Skip to main content
Log in

Cell-cell communication via extracellular membrane vesicles and its role in the immune response

  • Minireview
  • Published:
Molecules and Cells

Abstract

The host immune response involves a variety of cell types, including specialized immune and non-immune cells. The delicate coordination among these cells via close communication is central for the proper operation of immune system. Cell-cell communication is mediated by a complex network that includes soluble factors such as cytokines, chemokines, and metabolites exported from cells, as well as membrane-bound receptors and their ligands. Cell-cell communication is also mediated by membrane vesicles (e.g., exosomes, ectosomes), which are either shed by distant cells or exchanged by cells that are making direct contact. Intercellular communication via extracellular membrane vesicles has drawn much attention recently, as they have been shown to carry various biomolecules that modulate the activities of recipient cells. In this review, I will discuss current views on cell-cell communication via extra-cellular membrane vesicles, especially shedded membrane vesicles, and their effects on the control of the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, R.S., Waithman, J., Bedoui, S., Jones, C.M., Villadangos, J.A., Zhan, Y., Lew, A.M., Shortman, K., Heath, W.R., and Carbone, F.R. (2006). Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 25, 153–162.

    Article  PubMed  CAS  Google Scholar 

  • Allison, A.C., and Eugui, E.M. (1983). The role of cell-mediated immune responses in resistance to malaria, with special reference to oxidant stress. Annu. Rev. Immunol. 1, 361–392.

    Article  PubMed  CAS  Google Scholar 

  • Almqvist, N., Lonnqvist, A., Hultkrantz, S., Rask, C., and Telemo, E. (2008). Serum-derived exosomes from antigen-fed mice prevent allergic sensitization in a model of allergic asthma. Immunology 125, 21–27.

    Article  PubMed  CAS  Google Scholar 

  • Bianco, N.R., Kim, S.H., Morelli, A.E., and Robbins, P.D. (2007). Modulation of the immune response using dendritic cell-derived exosomes. Methods Mol. Biol. 380, 443–455.

    Article  PubMed  CAS  Google Scholar 

  • Blanchard, N., Lankar, D., Faure, F., Regnault, A., Dumont, C., Raposo, G., and Hivroz, C. (2002). TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J. Immunol. 168, 3235–3241.

    PubMed  CAS  Google Scholar 

  • Boes, M., Cuvillier, A., and Ploegh, H. (2004). Membrane specializations and endosome maturation in dendritic cells and B cells. Trends Cell Biol. 14, 175–183.

    Article  PubMed  CAS  Google Scholar 

  • Borges, F.T., Melo, S.A., Ozdemir, B.C., Kato, N., Revuelta, I., Miller, C.A., Gattone, V.H., 2nd, LeBleu, V.S., and Kalluri, R. (2013). TGF-beta1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J. Am. Soc. Nephrol. 24, 385–392.

    Article  PubMed  CAS  Google Scholar 

  • Bu, N., Wu, H., Sun, B., Zhang, G., Zhan, S., Zhang, R., and Zhou, L. (2011). Exosome-loaded dendritic cells elicit tumor-specific CD8+ cytotoxic T cells in patients with glioma. J. Neurooncol. 104, 659–667.

    Article  PubMed  CAS  Google Scholar 

  • Bullerdiek, J., and Flor, I. (2012). Exosome-delivered microRNAs of “chromosome 19 microRNA cluster” as immunomodulators in pregnancy and tumorigenesis. Mol. Cytogenet. 5, 27.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, A.K., and Morgan, B.P. (1985). Monoclonal antibodies demonstrate protection of polymorphonuclear leukocytes against complement attack. Nature 317, 164–166.

    Article  PubMed  CAS  Google Scholar 

  • Chalmin, F., Ladoire, S., Mignot, G., Vincent, J., Bruchard, M., Remy-Martin, J.P., Boireau, W., Rouleau, A., Simon, B., Lanneau, D., et al. (2010). Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J. Clin. Invest. 120, 457–471.

    PubMed  CAS  Google Scholar 

  • Chaput, N., and Thery, C. (2011). Exosomes: immune properties and potential clinical implementations. Semin. Immunol. 33, 419–440.

