogenesis in localised prostate cancer and outcome of radical treatment: a retrospective analysis of two randomised radiotherapy trials and one surgical cohort study. Lancet Oncol. 2008;9:342–51.

    Article  PubMed  Google Scholar 

  53. Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 2014;513:559–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature. 2008;451:1008–122.

    Article  CAS  PubMed  Google Scholar 

  55. Chang CI, Liao JC, Kuo L. Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Can Res. 2001;61:1100–6.

    CAS  Google Scholar 

  56. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. Cancer J Clin. 2011;61:69–90.

    Article  Google Scholar 

  57. Kowalski LP, Sanabria A. Elective neck dissection in oral carcinoma: a critical review of the evidence. Acta Otorhinolaryngol Ital. 2007;27:113–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sano D, Myers JN. Metastasis of squamous cell carcinoma of the oral tongue. Cancer Metastasis Rev. 2007;26:645–62.

    Article  CAS  PubMed  Google Scholar 

  59. Cai J, Qiao B, Gao N, Lin N, He W. Oral squamous cell carcinoma-derived exosomes promote M2 subtype macrophage polarization mediated by exosome-enclosed miR-29a-3p. Am J Physiol Cell Physiol. 2019;316:C731–C740740.

    Article  CAS  PubMed  Google Scholar 

  60. Lu L, Xue X, Lan J, Gao Y, Xiong Z, Zhang H, et al. MicroRNA-29a upregulates MMP2 in oral squamous cell carcinoma to promote cancer invasion and anti-apoptosis. Biomed Pharmacother. 2014;68:13–9.

    Article  CAS  PubMed  Google Scholar 

  61. Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 2010;467:86–90.

    Article  CAS  PubMed  Google Scholar 

  62. Momen-Heravi F, Bala S. Extracellular vesicles in oral squamous carcinoma carry oncogenic miRNA profile and reprogram monocytes via NF-kappaB pathway. Oncotarget. 2018;9:34838–54.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Xiao M, Zhang J, Chen W, Chen W. M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma. J Exp Clin Cancer Res. 2018;37:143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang JY, Zhang Q, Wang DD, Yan W, Sha HH, Zhao JH, et al. MiR-29a: a potential therapeutic target and promising biomarker in tumors. Biosci Rep. 2018;2018:38.

    Google Scholar 

  65. Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, et al. Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype. Can Res. 2016;76:1770–80.

    Article  CAS  Google Scholar 

  66. King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12:421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W, et al. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteom. 2010;9:1085–99.

    Article  CAS  Google Scholar 

  68. Yasuda M, Schmid T, Rubsamen D, Colburn NH, Irie K, Murakami A. Downregulation of programmed cell death 4 by inflammatory conditions contributes to the generation of the tumor promoting microenvironment. Mol Carcinog. 2010;49:837–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hsu DS, Wang HJ, Tai SK, Chou CH, Hsieh CH, Chiu PH, et al. Acetylation of snail modulates the cytokinome of cancer cells to enhance the recruitment of macrophages. Cancer Cell. 2014;26:534–48.

    Article  CAS  PubMed  Google Scholar 

  70. Hsieh CH, Tai SK, Yang MH. Snail-overexpressing cancer cells promote M2-like polarization of tumor-associated macrophages by delivering MiR-21-abundant exosomes. Neoplasia. 2018;20:775–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27:2128–36.

    Article  CAS  PubMed  Google Scholar 

  72. Cmarik JL, Min H, Hegamyer G, Zhan S, Kulesz-Martin M, Yoshinaga H, et al. Differentially expressed protein Pdcd4 inhibits tumor promoter-induced neoplastic transformation. Proc Natl Acad Sci USA. 1999;96:14037–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem. 2008;283:1026–33.

    Article  CAS  PubMed  Google Scholar 

  74. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133:647–58.

    Article  CAS  PubMed  Google Scholar 

  75. Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O'Leary JJ, Ruan Q, et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol. 2010;11:141–7.

