Skip to main content

Advertisement

Log in

Tumour exosomes inhibit binding of tumour-reactive antibodies to tumour cells and reduce ADCC

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

In order to grow within an immunocompetent host, tumour cells have evolved various strategies to cope with the host’s immune system. These strategies include the downregulation of surface molecules and the secretion of immunosuppressive factors like IL-10 and PGE2 that impair the maturation of immune effector cells, among other mechanisms. Recently, tumour exosomes (TEX) have also been implicated in tumour-induced immune suppression as it has been shown that TEX can induce apoptosis in T lymphocytes. In this study, we extend our knowledge about immunosuppressive features of these microvesicles in that we show that TEX efficiently bind and sequester tumour-reactive antibodies and dramatically reduce their binding to tumour cells. Moreover, we demonstrate that this antibody sequestration reduces the antibody-dependent cytotoxicity by immune effector cells, which is among the most important anti-tumour reactions of the immune system and a significant activity of therapeutic antibodies. Taken together, these data point to the fact that tumour-derived exosomes interfere with the tumour-specific function of immune cells and constitute an additional mechanism how tumours escape from immune surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TEX:

Tumour-derived exosomes

References

  1. Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296

    Article  PubMed  CAS  Google Scholar 

  2. Antonia SJ, Extermann M, Flavell RA (1998) Immunologic nonresponsiveness to tumors. Crit Rev Oncog 9:35–41

    PubMed  CAS  Google Scholar 

  3. Willimsky G, Blankenstein T (2005) Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437:141–146

    Article  PubMed  CAS  Google Scholar 

  4. Clayton A, Mitchell JP, Court J, Mason MD, Tabi Z (2007) Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res 67:7458–7466

    Article  PubMed  CAS  Google Scholar 

  5. Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, Corbelli A, Fais S, Parmiani G, Rivoltini L (2006) Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 66:9290–9298

    Article  PubMed  CAS  Google Scholar 

  6. Kim JW, Wieckowski E, Taylor DD, Reichert TE, Watkins S, Whiteside TL (2005) Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res 11:1010–1020

    PubMed  CAS  Google Scholar 

  7. Taylor DD, Gercel-Taylor C, Lyons KS, Stanson J, Whiteside TL (2003) T-cell apoptosis and suppression of T-cell receptor/CD3-zeta by Fas ligand-containing membrane vesicles shed from ovarian tumors. Clin Cancer Res 9:5113–5119

    PubMed  CAS  Google Scholar 

  8. Liu C, Yu S, Zinn K, Wang J, Zhang L, Jia Y, Kappes JC, Barnes S, Kimberly RP, Grizzle WE, Zhang HG (2006) Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J Immunol 176:1375–1385

    PubMed  CAS  Google Scholar 

  9. Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z (2008) Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol 180:7249–7258

    PubMed  CAS  Google Scholar 

  10. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WTJ, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    Article  PubMed  CAS  Google Scholar 

  11. Runz S, Keller S, Rupp C, Stoeck A, Issa Y, Koensgen D, Mustea A, Sehouli J, Kristiansen G, Altevogt P (2007) Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol 107:563–571

    Article  PubMed  CAS  Google Scholar 

  12. Trojan A, Tun-Kyi A, Odermatt B, Nestle FO, Stahel RA (2002) Functional detection of epithelial cell adhesion molecule specific cytotoxic T lymphocytes in patients with lung cancer, colorectal cancer and in healthy donors. Lung Cancer 36:151–158

    Article  PubMed  Google Scholar 

  13. Bioley G, Jandus C, Tuyaerts S, Rimoldi D, Kwok WW, Speiser DE, Tiercy JM, Thielemans K, Cerottini JC, Romero P (2006) Melan-A/MART-1-specific CD4 T cells in melanoma patients: identification of new epitopes and ex vivo visualization of specific T cells by MHC class II tetramers. J Immunol 177:6769–6779

    PubMed  CAS  Google Scholar 

  14. Mears R, Craven RA, Hanrahan S, Totty N, Upton C, Young SL, Patel P, Selby PJ, Banks RE (2004) Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics 4:4019–4031

    Article  PubMed  CAS  Google Scholar 

  15. Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T, Tursz T, Amigorena S, Raposo G, Angevin E, Zitvogel L (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360:295–305

    Article  PubMed  CAS  Google Scholar 

  16. Kono K, Rongcun Y, Charo J, Ichihara F, Celis E, Sette A, Appella E, Sekikawa T, Matsumoto Y, Kiessling R (1998) Identification of HER2/neu-derived peptide epitopes recognized by gastric cancer-specific cytotoxic T lymphocytes. Int J Cancer 78:202–208

