Skip to main content
Log in

Significance of ionic fluxes and changes in membrane potential for stimulus-secretion coupling in pancreatic B-cells

  • Published:
Experientia Aims and scope Submit manuscript

Conclusions

This brief review has tried to shed some light on the mechanisms and significance of the changes in membrane potential and in ionic fluxes occurring in B-cells upon glucose stimulation. There is now strong evidence that, under physiological conditions at least, these electrical events-and the underlying modifications of ionic permeabilities and fluxes — play a causal role in the stimulation of insulin release. It also seems clear that certain accompanying ionic fluxes have no direct stimulatory role, but may be important in maintaining cellular homeostasis. Recent experimental evidence has also shown that the electrical activity in B-cells is not an all-or-none stereotypic response. Not only can its intensity be adjusted to the magnitude of the stimulus, but its characteristics can also be modulated by potentiators Our knowledge of the stimulus-secretion coupling has markedly progressed over the past few years, but elucidation of several important steps remains a challenging goal. There is no doubt that parallel measurements of insulin release, of ionic fluxes and of membrane potential in B-cells will still contribute to that understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asplund, K., Sehlin, J., and Täljedal, I.B., Effects of glucose, chloromercuribenzene-p-sulphonic acid and 4-acetamido-4′-isothiocyanostilbene-2,2′-disulphonic acid on phosphate efflux from pancreatic islets. Biochim. biophys. Acta588 (1979) 232–240.

    PubMed  Google Scholar 

  2. Atwater, I., Control mechanisms for glucose-induced changes in the membrane potential of mouse pancreatic β-cell. Cienc. Biol.5 (1980) 299–314.

    Google Scholar 

  3. Atwater, I., Dawson, C.M., Ribalet, B., and Rojas, E., Potassium permeability activated by intracellular calcium ion concentration in the pancreatic β cell. J. Physiol.288 (1979) 575–588.

    PubMed  Google Scholar 

  4. Atwater, I., Frankel, B.J., Rojas, E., and Grodsky, G.M., β-cell membrane potential and insulin release; role of calcium and calcium: magnesium ratio. Q. J. Physiol.68 (1983) 233–245.

    Google Scholar 

  5. Atwater, I., Goncalves, A., Herchuelz, A., Lebrun, P., Malaisse, W.J., Rojas, E., and Scott, A., Cooling dissociates glucose-induced insulin release from electrical activity and cation fluxes in rodent pancreatic islets. J. Physiol.348 (1984) 615–627.

    PubMed  Google Scholar 

  6. Atwater, I., Goncalves, A.A., and Rojas, E., Electrophysiological measurement of an oscillating potassium permeability during the glucose-stimulated burst activity in mouse pancreatic β-cell. Biomed. Res.3 (1982) 645–648.

    Google Scholar 

  7. Atwater, I., and Meissner, H.P., Electrogenic sodium pump in β-cells of islets of Langerhans. J. Physiol.247 (1975) 56–58P.

    Google Scholar 

  8. Atwater, I., Ribalet, B., and Rojas, E., Cyclic changes in potential and resistance of the β-cell membrane induced by glucose in islets of Langerhans from mouse. J. Physiol.278 (1978) 117–139.

    PubMed  Google Scholar 

  9. Beigelman, P.M., Ribalet, B., and Atwater, I., Electrical activity of mouse pancreatic beta-cells. II. Effects of glucose and arginine. J. Physiol., Paris73 (1977) 201–217.

    Google Scholar 

  10. Berggren, P.O., Bergsten, P., Gylfe, E., Larsson, R., and Hellman, B., Interactions between magnesium and calcium in β-cell-rich pancreatic islets. Am. J. Physiol.244 (1983) E541-E547.

    PubMed  Google Scholar 

  11. Berglund, O., Sehlin, J., and Täljedal, I.-B., Influence of the murine diabetes gene on rubidium ion efflux from perifused islets. Diabetologia19 (1980) 45–49.