    Article  CAS  PubMed  Google Scholar 

  76. Yang CH, Yue J, Pfeffer SR, Fan M, Paulus E, Hosni-Ahmed A, et al. MicroRNA-21 promotes glioblastoma tumorigenesis by down-regulating insulin-like growth factor-binding protein-3 (IGFBP3). J Biol Chem. 2014;289:25079–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Das A, Ganesh K, Khanna S, Sen CK, Roy S. Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation. J Immunol. 2014;192:1120–9.

    Article  CAS  PubMed  Google Scholar 

  78. Sahin E, Haubenwallner S, Kuttke M, Kollmann I, Halfmann A, Dohnal AM, et al. Macrophage PTEN regulates expression and secretion of arginase I modulating innate and adaptive immune responses. J Immunol. 2014;193:1717–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sheedy FJ. Turning 21: induction of miR-21 as a key switch in the inflammatory response. Front Immunol. 2015;6:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chang LC, Huang CF, Lai MS, Shen LJ, Wu FL, Cheng WF. Prognostic factors in epithelial ovarian cancer: a population-based study. PLoS One. 2018;13:e0194993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Colvin EK. Tumor-associated macrophages contribute to tumor progression in ovarian cancer. Front Oncol. 2014;4:137.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Rodriguez GM, Galpin KJC, McCloskey CW, Vanderhyden BC. The tumor microenvironment of epithelial ovarian cancer and its influence on response to immunotherapy. Cancers (Basel). 2018;2018:10.

    Google Scholar 

  83. Reinartz S, Schumann T, Finkernagel F, Wortmann A, Jansen JM, Meissner W, et al. Mixed-polarization phenotype of ascites-associated macrophages in human ovarian carcinoma: correlation of CD163 expression, cytokine levels and early relapse. Int J Cancer. 2014;134:32–42.

    Article  CAS  PubMed  Google Scholar 

  84. Chen X, Ying X, Wang X, Wu X, Zhu Q, Wang X. Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization. Oncol Rep. 2017;38:522–8.

    Article  CAS  PubMed  Google Scholar 

  85. Rashed MH, Kanlikilicer P, Rodriguez-Aguayo C, Pichler M, Bayraktar R, Bayraktar E, et al. Exosomal miR-940 maintains SRC-mediated oncogenic activity in cancer cells: a possible role for exosomal disposal of tumor suppressor miRNAs. Oncotarget. 2017;8:20145–64.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chen X, Zhou J, Li X, Wang X, Lin Y, Wang X. Exosomes derived from hypoxic epithelial ovarian cancer cells deliver microRNAs to macrophages and elicit a tumor-promoted phenotype. Cancer Lett. 2018;435:80–91.

    Article  CAS  PubMed  Google Scholar 

  87. Ying X, Wu Q, Wu X, Zhu Q, Wang X, Jiang L, et al. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget. 2016;7:43076–87.

    PubMed  PubMed Central  Google Scholar 

  88. Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee SU. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev. 2017;18:3.

    PubMed  PubMed Central  Google Scholar 

  89. Tamimi AF, Juweid M (2017) Epidemiology and Outcome of Glioblastoma. In: De Vleeschouwer S (ed) Glioblastoma. Brisbane (AU)

  90. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.

    Article  CAS  PubMed  Google Scholar 

  91. Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318:2306–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bodmer S, Strommer K, Frei K, Siepl C, de Tribolet N, Heid I, et al. Immunosuppression and transforming growth factor-beta in glioblastoma Preferential production of transforming growth factor-beta 2. J Immunol. 1989;143:3222–9.

    CAS  PubMed  Google Scholar 

  93. Fecci PE, Mitchell DA, Whitesides JF, Xie W, Friedman AH, Archer GE, et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Can Res. 2006;66:3294–302.