    Article  CAS  Google Scholar 

  • Clayton, A., Turkes, A., Dewitt, S., Steadman, R., Mason, M.D., and Hallett, M.B. (2004). Adhesion and signaling by B cell-derived exosomes: the role of integrins. FASEB J. 18, 977–979.

    PubMed  CAS  Google Scholar 

  • Clayton, A., Mitchell, J.P., Court, J., Mason, M.D., and Tabi, Z. (2007). Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res. 67, 7458–7466.

    Article  PubMed  CAS  Google Scholar 

  • Clayton, A., Mitchell, J.P., Court, J., Linnane, S., Mason, M.D., and Tabi, Z. (2008). Human tumor-derived exosomes down-modulate NKG2D expression. J. Immunol. 180, 7249–7258.

    PubMed  CAS  Google Scholar 

  • Combes, V., Taylor, T.E., Juhan-Vague, I., Mege, J.L., Mwenechanya, J., Tembo, M., Grau, G.E., and Molyneux, M.E. (2004). Circulating endothelial microparticles in malawian children with severe falciparum malaria complicated with coma. JAMA 291, 2542–2544.

    PubMed  CAS  Google Scholar 

  • Combes, V., Coltel, N., Alibert, M., van Eck, M., Raymond, C., Juhan-Vague, I., Grau, G.E., and Chimini, G. (2005). ABCA1 gene deletion protects against cerebral malaria: potential pathogenic role of microparticles in neuropathology. Am. J. Pathol. 166, 295–302.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, A.M. (2009). Cell-mediated immune responses in tuberculosis. Annu. Rev. Immunol. 27, 393–422.

    Article  PubMed  CAS  Google Scholar 

  • Denzer, K., Kleijmeer, M.J., Heijnen, H.F., Stoorvogel, W., and Geuze, H.J. (2000). Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J. Cell Sci. 113 Pt 19, 3365–3374.

    Google Scholar 

  • Eken, C., Gasser, O., Zenhaeusern, G., Oehri, I., Hess, C., and Schifferli, J.A. (2008). Polymorphonuclear neutrophil-derived ectosomes interfere with the maturation of monocyte-derived dendritic cells. J. Immunol. 180, 817–824.

    PubMed  CAS  Google Scholar 

  • Fagiolo, E. (2004). Immunological tolerance loss vs. erythrocyte self antigens and cytokine network disregulation in autoimmune hemolytic anaemia. Autoimmun. Rev. 3, 53–59.

    Article  PubMed  CAS  Google Scholar 

  • Fanaei, M., Monk, P.N., and Partridge, L.J. (2011). The role of tetraspanins in fusion. Biochem. Soc. Trans. 39, 524–528.

    Article  PubMed  CAS  Google Scholar 

  • Filipazzi, P., Burdek, M., Villa, A., Rivoltini, L., and Huber, V. (2012). Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin. Cancer Biol. 22, 342–349.

    Article  PubMed  CAS  Google Scholar 

  • Fooksman, D.R., Vardhana, S., Vasiliver-Shamis, G., Liese, J., Blair, D.A., Waite, J., Sacristan, C., Victora, G.D., Zanin-Zhorov, A., and Dustin, M.L. (2010). Functional anatomy of T cell activation and synapse formation. Annu. Rev. Immunol. 28, 79–105.

    Article  PubMed  CAS  Google Scholar 

  • Franciszkiewicz, K., Boissonnas, A., Boutet, M., Combadiere, C., and Mami-Chouaib, F. (2012). Role of chemokines and chemokine receptors in shaping the effector phase of the antitumor immune response. Cancer Res. 72, 6325–6332.

    Article  PubMed  CAS  Google Scholar 

  • Fredrickson, E.K., and Gardner, R.G. (2012). Selective destruction of abnormal proteins by ubiquitin-mediated protein quality con trol degradation. Semin. Cell Dev. Biol. 23, 530–537.

    Article  PubMed  CAS  Google Scholar 

  • Gasser, O., and Schifferli, J.A. (2004). Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ecto-cytosis. Blood 104, 2543–2548.

