Skip to main content

Advertisement

Log in

Suppressive effect of an orally active MEK1/2 inhibitor in two different animal models for rheumatoid arthritis: a comparison with leflunomide

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

To examine the effects of a mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2-inhibitor, JTP-74057, on inflammatory arthritis development, and compare its anti-arthritic effect with leflunomide.

Materials

Human, mouse, and rat peripheral blood mononuclear cells (PBMCs) were used. Lewis rats and DBA/1J mice were used for animal models.

Treatment

JTP-74057 was tested between 0.1–100 nM in in-vitro studies. JTP-74057 (0.01–0.3 mg/kg) and leflunomide (2–10 mg/kg) were administered orally in vivo.

Methods

PBMCs were stimulated with lipopolysaccharide. Adjuvant-induced arthritis (AIA) and type II collagen-induced arthritis (CIA) was induced in Lewis rats or DBA1/J mice, respectively.

Results

JTP-74057 blocked tumor necrosis factor-α and interleukin-6 production from PBMCs. AIA and CIA development were suppressed almost completely by 0.1 mg/kg of JTP-74057 or 10 mg/kg of leflunomide. In the CIA, JTP-74057, but not leflunomide, suppressed collagen-reactive T-cell proliferation ex vivo, whereas leflunomide, but not JTP-74057, suppressed anti-collagen antibody production.

Conclusions

JTP-74057 exerts potent anti-arthritic effects with a different profile from leflunomide, suggesting that JTP-74057 may be useful as a new therapeutic reagent in the treatment of rheumatoid arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423:356–61.

    Article  PubMed  CAS  Google Scholar 

  2. Arend WP, Dayer JM. Inhibition of the production and effects of interleukin-1 and tumor necrosis factor α in rheumatoid arthritis. Arthritis Rheum. 1995;38:151–60.

    Article  PubMed  CAS  Google Scholar 

  3. Feldmann M, Brennan FM, Maini RN. Rheumatoid arthritis. Cell. 1996;85:307–10.

    Article  PubMed  CAS  Google Scholar 

  4. van Vollenhoven RF. Treatment of rheumatoid arthritis: state of the art 2009. Nat Rev Rheumatol. 2009;5:531–41.

    Article  PubMed  Google Scholar 

  5. Gartlehner G, Hansen RA, Jonas BL, Thieda P, Lohr KN. The comparative efficacy and safety of biologics for the treatment of rheumatoid arthritis: a systematic review and metaanalysis. J Rheumatol. 2006;33:2398–408.

    PubMed  CAS  Google Scholar 

  6. Morel J, Berenbaum F. Signal transduction pathways: new targets for treating rheumatoid arthritis. Joint Bone Spine. 2004;71:503–10.

    Article  PubMed  Google Scholar 

  7. Thalhamer T, McGrath MA, Harnett MM. MAPKs and their relevance to arthritis and inflammation. Rheumatology. 2008;47:409–14.

    Article  PubMed  CAS  Google Scholar 

  8. Sweeney SE, Firestein GS. Mitogen activated protein kinase inhibitors: where are we now and where are we going? Ann Rheum Dis. 2006; 65 suppl 3:iii83–iii88.

    Google Scholar 

  9. Schett G, Tohidast-Akrad M, Smolen JS, Schmid BJ, Steiner CW, Bitzan P, et al. Activation, differential localization, and regulation of the stress-activated protein kinases, extracellular signal-regulated kinase, c-jun N-terminal kinase, and p38 mitogen-activated protein kinase, in synovial tissue and cells in rheumatoid arthritis. Arthritis Rheum. 2000;43:2501–12.

    Article  PubMed  CAS  Google Scholar 

  10. Scherle PA, Jones EA, Favata MF, Daulerio AJ, Covington MB, Nurnberg SA, et al. Inhibition of MAP kinase kinase prevents cytokine and prostaglandin E2 production in lipopolysaccharide-stimulated monocytes. J Immunol. 1998;161:5681–6.

    PubMed  CAS  Google Scholar 

  11. Liu E, Thant AA, Kikkawa F, Kurata H, Tanaka S, Nawa A, et al. The Ras-mitogen-activated protein kinase pathway is critical for the activation of matrix metalloproteinase secretion and the invasiveness in v-crk-transformed 3Y1. Cancer Res. 2000;60:2361–4.

    PubMed  CAS  Google Scholar 

  12. Thiel MJ, Schaefer CJ, Lesch ME, Mobley JL, Dudley DT, Tecle H, et al. Central role of the MEK/ERK MAP kinase pathway in a mouse model of rheumatoid arthritis: potential proinflammatory mechanisms. Arthritis Rheum. 2007;56:3347–57.