    Article  CAS  Google Scholar 

  94. Sayour EJ, McLendon P, McLendon R, De Leon G, Reynolds R, Kresak J, et al. Increased proportion of FoxP3+ regulatory T cells in tumor infiltrating lymphocytes is associated with tumor recurrence and reduced survival in patients with glioblastoma. Cancer Immunol Immunother. 2015;64:419–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Manda SV, Kataria Y, Tatireddy BR, Ramakrishnan B, Ratnam BG, Lath R, et al. Exosomes as a biomarker platform for detecting epidermal growth factor receptor–positive high-grade gliomas. J Neurosurg. 2018;128:1091–101.

    Article  CAS  PubMed  Google Scholar 

  96. Chae M, Peterson TE, Balgeman A, Chen S, Zhang L, Renner DN, et al. Increasing glioma-associated monocytes leads to increased intratumoral and systemic myeloid-derived suppressor cells in a murine model. Neuro-oncology. 2015;17:978–91.

    Article  CAS  PubMed  Google Scholar 

  97. Fries G, Perneczky A, Kempski O. Glioblastoma-associated circulating monocytes and the release of epidermal growth factor. J Neurosurg. 1996;85:642–7.

    Article  CAS  PubMed  Google Scholar 

  98. Gustafson MP, Lin Y, New KC, Bulur PA, O'Neill BP, Gastineau DA, et al. Systemic immune suppression in glioblastoma: the interplay between CD14+ HLA-DRlo/neg monocytes, tumor factors, and dexamethasone. Neuro-oncology. 2010;12:631–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rodrigues JC, Gonzalez GC, Zhang L, Ibrahim G, Kelly JJ, Gustafson MP, et al. Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro-oncology. 2010;12:351–65.

    Article  CAS  PubMed  Google Scholar 

  100. Gabrusiewicz K, Rodriguez B, Wei J, Hashimoto Y, Healy LM, Maiti SN, et al. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight. 2016;2016:1.

    Google Scholar 

  101. Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-oncology. 2010;12:1113–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gabrusiewicz K, Li X, Wei J, Hashimoto Y, Marisetty AL, Ott M, et al. Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncoimmunology. 2018;7:e1412909.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH, et al. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nature Rev Gastroenterol Hepatol. 2019;16:361–75.

    Article  Google Scholar 

  104. Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, et al. Colorectal cancer. Nature Rev Dis Primers. 2015;1:15065.

    Article  Google Scholar 

  105. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. Cancer J Clin. 2015;65:87–108.

    Article  Google Scholar 

  106. Wu J, Li H, Xie H, Wu X, Lan P. The malignant role of exosomes in the communication among colorectal cancer cell, macrophage and microbiome. Carcinogenesis. 2019;40:601–10.

    Article  CAS  PubMed  Google Scholar 

  107. Pardieck IN, Jawahier PA, Swets M, van de Velde CJ, Kuppen PJ. Novel avenues in immunotherapies for colorectal cancer. Expert Rev Gastroenterol Hepatol. 2016;10:465–80.

    Article  CAS  PubMed  Google Scholar 

  108. Braster R, Bogels M, Beelen RH, van Egmond M. The delicate balance of macrophages in colorectal cancer; their role in tumour development and therapeutic potential. Immunobiology. 2017;222:21–30.

    Article  CAS  PubMed  Google Scholar 

  109. Ogorevc E, Kralj-Iglic V, Veranic P. The role of extracellular vesicles in phenotypic cancer transformation. Radiol Oncol. 2013;47:197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lian G, Chen S, Ouyang M, Li F, Chen L, Yang J. Colon cancer cell secretes EGF to promote M2 polarization of TAM through EGFR/PI3K/AKT/mTOR pathway. Technol Cancer Res Treatment. 2019;18:1533033819849068.

    Article  CAS  Google Scholar 

  111. Takano Y, Masuda T, Iinuma H, Yamaguchi R, Sato K, Tobo T, et al. Circulating exosomal microRNA-203 is associated with metastasis possibly via inducing tumor-associated macrophages in colorectal cancer. Oncotarget. 2017;8:78598–613.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Shinohara H, Kuranaga Y, Kumazaki M, Sugito N, Yoshikawa Y, Takai T, et al. Regulated polarization of tumor-associated macrophages by miR-145 via colorectal cancer-derived extracellular vesicles. J Immunol. 2017;199:1505–15.