    Article  PubMed  Google Scholar 

  12. Boschero, A.C., Kawazu, S., Duncan, G., and Malaisse, W.J., Effect of glucose on K+ handling by pancreatic islets. FEBS Lett.83 (1977) 151–154.

    PubMed  Google Scholar 

  13. Boschero, A.C., and Malaisse, W.J., Stimulus-secretion coupling of glucose-induced insulin release. Regulation of86Rb+ efflux from perifused islets. Am. J. Physiol.236 (1979) E139-E146.

    PubMed  Google Scholar 

  14. Bukowiecki, L., Trus, M., Matschinsky, F.M., and Freinkel, N., Alterations in pancreatic islet phosphate content during secretory stimulation with glucose. Biochim. biophys. Acta583 (1979) 370–377.

    PubMed  Google Scholar 

  15. Carpinelli, A.R., and Malaisse, W.J., Regulation of86Rb outflow from pancreatic islets. Effect of changes in extracellular and intracellular pH. Diabète Métab.6 (1980) 193–198.

    Google Scholar 

  16. Carpinelli, A.R., and Malaisse, W.J., The stimulus-secretion coupling of glucose-induced insulin release. A possible link between glucose metabolism and phosphate flush. Diabetologia19 (1980) 458–464.

    Article  PubMed  Google Scholar 

  17. Cook, D.L., Isolated islets of Langerhans have slow oscillations of electrical activity. Metabolism32 (1983) 681–685.

    Article  PubMed  Google Scholar 

  18. Cook, D.L., Crill, W.E., and Porte, D., Glucose and acetylcholine have different effects on the plateau pacemaker of pancreatic islet cells. Diabetes30 (1981) 558–561.

    PubMed  Google Scholar 

  19. Cook, D.L., and Perera, E., Islet electrical pacemaker response to alpha-adrenergic stimulation. Diabetes31 (1982) 985–990.

    PubMed  Google Scholar 

  20. Cook, D.L., Porte, D., and Crill, W.E., Voltage dependence of rhythmic plateau potentials of pancreatic islet cells. Am. J. Physiol.240 (1981) E290-E296.

    PubMed  Google Scholar 

  21. Curry, D.L., Joy, R.M., Holley, D.C., and Bennett, L.L., Magnesium modulation of glucose-induced insulin secretion by the perfused rat pancreas. Endocrinology101 (1977) 203–208.

    PubMed  Google Scholar 

  22. Dawson, C.M., Croghan, P.C., Atwater, I., and Rojas, E., Estimation of potassium permeability in mouse islets of Langerhans. Biomed. Res.4 (1983) 389–392.

    Google Scholar 

  23. Dean, P.M., and Matthews, E.K., Electrical activity in pancreatic islet cells. Nature219 (1968) 389–390.

    PubMed  Google Scholar 

  24. Dean, P.M., and Matthews, E.K., Alloxan on islet cell membrane potentials. Br. J. Pharmac.34 (1968) 677.

    Google Scholar 

  25. Dean, P.M., and Matthews, E.K., Glucose-induced electrical activity in pancreatic islet cells. J. Physiol.210 (1970) 255–264.

    PubMed  Google Scholar 

  26. Dean, P.M., and Matthews, E.K., Electrical activity in pancreatic islet cells: effect of ions. J. Physiol.210 (1970) 265–275.

    PubMed  Google Scholar 

  27. Dean, P.M., Matthews, E.K., and Sakamoto, Y., Pancreatic islet cells: effects of monosaccharides, glycolytic intermediates and metabolic inhibitors on membrane potential and electrical activity. J. Physiol.246 (1975) 459–478.

    PubMed  Google Scholar 

  28. Deleers, M., Lebrun, P., and Malaisse, W.J., Increase in bicarbonate influx and cellular pH in glucose-stimulated pancreatic islets. FEBS Lett.154 (1983) 97–100.

