Skip to main content

Advertisement

Log in

Involvement of mitogen-activated protein kinases and nuclear factor kappa B pathways in signaling COX-2 expression in chronic rhinosinusitis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

To investigate the signal pathways involved in cyclooxygenase-2 (COX-2) expression in chronic rhinosinusitis (CRS).

Methods

The expressions of COX-2, p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinase (ERK), and nuclear factor kappa B (NF-κB) in nasal mucosa were detected by immunohistological stain and polymerase chain reaction (PCR). Their expressions and prostaglandin E2 (PGE2) release were determined by PCR, Western blot and enzyme immunoassay (EIA) in human nasal epithelia (HNE) cells after lipopolysaccharide (LPS) induction, and/or small interfering RNA (siRNA) transfection.

Results

Positive protein expressions of COX-2, p38MAPK, ERK, NF-κB subunits were detected in epithelial and inflammatory cells. Their mRNA levels were significantly higher in CRS than controls (P < 0.05). The expressions varied in time and concentration-dependent manner in LPS-induced HNE cells. COX-2 expression was suppressed by siRNAs of P38MAPK, ERK, and NF-κB; however, COX-2-specific siRNA had no blocking effect on them. SiRNAs of P38MAPK or ERK could block NF-κB, but NF-κB-specific siRNA had no blocking effect on the former. SiRNA of p38MAPK, or ERK did not inhibit each other.

Conclusion

Upregulation of COX-2 expression suggested its role as a mediator in CRS. ERK and p38MAPK pathways were involved in signaling COX-2 through NF-κB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pérez-Novo CA, Watelet JB, Claeys C, Van Cauwenberge P, Bachert C. Prostaglandin, leukotriene, and lipoxin balance in chronic rhinosinusitis with and without nasal polyposis. J Allergy Clin Immunol. 2005;115:1189–96.

    Article  PubMed  Google Scholar 

  2. Guilemany JM, Roca-Ferrer J, Mullol J. Cyclooxygenases and the pathogenesis of chronic rhinosinusitis and nasal polyposis. Curr Allergy Asthma Rep. 2008;8:219–26.

    Article  PubMed  CAS  Google Scholar 

  3. Wood LG, Gibson PG, Garg ML. Biomarkers of lipid peroxidation, airway inflammation and asthma. Eur Respir J. 2003;21:177–86.

    Article  PubMed  CAS  Google Scholar 

  4. Sastre B, Fernández-Nieto M, Mollá R, López E, Lahoz C, Sastre J, et al. Increased prostaglandin E2 levels in the airway of patients with eosinophilic bronchitis. Allergy. 2008;63:58–66.

    Article  PubMed  CAS  Google Scholar 

  5. Zhang H, Ching S, Chen Q, Li Q, An Y, Quan N. Localized inflammation in peripheral tissue signals the CNS for sickness response in the absence of interleukin-1 and cyclooxygenase-2 in the blood and brain. Neuroscience. 2008;157:895–907.

    Article  PubMed  CAS  Google Scholar 

  6. Coon D, Gulati A, Cowan C, He J. The role of cyclooxygenase-2 (COX-2) in inflammatory bone resorption. J Endod. 2007;33:432–6.

    Article  PubMed  Google Scholar 

  7. Brechter AB, Lerner UH. Bradykinin potentiates cytokine-induced prostaglandin biosynthesis in osteoblasts by enhanced expression of cyclooxygenase 2, resulting in increased RANKL expression. Arthritis Rheum. 2007;56:910–23.

    Article  PubMed  CAS  Google Scholar 

  8. Chen YL, Hu CS, Lin FY, Chen YH, Sheu LM, Ku HH, et al. Salvianolic acid B attenuates cyclooxygenase-2 expression in vitro in LPS-treated human aortic smooth muscle cells and in vivo in the apolipoprotein-E-deficient mouse aorta. J Cell Biochem. 2006;98:618–31.

    Article  PubMed  CAS  Google Scholar 

  9. Petrovic N, Knight DA, Bomalaski JS, Thompson PJ, Misso NL. Concomitant activation of extracellular signal-regulated kinase and induction of COX-2 stimulates maximum prostaglandin E2 synthesis in human airway epithelial cells. Prostaglandins Other Lipid Mediat. 2006;81:126–35.