    Article  PubMed  CAS  Google Scholar 

  • Gasser, O., and Schifferli, J.A. (2005). Microparticles released by human neutrophils adhere to erythrocytes in the presence of complement. Exp. Cell Res. 307, 381–387.

    Article  PubMed  CAS  Google Scholar 

  • Gasser, O., Hess, C., Miot, S., Deon, C., Sanchez, J.C., and Schifferli, J.A. (2003). Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Exp. Cell Res. 285, 243–257.

    Article  PubMed  CAS  Google Scholar 

  • Gastpar, R., Gehrmann, M., Bausero, M.A., Asea, A., Gross, C., Schroeder, J.A., and Multhoff, G. (2005). Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res. 65, 5238–5247.

    Article  PubMed  CAS  Google Scholar 

  • Gibbings, D.J., Ciaudo, C., Erhardt, M., and Voinnet, O. (2009). Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol. 11, 1143–1149.

    Article  PubMed  CAS  Google Scholar 

  • Giri, P.K., and Schorey, J.S. (2008). Exosomes derived from M. Bovis BCG infected macrophages activate antigen-specific CD4+ and CD8+ T cells in vitro and in vivo. PLos One 3, e2461.

    Article  PubMed  Google Scholar 

  • Gomez-Rodriguez, J., Readinger, J.A., Viorritto, I.C., Mueller, K.L., Houghtling, R.A., and Schwartzberg, P.L. (2007). Tec kinases, actin, and cell adhesion. Immunol. Rev. 218, 45–64.

    Article  PubMed  CAS  Google Scholar 

  • Graham, G.J., and Locati, M. (2013). Regulation of the immune and inflammatory responses by the ‘atypical’ chemokine receptor D6. J. Pathol. 229, 168–175.

    Article  PubMed  CAS  Google Scholar 

  • Helenius, A. (2011). Endosome maturation. EMBO J. 30, 3481–3500.

    Article  PubMed  Google Scholar 

  • Hess, C., Sadallah, S., Hefti, A., Landmann, R., and Schifferli, J.A. (1999). Ectosomes released by human neutrophils are specialized functional units. J. Immunol. 163, 4564–4573

    PubMed  CAS  Google Scholar 

  • Hess, C., Sadallah, S., and Schifferli, J.A. (2000). Induction of neutrophil responsiveness to myeloperoxidase antibodies by their exposure to supernatant of degranulated autologous neutrophils. Blood 96, 2822–2827.

    PubMed  CAS  Google Scholar 

  • Horgan, C.P., and McCaffrey, M.W. (2011). Rab GTPases and microtubule motors. Biochem. Soc. Trans. 39, 1202–1206.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J.F., Yang, Y., Sepulveda, H., Shi, W., Hwang, I., Peterson, P.A., Jackson, M.R., Sprent, J., and Cai, Z. (1999). TCR-Mediated internalization of peptide-MHC complexes acquired by T cells. Science 286, 952–954.

    Article  PubMed  CAS  Google Scholar 

  • Huber, V., Filipazzi, P., Iero, M., Fais, S., and Rivoltini, L. (2008). More insights into the immunosuppressive potential of tumor exosomes. J. Trans. Med. 6, 63.

    Article  Google Scholar 

  • Huotari, J., and Helenius, A. (2011). Endosome maturation. EMBO J. 30, 3481–3500.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, I., and Ki, D. (2011). Receptor-mediated T cell absorption of antigen presenting cell-derived molecules. Front Biosci. 16, 411–421.

    Article  CAS  Google Scholar 

  • Hwang, I., Huang, J.F., Kishimoto, H., Brunmark, A., Peterson, P.A., Jackson, M.R., Surh, C.D., Cai, Z., and Sprent, J. (2000). T cells can use either T cell receptor or CD28 receptors to absorb and internalize cell surface molecules derived from antigen-presenting cells. J. Exp. Med. 191, 1137–1148.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, I., Shen, X., and Sprent, J. (2003). Direct stimulation of naive T cells by membrane vesicles from antigen-presenting cells: distinct roles for CD54 and B7 molecules. Proc. Natl. Acad. Sci. USA 100, 6670–6675.