    Article  PubMed  Google Scholar 

  29. Dunham, P.B., Stewart, G.W., and Ellory, J.C., Chloride-activated passive potassium transport in human erythrocytes. Proc. natl Acad. Sci. USA77 (1980) 1711–1715.

    PubMed  Google Scholar 

  30. Eddlestone, G.T., and Beigelman, P.M., Pancreatic β-cell electrical activity: the role of anions and the control of pH. Am. J. Physiol.244 (1983) C188-C197.

    PubMed  Google Scholar 

  31. Freinkel, N., Phosphate translocations during secretory stimulation of pancreatic islets, in: Treatment of Early Diabetes, pp. 71–77. Eds R.A. Camerini-Davalos and B. Hanover. Plenum Press, New York 1979.

    Google Scholar 

  32. Freinkel, N., El Younsi, C., Bonnar, J., and Dawson, R.M.C., Rapid transient efflux of phosphate ion from pancreatic islets as an early action of insulin secretagogues. J. clin. Invest.54 (1974) 1179–1189.

    PubMed  Google Scholar 

  33. Gagerman, E., Idahl, L.A., Meissner, H.P., and Täljedal, I.-B., Insulin release, cGMP, cAMP, and membrane potential in acetylcholine-stimulated islets. Am. J. Physiol.235 (1978) E493-E500.

    PubMed  Google Scholar 

  34. Gagerman, E., Sehlin, J., and Täljedal, I.-B., Effects of acetylcholine of ion fluxes and chlorotetracycline fluorescence in pancreatic islets. J. Physiol.300 (1980) 505–513.

    PubMed  Google Scholar 

  35. Grodsky, G.M., and Bennett, L.L., Cation requirements for insulin secretion in the isolated perfused pancreas. Diabetes15 (1966) 910–913.

    PubMed  Google Scholar 

  36. Hales, C.N., and Milner, R.D.G., The role of sodium and potassium in insulin secretion from rabbit pancreas. J. Physiol.194 (1968) 725–743.

    PubMed  Google Scholar 

  37. Hedeskov, C.J., Mechanism of glucose-induced insulin secretion. Physiol. Rev.60, (1980) 442–509.

    PubMed  Google Scholar 

  38. Hellman, B., Idahl, L.A., Lernmark, A., Sehlin, J., and Täljedal, I.B. The pancreatic β-cell recognition of insulin secretagogues. Effects of calcium and sodium on glucose metabolism and insulin release. Biochem. J.138 (1974) 33–45.

    PubMed  Google Scholar 

  39. Henquin, J.C., D-glucose inhibits potassium efflux from pancreatic islet cells. Nature271 (1978) 271–273.

    PubMed  Google Scholar 

  40. Henquin, J.C., Opposite effects of intracellular Ca2+ and glucose on K+ permeability of pancreatic islet cells. Nature280 (1979) 66–68.

    PubMed  Google Scholar 

  41. Henquin, J.C., Metabolic control of the potassium permeability in pancreatic islet cells. Biochem. J.186 (1980) 541–550.

    PubMed  Google Scholar 

  42. Henquin, J.C., The potassium permeability of pancreatic islet cells: mechanisms of control and influence on insulin release. Horm. Metab. Res., suppl.10 (1980) 66–73.

    Google Scholar 

  43. Henquin, J.C., The effect of pH on86rubidium efflux from pancreatic islet cells. Molec. cell. Endocr.21 (1981) 119–128.

    Article  PubMed  Google Scholar 

  44. Henquin, J.C., and Lambert, A.E., Extracellular bicarbonate ions and insulin secretion. Biochim. biophys. Acta381 (1975) 437–442.

    PubMed  Google Scholar 

  45. Henquin, J.C., and Lambert, A.E., Bicarbonate modulation of glucose-induced biphasic insulin release by rat islets. Am. J. Physiol.231 (1976) 713–721.

