Skip to main content
Log in

Control of MAP kinase signaling to the nucleus

  • Mini-Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

MAP kinase (MAPK) signaling is among central signaling pathways that regulate cell proliferation, cell differentiation and apoptosis. As MAPK should transmit extracellular signals to proper regions or compartments in cells, controlling subcellular localization of MAPK is important for regulating fidelity and specificity of MAPK signaling. The ERK1/2-type of MAPK is the best characterized member of the MAPK family. In response to extracellular stimulus, ERK1/2 translocates from the cytoplasm to the nucleus by passing through the nuclear pore by several independent mechanisms. Sef (similar expression to fgf genes), a transmembrane protein, has been shown to be a regulator of subcellular distribution of ERK1/2. Sef binds to activated MEK1/2, the specific activator of ERK1/2, and tethers the activated MEK1/2/activated ERK1/2 complex to the Golgi apparatus and the plasma membrane. Thus, Sef blocks ERK1/2 signaling to the nucleus and allows signaling to the cytoplasm. Here we review recent findings on spatial regulation of MAPK, especially on nucleocytoplasmic trafficking of ERK1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adachi M, Fukuda M, Nishida E (1999) Two co-existing mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer. EMBO J 18:5347–5358

    Article  CAS  PubMed  Google Scholar 

  • Adachi M, Fukuda M, Nishida E (2000) Nuclear export of MAP kinase (ERK) involves a MAP kinase kinase (MEK)-dependent active transport mechanism. J Cell Biol 148:849–856

    Article  CAS  PubMed  Google Scholar 

  • Ahn NG, Seger R, Krebs EG (1992) The mitogen-activated protein kinase activator. Curr Opin Cell Biol 4:992–999

    Article  CAS  PubMed  Google Scholar 

  • Ben-Levy R, Hooper S, Wilson R, Paterson HF, Marshall CJ (1998) Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2. Curr Biol 8:1049–1057

    Article  CAS  PubMed  Google Scholar 

  • Bivona TG, Philips MR (2003) Ras pathway signaling on endomembranes. Curr Opin Cell Biol 15:136–142

    Article  CAS  PubMed  Google Scholar 

  • Bivona TG, Perez De Castro I, Ahearn IM, Grana TM, Chiu VK, Lockyer PJ, Cullen PJ, Pellicer A, Cox AD, Philips MR (2003) Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature 424:694–698

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Roux D, Lenormand P, Dowd S, Keyse S, Pouyssegur J (1999) Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J 18:664–674

    Article  CAS  PubMed  Google Scholar 

  • Burack WR, Shaw AS (2005) Live cell imaging of ERK and MEK: simple binding equilibrium explains the regulated nucleocytoplasmic distribution of ERK. J Biol Chem 280:3832–3837

    Article  CAS  PubMed  Google Scholar 

  • Cavigelli M, Dolfi F, Claret FX, Karin M (1995) Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. EMBO J 14:5957–5964

    CAS  PubMed  Google Scholar 

  • Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  CAS  PubMed  Google Scholar 

  • Cheng HL, Feldman EL (1998) Bidirectional regulation of p38 kinase and c-Jun N-terminal protein kinase by insulin-like growth factor-I. J Biol Chem 273:14560–14565

    Article  CAS  PubMed  Google Scholar 

  • Chiu VK, Bivona T, Hach A, Sajous JB, Silletti J, Wiener H, Johnson RL II, Cox AD, Philips MR (2002) Ras signalling on the endoplasmic reticulum and the Golgi. Nat Cell Biol 4:343–350

    CAS  PubMed  Google Scholar 

  • Choy E, Chiu VK, Silletti J, Feoktistov M, Morimoto T, Michaelson D, Ivanov IE, Philips MR (1999) Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98:69–80

    Article  CAS  PubMed  Google Scholar 

  • Cobb MH, Goldsmith EJ (1995) How MAP kinases are regulated. J Biol Chem 270:14843–14846

    Article  CAS  PubMed  Google Scholar 

  • Corson LB, Yamanaka Y, Lai KM, Rossant J (2003) Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development 130:4527–4537

    Article  CAS  PubMed  Google Scholar 

  • Danziger N, Yokoyama M, Jay T, Cordier J, Glowinski J, Chneiweiss H (1995) Cellular expression, developmental regulation, and phylogenic conservation of PEA-15, the astrocytic major phosphoprotein and protein kinase C substrate. J Neurochem 64:1016–1025

    CAS  PubMed  Google Scholar 

  • Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    Article  CAS  PubMed  Google Scholar 