    Article  PubMed  CAS  Google Scholar 

  10. Ahn EK, Yoon HK, Jee BK, Ko HJ, Lee KH, Kim HJ, et al. COX-2 expression and inflammatory effects by diesel exhaust particles in vitro and in vivo. Toxicol Lett. 2008;176:178–87.

    Article  PubMed  CAS  Google Scholar 

  11. Shiraishi Y, Asano K, Niimi K, Fukunaga K, Wakaki M, Kagyo J, et al. Cyclooxygenase-2/prostaglandin D2/CRTH2 pathway mediates double-stranded RNA-induced enhancement of allergic airway inflammation. J Immunol. 2008;180:541–9.

    PubMed  CAS  Google Scholar 

  12. Kondoh K, Torii S, Nishida E. Control of MAP kinase signaling to the nucleus. Chromosoma. 2005;114:86–91.

    Article  PubMed  CAS  Google Scholar 

  13. Burgermeister E, Seger R. MAPK kinases as nucleo-cytoplasmic shuttles for PPARgamma. Cell Cycle. 2007;6:1539–48.

    PubMed  CAS  Google Scholar 

  14. Zhang Z, Reenstra W, Weiner DJ, Louboutin JP, Wilson JM. The p38 mitogen-activated protein kinase signaling pathway is coupled to Toll-like receptor 5 to mediate gene regulation in response to Pseudomonas aeruginosa infection in human airway epithelial cells. Infect Immun. 2007;75:5985–92.

    Article  PubMed  CAS  Google Scholar 

  15. Lee SJ, Lim KT. Inhibitory effect of 30-kDa phytoglycoprotein on expression of TNF-alpha and COX-2 via activation of PKCalpha and ERK 1/2 in LPS-stimulated RAW 264.7 cells. Mol Cell Biochem. 2008;317:151–9.

    Article  PubMed  CAS  Google Scholar 

  16. Xu F, Xu Z, Zhang R, Wu Z, Lim JH, Koga T, et al. Nontypeable Haemophilus influenzae induces COX-2 and PGE2 expression in lung epithelial cells via activation of p38 MAPK and NF-kappa B. Respir Res. 2008;9:16.

    Article  PubMed  Google Scholar 

  17. Ogata S, Kubota Y, Yamashiro T, Takeuchi H, Ninomiya T, Suyama Y, et al. Signaling pathways regulating IL-1alpha-induced COX-2 expression. J Dent Res. 2007;86:186–91.

    Article  PubMed  CAS  Google Scholar 

  18. Yan X, Hao Q, Mu Y, Timani KA, Ye L, Zhu Y, et al. Nucleocapsid protein of SARS-CoV activates the expression of cyclooxygenase-2 by binding directly to regulatory elements for nuclear factor-kappa B and CCAAT/enhancer binding protein. Int J Biochem Cell Biol. 2006;38:1417–28.

    Article  PubMed  CAS  Google Scholar 

  19. Nie M, Pang L, Inoue H, Knox AJ. Transcriptional regulation of cyclooxygenase 2 by bradykinin and interleukin-1beta in human airway smooth muscle cells: involvement of different promoter elements, transcription factors, and histone h4 acetylation. Mol Cell Biol. 2003;23:9233–44.

    Article  PubMed  CAS  Google Scholar 

  20. Chun KS, Surh YJ. Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention. Biochem Pharmacol. 2004;68:1089–100.

    Article  PubMed  CAS  Google Scholar 

  21. Owens JM, Shroyer KR, Kingdom TT. Expression of cyclooxygenase and lipoxygenase enzymes in nasal polyps of aspirin-sensitive and aspirin-tolerant patients. Arch Otolaryngol Head Neck Surg. 2006;132:579–87.

    Article  PubMed  Google Scholar 

  22. Yano M, Matsumura T, Senokuchi T, Ishii N, Murata Y, Taketa K, et al. Statins activate peroxisome proliferator-activated receptor gamma through extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase-dependent cyclooxygenase-2 expression in macrophages. Circ Res. 2007;100:1442–51.