    Article  PubMed  CAS  Google Scholar 

  17. Reuschenbach M, von Knebel Doeberitz M, Wentzensen N (2009) A systematic review of humoral immune responses against tumor antigens. Cancer Immunol Immunother 58:1535–1544

    Article  PubMed  CAS  Google Scholar 

  18. Taylor DD, Gercel-Taylor C, Parker LP (2009) Patient-derived tumor-reactive antibodies as diagnostic markers for ovarian cancer. Gynecol, Oncol

    Google Scholar 

  19. Baselga J, Swain SM (2009) Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 9:463–475

    Article  PubMed  CAS  Google Scholar 

  20. Tagliabue E, Balsari A, Campiglio M, Pupa SM (2010) HER2 as a target for breast cancer therapy. Expert Opin Biol Ther 10:711–724

    Article  PubMed  CAS  Google Scholar 

  21. Disis ML, Pupa SM, Gralow JR, Dittadi R, Menard S, Cheever MA (1997) High-titer HER-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol 15:3363–3367

    PubMed  CAS  Google Scholar 

  22. Montgomery RB, Makary E, Schiffman K, Goodell V, Disis ML (2005) Endogenous anti-HER2 antibodies block HER2 phosphorylation and signaling through extracellular signal-regulated kinase. Cancer Res 65:650–656

    PubMed  CAS  Google Scholar 

  23. Ward RL, Hawkins NJ, Coomber D, Disis ML (1999) Antibody immunity to the HER-2/neu oncogenic protein in patients with colorectal cancer. Hum Immunol 60:510–515

    Article  PubMed  CAS  Google Scholar 

  24. Heubner M, Errico D, Kasimir-Bauer S, Herlyn D, Kimmig R, Wimberger P (2010) EpCAM-autoantibody levels in the course of disease of ovarian cancer patients. Med, Oncol

    Google Scholar 

  25. Kim JH, Herlyn D, Wong KK, Park DC, Schorge JO, Lu KH, Skates SJ, Cramer DW, Berkowitz RS, Mok SC (2003) Identification of epithelial cell adhesion molecule autoantibody in patients with ovarian cancer. Clin Cancer Res 9:4782–4791

    PubMed  CAS  Google Scholar 

  26. de Gassart A, Geminard C, Fevrier B, Raposo G, Vidal M (2003) Lipid raft-associated protein sorting in exosomes. Blood 102:4336–4344

    Article  PubMed  Google Scholar 

  27. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172

    Article  PubMed  CAS  Google Scholar 

  28. Valenti R, Huber V, Iero M, Filipazzi P, Parmiani G, Rivoltini L (2007) Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res 67:2912–2915

    Article  PubMed  CAS  Google Scholar 

  29. Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, Rivoltini L (2008) Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ 15:80–88

    Article  PubMed  CAS  Google Scholar 

  30. Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6:443–446

    Article  PubMed  CAS  Google Scholar 

  31. Park TK, Kim SN (1989) Cell-mediated immunity in patients with invasive carcinoma of the cervix. Yonsei Med J 30:164–172

    PubMed  CAS  Google Scholar 

  32. Matsuzaki H, Kagimoto T, Oda T, Kawano F, Takatsuki K (1985) Natural killer activity and antibody-dependent cell-mediated cytotoxicity in multiple myeloma. Jpn J Clin Oncol 15:611–617

    PubMed  CAS  Google Scholar 

  33. Dallegri F, Ballestrero A, Ottonello L, Patrone F (1989) Defective antibody-dependent tumour cell lysis by neutrophils from cancer patients. Clin Exp Immunol 77:58–61

    PubMed  CAS  Google Scholar 

  34. Baselga J, Albanell J, Molina MA, Arribas J (2001) Mechanism of action of trastuzumab and scientific update. Semin Oncol 28:4–11

    Article  PubMed  CAS  Google Scholar 

  35. Katsumi Y, Kuwahara Y, Tamura S, Kikuchi K, Otabe O, Tsuchiya K, Iehara T, Kuroda H, Hosoi H, Sugimoto T (2008) Trastuzumab activates allogeneic or autologous antibody-dependent cellular cytotoxicity against malignant rhabdoid tumor cells and interleukin-2 augments the cytotoxicity. Clin Cancer Res 14:1192–1199

    Article  PubMed  CAS  Google Scholar 

  36. Spector NL, Blackwell KL (2009) Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 27:5838–5847

    Article  PubMed  CAS  Google Scholar 

  37. Chen C, Skog J, Hsu CH, Lessard RT, Balaj L, Wurdinger T, Carter BS, Breakefield XO, Toner M, Irimia D (2010) Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 10:505–511