  • Engel K, Kotlyarov A, Gaestel M (1998) Leptomycin B-sensitive nuclear export of MAPKAP kinase 2 is regulated by phosphorylation. EMBO J 17:3363–3371

    Article  CAS  PubMed  Google Scholar 

  • Esparis-Ogando A, Diaz-Rodriguez E, Montero JC, Yuste L, Crespo P, Pandiella A (2002) Erk5 participates in neuregulin signal transduction and is constitutively active in breast cancer cells overexpressing ErbB2. Mol Cell Biol 1:270–285

    Article  Google Scholar 

  • Ferrigno P, Posas F, Koepp D, Saito H, Silver PA (1998) Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1. EMBO J 17:5606–5614

    Article  CAS  PubMed  Google Scholar 

  • Formstecher E, Ramos JW, Fauquet M, Calderwood DA, Hsieh JC, Canton B, Nguyen XT, Barnier JV, Camonis J, Ginsberg MH, Chneiweiss H (2001) PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Dev Cell 2:239–250

    Article  Google Scholar 

  • Fukuda M, Gotoh I, Gotoh Y, Nishida E (1996) Cytoplasmic localization of mitogen-activated protein kinase kinase directed by its NH2-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal. J Biol Chem 271:20024–20028

    Article  CAS  PubMed  Google Scholar 

  • Fukuda M, Gotoh Y, Nishida E (1997) Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J 16:1901–1908

    Article  CAS  PubMed  Google Scholar 

  • Furthauer M, Lin W, Ang SL, Thisse B, Thisse C (2002) Sef is a feedback-induced antagonist of Ras/MAPK-mediated FGF signalling. Nat Cell Biol 4:170–174

    Article  CAS  PubMed  Google Scholar 

  • Kawakami Y, Rodriguez-Leon J, Koth CM, Buscher D, Itoh T, Raya A, Ng JK, Esteban CR, Takahashi S, Henrique D, Schwarz MF, Asahara H, Izpisua-Belmonte JC (2003) MKP3 mediates the cellular response to FGF8 signalling in the vertebrate limb. Nat Cell Biol 5:513–519

    Article  CAS  PubMed  Google Scholar 

  • Khokhlatchev AV, Canagarajah B, Wilsbacher J, Robinson M, Atkinson M, Goldsmith E, Cobb MH (1998) Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93:605–615

    Article  CAS  PubMed  Google Scholar 

  • Kitsberg D, Formstecher E, Fauquet M, Kubes M, Cordier J, Canton B, Pan G, Rolli M, Glowinski J, Chneiweiss H (1999) Knock-out of the neural death effector domain protein PEA-15 demonstrates that its expression protects astrocytes from TNFalpha-induced apoptosis. J Neurosci 19:8244–8251

    CAS  PubMed  Google Scholar 

  • Kovalenko D, Yang X, Nadeau RJ, Harkins LK, Friesel R (2003) Sef inhibits fibroblast growth factor signaling by inhibiting FGFR1 tyrosine phosphorylation and subsequent ERK activation. J Biol Chem 278:14087–14091

    Article  CAS  PubMed  Google Scholar 

  • Kumar JP, Hsiung F, Powers MA, Moses K (2003) Nuclear translocation of activated MAP kinase is developmentally regulated in the developing Drosophila eye. Development 130:3703–3714

    Article  CAS  PubMed  Google Scholar 

  • Lenormand P, Brondello JM, Brunet A, Pouyssegur J (1998) Growth factor-induced p42/p44 MAPK nuclear translocation and retention requires both MAPK activation and neosynthesis of nuclear anchoring proteins. J Cell Biol 142:625–633

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Furthauer M, Thisse B, Thisse C, Jing N, Ang SL (2002) Cloning of the mouse Sef gene and comparative analysis of its expression with Fgf8 and Spry2 during embryogenesis. Mech Dev 113:163–168

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen JA, Baker SE, Denhez F, Melnick MB, Brower DL, Perkins LA (2001) Nuclear import of activated D-ERK by DIM-7, an importin family member encoded by the gene moleskin. Development 128:1403–1414

    CAS  PubMed  Google Scholar 

  • Mandl M, Slack DN, Keyse SM (2005) Specific inactivation and nuclear anchoring of extracellular signal-regulated kinase 2 by the inducible dual-specificity protein phosphatase DUSP5. Mol Cell Biol 25:1830–1845

    Article  CAS  PubMed  Google Scholar 

  • Matsubayashi Y, Fukuda M, Nishida E (2001) Evidence for existence of a nuclear pore complex-mediated, cytosol-independent pathway of nuclear translocation of ERK MAP kinase in permeabilized cells. J Biol Chem 276:41755–41760