    PubMed  Google Scholar 

  46. Henquin, J.C., and Meissner, H.P., Effects of amino acids on membrane potential and86Rb+ fluxes in pancreatic β-cells. Am. J. Physiol.240 (1981) E245-E252.

    PubMed  Google Scholar 

  47. Henquin, J.C., and Meissner, H.P., The electrogenic sodium-potassium pump of mouse pancreatic B-cells. J. Physiol.332 (1982) 529–552.

    PubMed  Google Scholar 

  48. Henquin, J.C., and Meissner, H.P., Opposite effects of tolbutamide and diazoxide on86Rb+ fluxes and membrane potential in pancreatic B cells. Biochem. Pharmac.31 (1982) 1407–1415.

    Article  Google Scholar 

  49. Henquin, J.C., and Meissner, H.P., Dibutyrul cyclic AMP triggers Ca2+ influx and Ca2+-dependent electrical activity in pancreatic B cells. Biochem. biophys. Res. Commun.112 (1983) 614–620.

    Article  PubMed  Google Scholar 

  50. Henquin, J.C., and Meissner, H.P. The ionic, electrical, and secretory effects of endogenous cyclic adenosine monophosphate in mouse pancreatic B-cells: studies with forskolin. Endocrinology115 (1984) in press.

  51. Henquin, J.C., and Meissner, H.P., Effects of theophylline and dibutyryl cyclic adenosine monophosphate on the membrane potential of mouse pancreatic B cells. J. Physiol.351 (1984) 595–612.

    PubMed  Google Scholar 

  52. Henquin, J.C., Meissner, H.P., and Preissler, M., 9-aminoacridine-and tetraethylammonium-induced reduction of the potassium permeability in pancreatic B cells. Effects on insulin release and electrical properties. Biochim. biophys. Acta587 (1979) 579–592.

    PubMed  Google Scholar 

  53. Henquin, J.C., Meissner, H.P., and Schmeer, W., Cyclic variations of glucose-induced electrical activity in pancreatic B-cells. Pflügers Arch.393 (1982) 322–327.

    Article  Google Scholar 

  54. Henquin, J.C., Schmeer, W., and Meissner, H.P., Forskolin, an activator of adenylate cyclase, increases Ca2+-dependent electrical activity induced by glucose in mouse pancreatic B cells. Endocrinology112 (1983) 2218–2220.

    PubMed  Google Scholar 

  55. Henquin, J.C., Tamagawa, T., Nenquin, M., and Cogneau, M., Glucose modulates Mg2+ fluxes in pancreatic islet cells. Nature301 (1983) 73–74.

    Article  PubMed  Google Scholar 

  56. Henquin, J.C., Tamagawa, T., Nenquin, M., and Cogneau, M., Regulation de l'efflux de Mg dans les îlots de Langerhans de rat. J. Physiol., Paris79 (1984) 26A.

    Google Scholar 

  57. Howell, S.L., and Taylor. K.W., Potassium ions and the secretion of insulin by islets of Langerhans incubated in vitro. Biochem. J.108 (1968) 17–24.

    PubMed  Google Scholar 

  58. Hutton, J.C., Sener, A., Herchuelz, A., Atwater, I., Kawazu, S., Boschero, A.C., Somers, G., Devis, G., and Malaisse, W.J., Similarities in the stimulus-secretion coupling mechanisms of glucose and 2-keto acid-induced insulin release. Endocrinology106 (1980) 203–219.

    PubMed  Google Scholar 

  59. Ikeuchi, M., Fujimoto, W.Y., and Cook, D.L., Rat islet cells have glucose-dependent periodic electrical activity. Horm. Metab. Res.16 (1984) 125–127.