    Article  PubMed  CAS  Google Scholar 

  38. Keller S, Konig AK, Marme F, Runz S, Wolterink S, Koensgen D, Mustea A, Sehouli J, Altevogt P (2009) Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett 278:73–81

    Article  PubMed  CAS  Google Scholar 

  39. Lu H, Goodell V, Disis ML (2008) Humoral immunity directed against tumor-associated antigens as potential biomarkers for the early diagnosis of cancer. J Proteome Res 7:1388–1394

    Article  PubMed  CAS  Google Scholar 

  40. McNeel DG, Nguyen LD, Storer BE, Vessella R, Lange PH, Disis ML (2000) Antibody immunity to prostate cancer associated antigens can be detected in the serum of patients with prostate cancer. J Urol 164:1825–1829

    Article  PubMed  CAS  Google Scholar 

  41. Mosolits S, Harmenberg U, Ruden U, Ohman L, Nilsson B, Wahren B, Fagerberg J, Mellstedt H (1999) Autoantibodies against the tumour-associated antigen GA733–2 in patients with colorectal carcinoma. Cancer Immunol Immunother 47:315–320

    Article  PubMed  CAS  Google Scholar 

  42. Mosolits S, Steinitz M, Harmenberg U, Ruden U, Eriksson E, Mellstedt H, Fagerberg J (2002) Immunogenic regions of the GA733–2 tumour-associated antigen recognised by autoantibodies of patients with colorectal carcinoma. Cancer Immunol Immunother 51:209–218

    Article  PubMed  CAS  Google Scholar 

  43. Anderson KS, Wong J, Vitonis A, Crum CP, Sluss PM, Labaer J, Cramer D (2010) p53 autoantibodies as potential detection and prognostic biomarkers in serous ovarian cancer. Cancer Epidemiol Biomarkers Prev 19:859–868

    Article  PubMed  CAS  Google Scholar 

  44. Andreu P, Johansson M, Affara NI, Pucci F, Tan T, Junankar S, Korets L, Lam J, Tawfik D, DeNardo DG, Naldini L, de Visser KE, De Palma M, Coussens LM (2010) FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17:121–134

    Article  PubMed  CAS  Google Scholar 

  45. Calabrich A, Fernandes Gdos S, Katz A (2008) Trastuzumab: mechanisms of resistance and therapeutic opportunities. Oncology (Williston Park) 22, 1250–1258; discussion 1259, 1263

    Google Scholar 

  46. Mehta K, Osipo C (2009) Trastuzumab resistance: role for Notch signaling. Sci World J 9:1438–1448

    CAS  Google Scholar 

  47. Marx D, Fattahi-Meibodi A, Kudelka R, Uebel T, Kuhn W, Meden H (1998) Detection of p105 (c-erbB-2, HER2/neu) serum levels by a new ELISA in patients with ovarian carcinoma. Anticancer Res 18:2891–2894

    PubMed  CAS  Google Scholar 

  48. Streckfus C, Bigler L, Dellinger T, Dai X, Kingman A, Thigpen JT (2000) The presence of soluble c-erbB-2 in saliva and serum among women with breast carcinoma: a preliminary study. Clin Cancer Res 6:2363–2370

    PubMed  CAS  Google Scholar 

  49. Maple L, Lathrop R, Bozich S, Harman W, Tacey R, Kelley M, Danilkovitch-Miagkova A (2004) Development and validation of ELISA for herceptin detection in human serum. J Immunol Methods 295:169–182

    Article  PubMed  CAS  Google Scholar 

  50. Lasfargues EY, Coutinho WG, Redfield ES (1978) Isolation of two human tumor epithelial cell lines from solid breast carcinomas. J Natl Cancer Inst 61:967–978

    PubMed  CAS  Google Scholar 

  51. Rivoltini L, Carrabba M, Huber V, Castelli C, Novellino L, Dalerba P, Mortarini R, Arancia G, Anichini A, Fais S, Parmiani G (2002) Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev 188:97–113

    Article  PubMed  CAS  Google Scholar 

  52. Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol, Chap. 3, Unit 3.22

  53. Neri S, Mariani E, Meneghetti A, Cattini L, Facchini A (2001) Calcein-acetyoxymethyl cytotoxicity assay: standardization of a method allowing additional analyses on recovered effector cells and supernatants. Clin Diagn Lab Immunol 8:1131–1135

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by institutional grants.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Zeidler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1203 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battke, C., Ruiss, R., Welsch, U. et al. Tumour exosomes inhibit binding of tumour-reactive antibodies to tumour cells and reduce ADCC. Cancer Immunol Immunother 60, 639–648 (2011). https://doi.org/10.1007/s00262-011-0979-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-0979-5

Keywords

Navigation