    Article  CAS  PubMed  Google Scholar 

  113. Lin L, Hou J, Ma F, Wang P, Liu X, Li N, et al. Type I IFN inhibits innate IL-10 production in macrophages through histone deacetylase 11 by downregulating microRNA-145. J Immunol. 2013;191:3896–904.

    Article  CAS  PubMed  Google Scholar 

  114. Villagra A, Cheng F, Wang HW, Suarez I, Glozak M, Maurin M, et al. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol. 2009;10:92–100.

    Article  CAS  PubMed  Google Scholar 

  115. Hu H, Hang JJ, Han T, Zhuo M, Jiao F, Wang LW. The M2 phenotype of tumor-associated macrophages in the stroma confers a poor prognosis in pancreatic cancer. Tumour Biol. 2016;37:8657–64.

    Article  CAS  PubMed  Google Scholar 

  116. Linton SS, Abraham T, Liao J, Clawson GA, Butler PJ, Fox T, et al. Tumor-promoting effects of pancreatic cancer cell exosomes on THP-1-derived macrophages. PLoS One. 2018;13:e0206759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yang M, McKay D, Pollard JW, Lewis CE. Diverse functions of macrophages in different tumor microenvironments. Can Res. 2018;78:5492–503.

    Article  CAS  Google Scholar 

  118. Boyd AW, Wawryk SO, Burns GF, Fecondo JV. Intercellular adhesion molecule 1 (ICAM-1) has a central role in cell-cell contact-mediated immune mechanisms. Proc Natl Acad Sci. 1988;85:3095–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, et al. Macrophage polarization in tumour progression. Semin Cancer Biol. 2008;18:349–55.

    Article  CAS  PubMed  Google Scholar 

  120. Prieto J, Eklund A, Patarroyo M. Regulated expression of integrins and other adhesion molecules during differentiation of monocytes into macrophages. Cell Immunol. 1994;156:191–21111.

    Article  CAS  PubMed  Google Scholar 

  121. Yuan D, Zhao Y, Banks WA, Bullock KM, Haney M, Batrakova E, et al. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials. 2017;142:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hiraide T, Ikegami K, Sakaguchi T, Morita Y, Hayasaka T, Masaki N, et al. Accumulation of arachidonic acid-containing phosphatidylinositol at the outer edge of colorectal cancer. Sci Rep. 2016;6:29935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kim HY, Lee KM, Kim SH, Kwon YJ, Chun YJ, Choi HK. Comparative metabolic and lipidomic profiling of human breast cancer cells with different metastatic potentials. Oncotarget. 2016;7:67111–28.

    PubMed  PubMed Central  Google Scholar 

  124. De Toro J, Herschlik L, Waldner C, Mongini C. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol. 2015;6:203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8:727.

    Article  CAS  PubMed Central  Google Scholar 

  126. Borges FT, Reis LA, Schor N. Extracellular vesicles: structure, function, and potential clinical uses in renal diseases. Braz J Med Biol Res. 2013;46:824–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 2019;2019:8.

    Google Scholar 

  128. Crenshaw BJ, Sims B, Matthews QL. Biological function of exosomes as diagnostic markers and therapeutic delivery vehicles in carcinogenesis and infectious diseases. Nanomedicines: IntechOpen. 2018. https://doi.org/10.5772/intechopen.80225.

    Article  Google Scholar 

  129. Wu R, Gao W, Yao K, Ge J. Roles of exosomes derived from immune cells in cardiovascular diseases. Front Immunol. 2019;10:648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Su MJ, Aldawsari H, Amiji M. Pancreatic cancer cell exosome-mediated macrophage reprogramming and the role of microRNAs 155 and 125b2 transfection using nanoparticle delivery systems. Sci Rep. 2016;6:30110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Poh AR, Ernst M. Targeting macrophages in cancer: from bench to bedside. Front Oncol. 2018;8:49.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Zheng X, Turkowski K, Mora J, Brune B, Seeger W, Weigert A, et al. Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy. Oncotarget. 2017;8:48436–52.