    PubMed  Google Scholar 

  60. Ikeuchi, M., and Yagi, K., Pancreatic A cell generates action potential. Jap. J. Physiol.32 (1982) 873–878.

    PubMed  Google Scholar 

  61. Janjic, D., and Wollheim, C.B., Interactions of Ca2+, Mg2+ and Na+ in regulation of insulin release from rat islets. Am. J. Physiol.244 (1983) E222-E229.

    PubMed  Google Scholar 

  62. Kalkhoff, R.K., and Siegesmund, K.A., Fluctuations of calcium, phosphorus, sodium, potassium and chlorine in single alpha and beta cells during glucose perifusion of rat islets. J. clin. Invest.68 (1981) 517–524.

    PubMed  Google Scholar 

  63. Kawazu, S., Boschero, A.C., Delcroix, C., and Malaisse, W.J., The stimulus-secretion coupling of glucose-induced insulin release. Effect of glucose on Na+ fluxes in isolated islets. Pflügers Arch.375 (1978) 197–206.

    Article  Google Scholar 

  64. Lambert, A.E., The regulation of insulin secretion. Rev. Physiol. Biochem. Pharmac.75 (1976) 97–159.

    Google Scholar 

  65. Lambert, A.E., Henquin, J.C., and Malvaux, P., Cationic environment and dynamics of insulin secretion. Effect of low concentrations of sodium. Endocrinology95 (1974) 1069–1077.

    PubMed  Google Scholar 

  66. Lebrun, P., Malaisse, W.J., and Herchuelz, A., Effect of calcium antagonists on potassium conductance in islet cells. Biochem. Pharmac.30 (1981) 3291–3294.

    Google Scholar 

  67. Lebrun, P., Malaisse, W.J., and Herchuelz, A., Effect of the absence of bicarbonate upon intracellular pH and calcium fluxes in pancreatic islet cells. Biochim. biophys. Acta721 (1982) 357–365.

    Article  PubMed  Google Scholar 

  68. Lebrun, P., Malaisse, W.J., and Herchuelz, A., Activation, but not inhibition, by glucose of Ca2+-dependent K+ permeability in the rat pancreatic B-cell. Biochim. biophys. Acta731 (1983) 145–150.

    PubMed  Google Scholar 

  69. Lebrun, P., Malaisse, W.J., and Herchuelz, A., Impairment by aminooxyacetate of ionic response to nutrients in pancreatic islets. Am. J. Physiol.245 (1983) E38-E46.

    PubMed  Google Scholar 

  70. Lindström, P., and Sehlin, J., Effect of glucose on the intracellular pH of pancreatic islet cells. Biochem. J.218 (1984) 887–892.

    PubMed  Google Scholar 

  71. Malaisse, W.J., and Herchuelz, A., Nutritional regulation of K conductance: an unsettled aspect of pancreatic B cell physiology. Biochem. Act. Horm.9 (1982) 69–92.

    Google Scholar 

  72. Malaisse, W.J., Herchuelz, A., and Sener, A., Inorganic ions in insulin secretion, in: The islets of Langerhans-Biochemistry, Physiology and Pathology, pp. 149–171. Eds S.J. Cooperstein and D.T. Watkins. Academic Press, New York 1981.

    Google Scholar 

  73. Malaisse, W.J., Hutton, J.C., Kawazu, S., Herchuelz, A., Valverde, I., and Sener, A., The stimulus-secretion coupling of glucose-induced insulin release. The links between metabolic and cationic events. Diabetologia16 (1979) 331–341.

    PubMed  Google Scholar 

  74. Malaisse, W.J., Sener, A., and Herchuelz, A., Effects of insulinotropic agents on cationic fluxes in islet cells, in: Treatment of Early Diabetes, pp. 85–96. Eds R.A. Camerini-Davalos and B. Hanover. Plenum Press, New York 1979.