    Article  PubMed  CAS  Google Scholar 

  • Jouvenet, N. (2012). Dynamics of ESCRT proteins. Cell. Mol. Life Sci. 69, 4121–4133.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson, M., Lundin, S., Dahlgren, U., Kahu, H., Pettersson, I., and Telemo, E. (2001). “Tolerosomes” are produced by intestinal epithelial cells. Eur. J. Immunol. 31, 2892–2900.

    Article  PubMed  CAS  Google Scholar 

  • Kawamata, T., and Tomari, Y. (2010). Making RISC. Trends Biochem. Sci. 35, 368–376.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K., Wang, L., and Hwang, I. (2009). A novel flow cytometric high throughput assay for a systematic study on molecular mechanisms underlying T cell receptor-mediated integrin activation. PLoS One 4, e6044.

    Article  PubMed  Google Scholar 

  • Laulagnier, K., Motta, C., Hamdi, S., Roy, S., Fauvelle, F., Pageaux, J.F., Kobayashi, T., Salles, J.P., Perret, B., Bonnerot, C., et al. (2004). Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem. J. 380, 161–171.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y., El Andaloussi, S., and Wood, M.J. (2012). Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum. Mol. Genet. 21, R125–134.

    Article  PubMed  CAS  Google Scholar 

  • Li, X.B., Zhang, Z.R., Schluesener, H.J., and Xu, S.Q. (2006). Role of exosomes in immune regulation. J. Cell. Mol. Med. 10, 364–375.

    Article  PubMed  CAS  Google Scholar 

  • Liang, B., Peng, P., Chen, S., Li, L., Zhang, M., Cao, D., Yang, J., Li, H., Gui, T., Li, X., et al. (2013). Characterization and proteomic analysis of ovarian cancer-derived exosomes. J. Proteomics 80C, 171–182.

    Article  PubMed  Google Scholar 

  • Liu, S., and Storrie, B. (2012). Are Rab proteins the link between Golgi organization and membrane trafficking? Cell. Mol. Life Sci. 69, 4093–4106.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, A.K., and Giebel, B. (2012). Exosomes: small vesicles participating in intercellular communication. Int. J. Biochem. Cell Biol. 44, 11–15.

    Article  PubMed  CAS  Google Scholar 

  • Luzio, J.P., Piper, S.C., Bowers, K., Parkinson, M.D., Lehner, P.J., and Bright, N.A. (2009). ESCRT proteins and the regulation of endocytic delivery to lysosomes. Biochem. Soc. Trans. 37, 178–180.

    Article  PubMed  CAS  Google Scholar 

  • McLellan, A.D. (2009). Exosome release by primary B cells. Crit. Rev. Immunol. 29, 203–217.

    Article  PubMed  CAS  Google Scholar 

  • Miyanishi, M., Tada, K., Koike, M., Uchiyama, Y., Kitamura, T., and Nagata, S. (2007). Identification of Tim4 as a phosphatidylserine receptor. Nature 450, 435–439.

    Article  PubMed  CAS  Google Scholar 

  • Monteiro, A.C., Scovino, A., Raposo, S., Gaze, V.M., Cruz, C., Svensjo, E., Narciso, M.S., Colombo, A.P., Pesquero, J.B., Feres-Filho, E., et al. (2009). Kinin danger signals proteolytically released by gingipain induce Fimbriae-specific IFN-gamma- and IL-17-producing T cells in mice infected intramucosally with Porphyromonas gingivalis. J. Immunol. 183, 3700–3711.

    Article  PubMed  CAS  Google Scholar 

  • Muller, W. (2006). Dissecting the cytokine network. Cell. Immunol. 244, 162–164.

    Article  PubMed  Google Scholar 

  • Nieuwland, R., Berckmans, R.J., Rotteveel-Eijkman, R.C., Maquelin, K.N., Roozendaal, K.J., Jansen, P.G., ten Have, K., Eijsman, L., Hack, C.E., and Sturk, A. (1997). Cell-derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant. Circulation 96, 3534–3541.