    PubMed  PubMed Central  Google Scholar 

  133. Cianciaruso C, Beltraminelli T, Duval F, Nassiri S, Hamelin R, Mozes A, et al. Molecular profiling and functional analysis of macrophage-derived tumor extracellular vesicles. Cell Rep. 2019;27(3062–3080):e11.

    Google Scholar 

  134. Van Dalen FJ, Van Stevendaal MHME, Fennemann FL, Verdoes M, Ilina O. Molecular repolarisation of tumour-associated macrophages. Molecules. 2019;24:9.

    Article  CAS  Google Scholar 

  135. Yang L, Wang F, Wang L, Huang L, Wang J, Zhang B, et al. CD163+ tumor-associated macrophage is a prognostic biomarker and is associated with therapeutic effect on malignant pleural effusion of lung cancer patients. Oncotarget. 2015;6:10592.

    PubMed  PubMed Central  Google Scholar 

  136. Wang Y, Lin YX, Qiao SL, An HW, Ma Y, Qiao ZY, et al. Polymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumor microenvironment. Biomaterials. 2017;112:153–63.

    Article  CAS  PubMed  Google Scholar 

  137. Na YR, Yoon YN, Son D, Jung D, Gu GJ, Seok SH. Consistent inhibition of cyclooxygenase drives macrophages towards the inflammatory phenotype. PLoS One. 2015;10:e0118203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Batista IA, Melo SA. Exosomes and the future of immunotherapy in pancreatic cancer. Int J Mol Sci. 2019;2019:20.

    Google Scholar 

  139. Liu C, Su C. Design strategies and application progress of therapeutic exosomes. Theranostics. 2019;9:1015–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang P, Wang H, Huang Q, Peng C, Yao L, Chen H, et al. Exosomes from M1-polarized macrophages enhance paclitaxel antitumor activity by activating macrophages-mediated inflammation. Theranostics. 2019;9:1714–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Saintigny P, Zhang L, Fan YH, El-Naggar AK, Papadimitrakopoulou VA, Feng L, et al. Gene expression profiling predicts the development of oral cancer. Cancer Prev Res. 2011;4:218–29.

    Article  CAS  Google Scholar 

  142. Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Can Res. 2004;64:7022–9.

    Article  CAS  Google Scholar 

  143. Go A, Ryu Y-K, Lee J-W, Moon E-Y. Cell motility is decreased in macrophages activated by cancer cell-conditioned medium. Biomol Ther. 2013;21:481.

    Article  Google Scholar 

  144. Narod SA, Iqbal J, Miller AB. Why have breast cancer mortality rates declined? J Cancer Policy. 2015;5:8–17.

    Article  Google Scholar 

  145. Belizario JE, Loggulo AF. Insights into breast cancer phenotying through molecular omics approaches and therapy response. Cancer Drug Resist. 2019;2:527–38.

    Google Scholar 

  146. American Cancer Society. Breast Cancer Facts & Figures 2013-2014. Atlanta: American Cancer Society, Inc. 2013. p. 1–37.

  147. Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, et al. “Re-educating” tumor-associated macrophages by targeting NF-κB. J Exp Med. 2008;205:1261–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kindler HL. A glimmer of hope for pancreatic cancer. N Engl J Med. 2018;379:2463–4.

    Article  PubMed  Google Scholar 

  149. McGuigan A, Kelly P, Turkington RC, Jones C, Coleman HG, McCain RS. Pancreatic cancer: a review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol. 2018;24:4846–61.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Deshwar AB, Sugar E, Torto D, De Jesus-Acosta A, Weiss MJ, Wolfgang CL, et al. Diagnostic intervals and pancreatic ductal adenocarcinoma (PDAC) resectability: a single-center retrospective analysis. Ann Pancreatic Cancer. 2018;2018:1.