    Google Scholar 

  75. Marty, A. and Neher, E., Ionic channels in cultured rat pancreatic islet cells. J. Physiol.326 (1982) 36P-37P.

    Google Scholar 

  76. Matthews, E.K., Dean, P.M., and Sakamoto, Y., The bioelectrical activity of the islet cell membrane, in: Insulin II, pp. 157–173. Eds A. Hasselblatt and F. v. Bruchausen. Springer Verlag, Berlin 1975.

    Google Scholar 

  77. Matthews, E.K., and O'Connor, M.D.L., Dynamic oscillations in the membrane potential of pancreatic islet cells. J. exp. Biol.81 (1979) 75–91.

    PubMed  Google Scholar 

  78. Matthews, E.K., and Sakamoto, Y., Electrical characteristics of pancreatic islet cells. J. Physiol.246 (1975) 421–437.

    PubMed  Google Scholar 

  79. Matthews, E.K., and Sakamoto, Y., Pancreatic islet cells: electrogenic and electrodiffusional control of membrane potential. J. Physiol.246 (1975) 439–457.

    PubMed  Google Scholar 

  80. Meissner, H.P., Electrical characteristics of the beta-cells in pancreatic islets. J. Physiol., Paris72 (1976) 757–767.

    Google Scholar 

  81. Meissner, H.P., and Atwater, I., The kinetics of electrical activity of beta cells in response to a square wave stimulation with glucose or glibenclamide. Horm. Metab. Res.8 (1976) 11–16.

    PubMed  Google Scholar 

  82. Meissner, H.P., and Henquin, J.C., Comparison of the effects of glucose, amino acids and sulphonamides on the membrane potential of pancreatic B-cells, in: Diabetes 1982, pp. 353–359. Ed. E.N. Mngola. Excerpta Medica, Amsterdam 1983.

    Google Scholar 

  83. Meissner, H.P., and Henquin, J.C., The sodium pump of mouse pancreatic β-cells: electrogenic properties and activation by intracellular sodium, in: Electrogenic Transport: fundamental principles and physiological implications, pp. 295–306. Eds M.P. Blaustein and M. Lieberman. Raven Press, New York 1984.

    Google Scholar 

  84. Meissner, H.P., Henquin, J.C., and Preissler, M., Potassium dependence of the membrane potential of pancreatic B cells. FEBS Lett.94 (1978) 87–89.

    PubMed  Google Scholar 

  85. Meissner, H.P., and Preissler, M., Glucose-induced changes in the membrane potential of pancreatic B cells: their significance for the regulation of insulin release, in: Treatment of Early Diabetes, pp. 97–107. Eds R.A. Camerini-Davalos and B. Hanover. Plenum Press, New York 1979.

    Google Scholar 

  86. Meissner, H.P., and Preissler, M., Ionic mechanisms of the glucose-induced membrane potential changes in B-cells. Horm. Metab. Res., suppl.10 (1980) 91–99.

    Google Scholar 

  87. Meissner, H.P., Preissler, M., and Henquin, J.C., Possible ionic mechanisms of the electrical activity induced by glucose and tolbutamide in pancreatic B cells, in: Diabetes 1979, pp. 166–171. Ed. W.K. Waldhäusl. Excerpta Medica, Amsterdam 1980.

    Google Scholar 

  88. Meissner, H.P., and Schmeer, W., The significance of calcium ions for the glucose-induced electrical activity of pancreatic β-cells, in: The mechanisms of gated calcium transport across biological membranes, pp. 157–165. Eds S.T. Ohnishi and M. Endo. Academic Press, New York 1981.

    Google Scholar 

  89. Meissner, H.P., and Schmelz, H., Membrane potential of beta cells in pancreatic islets. Pflügers Arch.351 (1974) 195–206.

    Article  Google Scholar 

  90. Meissner, H.P., and Schmidt, H., The electrical activity of pancreactic β-cells of diabetic mice. FEBS Lett.67 (1976) 371–374.

    Article  PubMed  Google Scholar 

  91. Milner, R.D.G., and Hales, C.N., The role of calcium and magnesium in insulin secretion from rabbit pancreas studied in vitro. Diabetologia3 (1967) 47–49.