    Article  PubMed  CAS  Google Scholar 

  • Nolte-’t Hoen, E.N., Buschow, S.I., Anderton, S.M., Stoorvogel, W., and Wauben, M.H. (2009). Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood 113, 1977–1981.

    Article  PubMed  Google Scholar 

  • Ostman, S., Taube, M., and Telemo, E. (2005). Tolerosome-induced oral tolerance is MHC dependent. Immunol. 116, 464–476.

    Google Scholar 

  • Peterson, E.J. (2003). The TCR ADAPts to integrin-mediated cell adhesion. Immunol. Rev. 192, 113–121.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, R.A. (2012). Regulatory T-cells: diverse phenotypes integral to immune homeostasis and suppression. Toxicol. Pathol. 40, 186–204.

    Article  PubMed  CAS  Google Scholar 

  • Pols, M.S., and Klumperman, J. (2009). Trafficking and function of the tetraspanin CD63. Exp. Cell Res. 315, 1584–1592.

    Article  PubMed  CAS  Google Scholar 

  • Rabesandratana, H., Toutant, J.P., Reggio, H., and Vidal, M. (1998). Decay-accelerating factor (CD55) and membrane inhibitor of reactive lysis (CD59) are released within exosomes during In vitro maturation of reticulocytes. Blood 91, 2573–2580.

    PubMed  CAS  Google Scholar 

  • Rabinowits, G., Gercel-Taylor, C., Day, J.M., Taylor, D.D., and Kloecker, G.H. (2009). Exosomal microRNA: a diagnostic marker for lung cancer. Clin. Lung Cancer 10, 42–46.

    Article  PubMed  CAS  Google Scholar 

  • Rana, S., Malinowska, K., and Zoller, M. (2013). Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia 15, 281–295.

    PubMed  CAS  Google Scholar 

  • Raposo, G., and Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383.

    Article  PubMed  CAS  Google Scholar 

  • Raulet, D.H., Gasser, S., Gowen, B.G., Deng, W., and Jung, H. (2013). Regulation of ligands for the NKG2D activating receptor. Annu. Rev. Immunol. 31, 413–441.

    Article  PubMed  CAS  Google Scholar 

  • Rieu, S., Geminard, C., Rabesandratana, H., Sainte-Marie, J., and Vidal, M. (2000). Exosomes released during reticulocyte maturation bind to fibronectin via integrin alpha4beta1. Eur. J. Biochem. 267, 583–590.

    Article  PubMed  CAS  Google Scholar 

  • Roxrud, I., Stenmark, H., and Malerod, L. (2010). ESCRT & Co. Biology of the cell/under the auspices of the European Cell Biology Organization 102, 293–318.

    Article  CAS  Google Scholar 

  • Saas, P., and Perruche, S. (2012). Functions of TGF-beta-exposed plasmacytoid dendritic cells. Crit. Rev. Immunol. 32, 529–553.

    Article  PubMed  CAS  Google Scholar 

  • Sadallah, S., Eken, C., and Schifferli, J.A. (2011). Ectosomes as immunomodulators. Semin. Immunopathol. 33, 487–495.

    Article  PubMed  CAS  Google Scholar 

  • Sala-Valdes, M., Ailane, N., Greco, C., Rubinstein, E., and Boucheix, C. (2012). Targeting tetraspanins in cancer. Expert Opin. Ther. Targets 16, 985–997.

    Article  PubMed  CAS  Google Scholar 

  • Schorey, J.S., and Bhatnagar, S. (2008). Exosome function: from tumor immunology to pathogen biology. Traffic 9, 871–881.

    Article  PubMed  CAS  Google Scholar 

  • Scolding, N.J., Morgan, B.P., Houston, W.A., Linington, C., Campbell, A.K., and Compston, D.A. (1989). Vesicular removal by oligodendrocytes of membrane attack complexes formed by activated complement. Nature 339, 620–622.

    Article  PubMed  CAS  Google Scholar 

  • Scott, R.S., McMahon, E.J., Pop, S.M., Reap, E.A., Caricchio, R., Cohen, P.L., Earp, H.S., and Matsushima, G.K. (2001). Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411, 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Segura, E., Guerin, C., Hogg, N., Amigorena, S., and Thery, C. (2007). CD8+ dendritic cells use LFA-1 to capture MHC-peptide complexes from exosomes in vivo. J. Immunol. 179, 1489–1496.