    Google Scholar 

  151. Winter JM, Brennan MF, Tang LH, D'Angelica MI, Dematteo RP, Fong Y, et al. Survival after resection of pancreatic adenocarcinoma: results from a single institution over three decades. Ann Surg Oncol. 2012;19:169–75.

    Article  PubMed  Google Scholar 

  152. Ino Y, Yamazaki-Itoh R, Shimada K, Iwasaki M, Kosuge T, Kanai Y, et al. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer. 2013;108:914–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yu Z, Zhao S, Ren L, Wang L, Chen Z, Hoffman RM, et al. Pancreatic cancer-derived exosomes promote tumor metastasis and liver pre-metastatic niche formation. Oncotarget. 2017;8:63461–83.

    PubMed  PubMed Central  Google Scholar 

  154. Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta General Subj. 2012;1820:940–8.

    Article  CAS  Google Scholar 

  155. Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM. Exosome mediated communication within the tumor microenvironment. J Control Rel. 2015;219:278–94.

    Article  CAS  Google Scholar 

  156. Kharaziha P, Ceder S, Li Q, Panaretakis T. Tumor cell-derived exosomes: a message in a bottle. Biochem Biophys Acta. 2012;1826:103–11.

    CAS  PubMed  Google Scholar 

  157. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22:231–7.

    Article  CAS  PubMed  Google Scholar 

  158. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  159. Banzhaf-Strathmann J, Benito E, May S, Arzberger T, Tahirovic S, Kretzschmar H, et al. MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer's disease. EMBO J. 2014;33:1667–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Popena I, Abols A, Saulite L, Pleiko K, Zandberga E, Jekabsons K, et al. Effect of colorectal cancer-derived extracellular vesicles on the immunophenotype and cytokine secretion profile of monocytes and macrophages. Cell Commun Signal. 2018;16:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Baj-Krzyworzeka M, Mytar B, Szatanek R, Surmiak M, Weglarczyk K, Baran J, et al. Colorectal cancer-derived microvesicles modulate differentiation of human monocytes to macrophages. J Transl Med. 2016;14:36.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Whiteside TL. Exosomes and tumor-mediated immune suppression. J Clin Investig. 2016;126:1216–23.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Joshi T, Ganesan LP, Cheney C, Ostrowski MC, Muthusamy N, Byrd JC, et al. The PtdIns 3-kinase/Akt pathway regulates macrophage-mediated ADCC against B cell lymphoma. PLoS One. 2009;4:e4208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Weiskopf K, Weissman IL (2015) Macrophages are critical effectors of antibody therapies for cancer. mAbs 7:303–10.

  165. Battke C, Ruiss R, Welsch U, Wimberger P, Lang S, Jochum S, et al. Tumour exosomes inhibit binding of tumour-reactive antibodies to tumour cells and reduce ADCC. Cancer Immunol Immunother. 2011;60:639–48.

    Article  CAS  PubMed  Google Scholar 

  166. Marleau AM, Chen C-S, Joyce JA, Tullis RH. Exosome removal as a therapeutic adjuvant in cancer. J Transl Med. 2012;10:134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Biotechnology (DBT) for the Government of India sponsored Ramalingaswami Fellowship to MSB (BT/RLF/Re-entry/26/2013). The authors are thankful to the Department of Science and Technology (DST), Government of India for providing financial support under Early Career Research (ECR) Award (ECR/2016/00852) to MSB and American Heart Association support to KW. The authors also gratefully acknowledge the Indian Institute of Technology Indore (IITI) (MHRD) for providing facilities and other support.

Funding

The authors declare no funding support was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mirza S. Baig or Kishore K. Wary.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Ethical approval

No ethics approval was required for this review that did not involve patients or patient data.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baig, M.S., Roy, A., Rajpoot, S. et al. Tumor-derived exosomes in the regulation of macrophage polarization. Inflamm. Res. 69, 435–451 (2020). https://doi.org/10.1007/s00011-020-01318-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01318-0

Keywords

Navigation