    Article  PubMed  CAS  Google Scholar 

  13. Ohori M, Takeuchi M, Maruki R, Nakajima H, Miyake H. FR180204, a novel and selective inhibitor of extracellular signal-regulated kinase, ameliorates collagen-induced arthritis in mice. Naunyn Schmiedebergs Arch Pharmacol. 2007;374:311–6.

    Article  PubMed  CAS  Google Scholar 

  14. Yamaguchi T, Yoshida T, Kurachi R, Kakegawa J, Hori Y, Nanayama T, et al. Identification of JTP-70902, a p15INK4b-inductive compound, as a novel MEK1/2 inhibitor. Cancer Sci. 2007;98:1809–16.

    Article  PubMed  CAS  Google Scholar 

  15. Yamaguchi T, Kakefuda R, Tajima N, Sowa Y, Sakai T. Antitumor activities of JTP-74057 (GSK1120212), a novel MEK1/2 inhibitor, on colorectal cancer cell lines in vitro and in vivo. Int J Oncol. 2011;39:23–31.

    PubMed  CAS  Google Scholar 

  16. Abe H, Kikuchi S, Hayakawa K, Iida T, Nagahashi N, Maeda K, et al. Discovery of a highly potent and selective MEK inhibitor: GSK1120212 (JTP-74057 DMSO solvate). ACS Med Chem Lett. 2011;2:320–4.

    Article  CAS  Google Scholar 

  17. Gilmartin AG, Bleam MR, Groy A, Moss KG, Minthorn EA, Kulkarni SG, et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res. 2011;17:989–1000.

    Article  PubMed  CAS  Google Scholar 

  18. Sugimoto K, Ohata M, Miyoshi J, Ishizaki H, Tsuboi N, Masuda A, et al. A serine/threonine kinase, Cot/Tpl2, modulates bacterial DNA-induced IL-12 production and Th cell differentiation. J Clin Invest. 2004;114:857–66.

    PubMed  CAS  Google Scholar 

  19. Dumitru CD, Ceci JD, Tsatsanis C, Kontoyiannis D, Stamatakis K, Lin JH, et al. TNF-α induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell. 2000;103:1071–83.

    Article  PubMed  CAS  Google Scholar 

  20. Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer. 2004;4:937–47.

    Article  PubMed  CAS  Google Scholar 

  21. Feng D, Ling WH, Duan RD. Lycopene suppresses LPS-induced NO and IL-6 production by inhibiting the activation of ERK, p38MAPK, and NF-κB in macrophages. Inflamm Res. 2010;59:115–21.

    Article  PubMed  CAS  Google Scholar 

  22. Hall JP, Kurdi Y, Hsu S, Cuozzo J, Liu J, Telliez JB, et al. Pharmacologic inhibition of tpl2 blocks inflammatory responses in primary human monocytes, synoviocytes, and blood. J Biol Chem. 2007;282:33295–304.

    Article  PubMed  CAS  Google Scholar 

  23. Nakamura I, Lipfert L, Rodan GA, Duonga LT. Convergence of αvβ3 integrin and macrophage colony stimulating factor-mediated signals on phospholipase Cγ in prefusion osteoclasts. J Cell Biol. 2001;152:361–73.

    Article  PubMed  CAS  Google Scholar 

  24. Lee SE, Chung WJ, Kwak HB, Chung CH, Kwack KB, Lee ZH, et al. Tumor necrosis factor-α supports the survival of osteoclasts through the activation of Akt and ERK. J Biol Chem. 2001;276:49343–9.

    Article  PubMed  CAS  Google Scholar 

  25. Lee ZH, Lee SE, Kim CW, Lee SH, Kim SW, Kwack K, et al. IL-1β stimulation of osteoclast survival through the PI 3-kinase/Akt and ERK pathways. J Biochem. 2002;131:161–6.

    Article  PubMed  CAS  Google Scholar 

  26. Breitkreutz I, Raab MS, Vallet S, Hideshima T, Raje N, Chauhan D, et al. Targeting MEK1/2 blocks osteoclast differentiation, function and cytokine secretion in multiple myeloma. Br J Haematol. 2007;139:55–63.

    Article  PubMed  CAS  Google Scholar 

  27. Nakamura H, Hirata A, Tsuji T, Yamamoto T. Role of osteoclast extracellular signal-regulated kinase (ERK) in cell survival and maintenance of cell polarity. J Bone Miner Res. 2003;18:1198–205.

    Article  PubMed  CAS  Google Scholar 

  28. Seo SW, Lee D, Minematsu H, Kim AD, Shin M, Cho SK, et al. Targeting extracellular signal-regulated kinase (ERK) signaling has therapeutic implications for inflammatory osteolysis. Bone. 2010;46:695–702.