    PubMed  CAS  Google Scholar 

  • Taieb, J., Chaput, N., and Zitvogel, L. (2005). Dendritic cell-derived exosomes as cell-free peptide-based vaccines. Crit. Rev. Immunol. 25, 215–223.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, Y., Torigoe, T., Kutomi, G., Hirata, K., and Sato, N. (2012). New paradigm for intrinsic function of heat shock proteins as endogenous ligands in inflammation and innate immunity. Curr. Mol. Med. 12, 1198–1206.

    Article  PubMed  CAS  Google Scholar 

  • Tan, A., Rajadas, J., and Seifalian, A.M. (2013). Exosomes as nanotheranostic delivery platforms for gene therapy. Adv. Drug Deliv. Rev. 65, 357–367.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, D.D., and Gercel-Taylor, C. (2011). Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. Semin. Immunopathol. 33, 441–454.

    Article  PubMed  CAS  Google Scholar 

  • Thery, C., Regnault, A., Garin, J., Wolfers, J., Zitvogel, L., Ricciardi-Castagnoli, P., Raposo, G., and Amigorena, S. (1999). Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J. Cell Biol. 147, 599–610.

    Article  PubMed  CAS  Google Scholar 

  • Thery, C., Ostrowski, M., and Segura, E. (2009). Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9, 581–593.

    Article  PubMed  CAS  Google Scholar 

  • Turola, E., Furlan, R., Bianco, F., Matteoli, M., and Verderio, C. (2012). Microglial microvesicle secretion and intercellular signaling. Front. Physiol. 3, 149.

    Article  PubMed  CAS  Google Scholar 

  • Vestweber, D. (2007). Adhesion and signaling molecules controlling the transmigration of leukocytes through endothelium. Immunol. Rev. 218, 178–196.

    Article  PubMed  CAS  Google Scholar 

  • Viaud, S., Thery, C., Ploix, S., Tursz, T., Lapierre, V., Lantz, O., Zitvogel, L., and Chaput, N. (2010). Dendritic cell-derived exosomes for cancer immunotherapy: what’s next? Cancer Res. 70, 1281–1285.

    Article  PubMed  CAS  Google Scholar 

  • Walker, J.D., Maier, C.L., and Pober, J.S. (2009). Cytomegalovirusinfected human endothelial cells can stimulate allogeneic CD4+ memory T cells by releasing antigenic exosomes. J. Immunol. 182, 1548–1559.

    PubMed  CAS  Google Scholar 

  • Wubbolts, R., Leckie, R.S., Veenhuizen, P.T., Schwarzmann, G., Mobius, W., Hoernschemeyer, J., Slot, J.W., Geuze, H.J., and Stoorvogel, W. (2003). Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J. Biol. Chem. 278, 10963–10972.

    CAS  Google Scholar 

  • Xia, P., and Wadham, C. (2011). Sphingosine 1-phosphate, a key mediator of the cytokine network: juxtacrine signaling. Cytokine Growth Factor Rev. 22, 45–53.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura, A., and Muto, G. (2011). TGF-beta function in immune suppression. Curr. Top. Microbiol. Immunol. 350, 127–147.

    Article  PubMed  CAS  Google Scholar 

  • Zech, D., Rana, S., Buchler, M.W., and Zoller, M. (2012). Tumorexosomes and leukocyte activation: an ambivalent crosstalk. Cell Commun. Signal. 10, 37.

    Article  PubMed  CAS  Google Scholar 

  • Zomer, A., Vendrig, T., Hopmans, E.S., van Eijndhoven, M., Middeldorp, J.M., and Pegtel, D.M. (2010). Exosomes: fit to deliver small RNA. Commun. Integr. Biol. 3, 447–450.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inkyu Hwang.

About this article

Cite this article

Hwang, I. Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells 36, 105–111 (2013). https://doi.org/10.1007/s10059-013-0154-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0154-2

Keywords

Navigation