    Article  CAS  PubMed  Google Scholar 

  • Niehrs C, Meinhardt H (2002) Modular feedback. Nature 417:35–36

    Article  CAS  PubMed  Google Scholar 

  • Nishida E, Gotoh Y (1993) The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci 18:128–131

    Article  CAS  PubMed  Google Scholar 

  • Philips MR (2004) Sef: a MEK/ERK catcher on the Golgi. Mol Cell 15:168–169

    Article  CAS  PubMed  Google Scholar 

  • Preger E, Ziv I, Shabtay A, Sher I, Tsang M, Dawid IB, Altuvia Y, Ron D (2004) Alternative splicing generates an isoform of the human Sef gene with altered subcellular localization and specificity. Proc Natl Acad Sci U S A 101:1229–1234

    Article  CAS  PubMed  Google Scholar 

  • Ramos JW, Kojima TK, Hughes PE, Fenczik CA, Ginsberg MH (1998) The death effector domain of PEA-15 is involved in its regulation of integrin activation. J Biol Chem 273:33897–33900

    Article  CAS  PubMed  Google Scholar 

  • Robinson MJ, Cobb MH (1997) Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9:180–186

    Article  CAS  PubMed  Google Scholar 

  • Smith ER, Smedberg JL, Rula ME, Xu XX (2004) Regulation of Ras-MAPK pathway mitogenic activity by restricting nuclear entry of activated MAPK in endoderm differentiation of embryonic carcinoma and stem cells. J Cell Biol 164:689–699

    Article  CAS  PubMed  Google Scholar 

  • Sturgill TW, Wu J (1991) Recent progress in characterization of protein kinase cascades for phosphorylation of ribosomal protein S6. Biochim Biophys Acta 1092:350–357

    Article  CAS  PubMed  Google Scholar 

  • Torii S, Kusakabe M, Yamamoto T, Maekawa M, Nishida E (2004) Sef is a spatial regulator for Ras/MAP kinase signaling. Dev Cell 7:33–44

    Article  CAS  PubMed  Google Scholar 

  • Tsang M, Friesel R, Kudoh T, Dawid IB (2002) Identification of Sef, a novel modulator of FGF signalling. Nat Cell Biol 4:165–169

    Article  CAS  PubMed  Google Scholar 

  • Waskiewicz AJ, Cooper JA (1995) Mitogen and stress response pathways: MAP kinase cascades and phosphatase regulation in mammals and yeast. Curr Opin Cell Biol 7:798–805

    Article  CAS  PubMed  Google Scholar 

  • Whitehurst AW, Wilsbacher JL, You Y, Luby-Phelps K, Moore MS, Cobb MH (2002) ERK2 enters the nucleus by a carrier-independent mechanism. Proc Natl Acad Sci U S A 99:7496–7501

    Article  CAS  PubMed  Google Scholar 

  • Whitehurst AW, Robinson FL, Moore MS, Cobb MH (2004) The death effector domain protein PEA-15 prevents nuclear entry of ERK2 by inhibiting required interactions. J Biol Chem 279:12840–12847

    Article  CAS  PubMed  Google Scholar 

  • Xiong S, Zhao Q, Rong Z, Huang G, Huang Y, Chen P, Zhang S, Liu L, Chang Z (2003) hSef inhibits PC-12 cell differentiation by interfering with Ras-mitogen-activated protein kinase MAPK signaling. J Biol Chem 278:50273–50282

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Luo H, Lee JD, Abe J, Berk BC (2001) Molecular cloning of mouse ERK5/BMK1 splice variants and characterization of ERK5 functional domains. J Biol Chem 276:10870–10878

    Article  CAS  PubMed  Google Scholar 

  • Yang RB, Ng CK, Wasserman SM, Komuves LG, Gerritsen ME, Topper JN (2003) A novel IL-17 receptor-like protein identified in human umbilical vein endothelial cells antagonizes basic fibroblast growth factor-induced signaling. J Biol Chem 278:33232–33238

    Article  CAS  PubMed  Google Scholar 

  • Zhang SQ, Yang W, Kontaridis MI, Bivona TG, Wen G, Araki T, Luo J, Thompson JA, Schraven BL, Philips MR, Neel BG (2004) Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol Cell 13:341–355

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eisuke Nishida.

Additional information

Communicated by E.A. Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondoh, K., Torii, S. & Nishida, E. Control of MAP kinase signaling to the nucleus. Chromosoma 114, 86–91 (2005). https://doi.org/10.1007/s00412-005-0341-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-005-0341-9

Keywords

Navigation