    Article  PubMed  CAS  Google Scholar 

  29. Myers LK, Rosloniec EF, Cremer MA, Kang AH. Collagen-induced arthritis, an animal model of autoimmunity. Life Sci. 1997;61:1861–78.

    Article  PubMed  CAS  Google Scholar 

  30. Lee JS, Cho ML, Jhun JY, Min SY, Ju JH, Yoon CH, et al. Antigen-specific expansion of TCR Vβ3+CD4+ T cells in the early stage of collagen-induced arthritis and its arthritogenic role in DBA/1 J mice. J Clin Immunol. 2006;26:204–12.

    Article  PubMed  CAS  Google Scholar 

  31. Schattenkirchner M. The use of leflunomide in the treatment of rheumatoid arthritis: an experimental and clinical review. Immunopharmacology. 2000;47:291–8.

    Article  PubMed  CAS  Google Scholar 

  32. Vergne-Salle P, Léger DY, Bertin P, Trèves R, Beneytout JL, Liagre B. Effects of the active metabolite of leflunomide, A77 1726, on cytokine release and the MAPK signalling pathway in human rheumatoid arthritis synoviocytes. Cytokine. 2005;31:335–48.

    Article  PubMed  CAS  Google Scholar 

  33. Burger D, Begué-Pastor N, Benavent S, Gruaz L, Kaufmann MT, Chicheportiche R, et al. The active metabolite of leflunomide, A77 1726, inhibits the production of prostaglandin E2, matrix metalloproteinase 1 and interleukin 6 in human fibroblast-like synoviocytes. Rheumatology. 2003;42:89–96.

    Article  PubMed  CAS  Google Scholar 

  34. Cutolo M, Sulli A, Ghiorzo P, Pizzorni C, Craviotto C, Villaggio B. Anti-inflammatory effects of leflunomide on cultured synovial macrophages from patients with rheumatoid arthritis. Ann Rheum Dis. 2003;62:297–302.

    Article  PubMed  CAS  Google Scholar 

  35. Korn T, Magnus T, Toyka K, Jung S. Modulation of effector cell functions in experimental autoimmune encephalomyelitis by leflunomide—mechanisms independent of pyrimidine depletion. J Leukoc Biol. 2004;76:950–60.

    Article  PubMed  CAS  Google Scholar 

  36. Ohori M, Kinoshita T, Okubo M, Sato K, Yamazaki A, Arakawa H, et al. Identification of a selective ERK inhibitor and structural determination of the inhibitor-ERK2 complex. Biochem Biophys Res Commun. 2005;336:357–63.

    Article  PubMed  CAS  Google Scholar 

  37. Graczyk PP. Gini coefficient: a new way to express selectivity of kinase inhibitors against a family of kinases. J Med Chem. 2007;50:5773–9.

    Article  PubMed  CAS  Google Scholar 

  38. Taniguchi K, Kohsaka H, Inoue N, Terada Y, Ito H, Hirokawa K, et al. Induction of the p16INK4a senescence gene as a new therapeutic strategy for the treatment of rheumatoid arthritis. Nat Med. 1999;5:760–7.

    Article  PubMed  CAS  Google Scholar 

  39. Sekine C, Sugihara T, Miyake S, Hirai H, Yoshida M, Miyasaka N, et al. Successful treatment of animal models of rheumatoid arthritis with small-molecule cyclin-dependent kinase inhibitors. J Immunol. 2008;180:1954–61.

    PubMed  CAS  Google Scholar 

  40. Nishida K, Komiyama T, Miyazawa S, Shen ZN, Furumatsu T, Doi H, et al. Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21WAF1/Cip1 expression. Arthritis Rheum. 2004;50:3365-76.

    Google Scholar 

  41. Bolon B, Stolina M, King C, Middleton S, Gasser J, Zack D, et al. Rodent preclinical models for developing novel antiarthritic molecules: comparative biology and preferred methods for evaluating efficacy. J Biomed Biotechnol. 2011;2011:569068.

    Article  PubMed  Google Scholar 

  42. Takagi N, Mihara M, Moriya Y, Nishimoto N, Yoshizaki K, Kishimoto T, et al. Blockage of interleukin-6 receptor ameliorates joint disease in murine collagen-induced arthritis. Arthritis Rheum. 1998;41:2117–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Hisashi Kawasaki and Hiroyuki Abe for synthesis of the compound, and Junji Maruhashi and Minako Tanimoto for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Yamaguchi.

Additional information

Responsible editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, T., Kakefuda, R., Tanimoto, A. et al. Suppressive effect of an orally active MEK1/2 inhibitor in two different animal models for rheumatoid arthritis: a comparison with leflunomide. Inflamm. Res. 61, 445–454 (2012). https://doi.org/10.1007/s00011-011-0431-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-011-0431-5

Keywords

Navigation