    Article  PubMed  CAS  Google Scholar 

  23. Duggan SV, Lindstrom T, Iglesias T, Bennett PR, Mann GE, Bartlett SR. Role of atypical protein kinase C isozymes and NF-kappaB in IL-1beta-induced expression of cyclooxygenase-2 in human myometrial smooth muscle cells. J Cell Physiol. 2007;210:637–43.

    Article  PubMed  CAS  Google Scholar 

  24. Zhou HY, Shin EM, Guo LY, Youn UJ, Bae K, Kang SS, et al. Anti-inflammatory activity of 4-methoxyhonokiol is a function of the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via NF-kappaB, JNK and p38 MAPK inactivation. Eur J Pharmacol. 2008;586:340–9.

    Article  PubMed  CAS  Google Scholar 

  25. Tsoyi K, Kim HJ, Shin JS, Kim DH, Cho HJ, Lee SS, et al. HO-1 and JAK-2/STAT-1 signals are involved in preferential inhibition of iNOS over COX-2 gene expression by newly synthesized tetrahydroisoquinoline alkaloid, CKD712, in cells activated with lipopolysacchride. Cell Signal. 2008;20:1839–47.

    Article  PubMed  CAS  Google Scholar 

  26. Kim YD, Kwon EJ, Park DW, Song SY, Yoon SK, Baek SH. Interleukin-1beta induces MUC2 and MUC5AC synthesis through cyclooxygenase-2 in NCI-H292 cells. Mol Pharmacol. 2002;62:1112–8.

    Article  PubMed  CAS  Google Scholar 

  27. Park GY, Christman JW. Involvement of cyclooxygenase-2 and prostaglandins in the molecular pathogenesis of inflammatory lung diseases. Am J Physiol Lung Cell Mol Physiol. 2006;290:L797–805.

    Article  PubMed  CAS  Google Scholar 

  28. Hisatsune J, Yamasaki E, Nakayama M, Shirasaka D, Kurazono H, Katagata Y, et al. Helicobacter pylori VacA enhances prostaglandin E2 production through induction of cyclooxygenase 2 expression via a p38 mitogen-activated protein kinase/activating transcription factor 2 cascade in AZ-521 cells. Infect Immun. 2007;75:4472–81.

    Article  PubMed  CAS  Google Scholar 

  29. Chang MS, Chen BC, Yu MT, et al. Phorbol 12-myristate 13-acetate upregulates cyclooxygenase-2 expression in human pulmonary epithelial cells via Ras, Raf-1, ERK, and NF-kappaB, but not p38 MAPK, pathways. Cell Signal. 2005;17:299–310.

    Article  PubMed  CAS  Google Scholar 

  30. Yan SR, Joseph RR, Wang J, Stadnyk AW. Differential pattern of inflammatory molecule regulation in intestinal epithelial cells stimulated with IL-1. J Immunol. 2006;177:5604–11.

    PubMed  CAS  Google Scholar 

  31. Patel KM, Wright KL, Whittaker P, Chakravarty P, Watson ML, Ward SG. Differential modulation of COX-2 expression in A549 airway epithelial cells by structurally distinct PPAR (gamma) agonists: evidence for disparate functional effects which are independent of NF-(kappa) B and PPAR (gamma). Cell Signal. 2005;17:1098–110.

    Article  PubMed  CAS  Google Scholar 

  32. He D, Natarajan V, Stern R, Gorshkova IA, Solway J, Spannhake EW, et al. Lysophosphatidic acid-induced transactivation of epidermal growth factor receptor regulates cyclo-oxygenase-2 expression and prostaglandin E(2) release via C/EBPbeta in human bronchial epithelial cells. Biochem J. 2008;412:153–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from the Postdoctoral Science Foundation of China (20080430442) and National Nature Science Foundation of China (30772412).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuhang Zhang.

Additional information

Responsible Editor: J. A. Di Battista.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Zhang, Q., Li, Y. et al. Involvement of mitogen-activated protein kinases and nuclear factor kappa B pathways in signaling COX-2 expression in chronic rhinosinusitis. Inflamm. Res. 58, 649–658 (2009). https://doi.org/10.1007/s00011-009-0030-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-009-0030-x

Keywords

Navigation