    PubMed  Google Scholar 

  92. Milner, R.D.G., and Hales, C.N., The interaction of various inhibitors and stimuli of insulin release studied with rabbit pancreas in vitro. Biochem. J.113 (1969) 473–479.

    PubMed  Google Scholar 

  93. Pace, C.S., Activation of Na channels in islet cells: metabolic and secretory effects. Am. J. Physiol.237 (1979) E130-E135.

    PubMed  Google Scholar 

  94. Pace, C.S., Murphy, M., Conant, S., and Lacy, P.E., Somatostatin inhibition of glucose-induced electrical activity in cultured rat islet cells. Am. J. Physiol.233 (1977) C164-C171.

    Google Scholar 

  95. Pace, C.S., and Smith, J.S., The role of chemiosmotic lysis in the exocytotic release of insulin. Endocrinology113 (1983) 964–969.

    PubMed  Google Scholar 

  96. Pace, C.S., Stillings, S.N., Hover, B.A., and Matschinsky, F.M., Electrical and secretory manifestations of glucose and amino acid interactions in rat pancreatic islets. Diabetes24 (1975) 489–496.

    PubMed  Google Scholar 

  97. Pace, C.S., Tarvin, J.T., Neighbors, A.S., Pirkle, J.A, and Greider, M.H., Use of a high voltage technique to determine the molecular requirements for exocytosis in islet cells. Diabetes29 (1980) 911–918.

    PubMed  Google Scholar 

  98. Pace, C.S., Tarvin, J.T., and Smith, J.S., Stimulus-secretion coupling in β-cells: modulation by pH. Am. J. Physiol.244 (1983) E3-E18.

    PubMed  Google Scholar 

  99. Pollard, H.B., Pazoles, C.J., and Creutz, C.E., Mechanism of calcium action and release of vesicle-bound hormones during exocytosis. Recent Prog. Horm. Res.37 (1981) 299–332.

    PubMed  Google Scholar 

  100. Ribalet, B., and Beigelman, P.M., Cyclic variation of K+ conductance in pancreatic β-cells: Ca2+ and voltage dependance. Am. J. Physiol.237 (1979) C137-C146.

    PubMed  Google Scholar 

  101. Ribalet, B., and Beigelman, P.M., Calcium action potentials and potassium permeability activation in pancreatic β-cells. Am. J. Physiol.239 (1980) C124-C133.

    PubMed  Google Scholar 

  102. Ribalet, B., and Beigelman, P.M., Effects of sodium on β-cell electrical activity. Am. J. Physiol.242 (1982) C296-C303.

    PubMed  Google Scholar 

  103. Richardson, B.P., Lowe, D.A., Donatsch, P., Taylor, P., and Stocklin, E., Na+ channels in pancreatic islet cells. Postgrad. med. J.57, suppl. 1 (1981) 98–109.

    PubMed  Google Scholar 

  104. Rorsman, P., Berggren, P.O., Gylfe, E., and Hellman, B., Reduction of the cytosolic calcium activity in clonal insulin-releasing cells exposed to glucose. Biosci. Rep.3 (1983) 939–946.

    Article  PubMed  Google Scholar 

  105. Rosario, L.M., Alterations of potassium permeability in islets from hyperglycaemic ob/ob mice. Proceedings of the autumn meeting of the British Diabetic Association 1983, p.4.

  106. Santana de Sa, S., Ferrer, R., Rojas, E., and Atwater, I., Effects of adrenaline and noradrenaline on glucose-induced electrical activity of mouse pancreatic β-cell. Q. J. Physiol.68 (1983) 247–258.

    Google Scholar 

  107. Scott, A.M., Atwater, I., and Rojas, E., A method for the simultaneous measurement of insulin release and B cell membrane potential in single mouse islets of Langerhans. Diabetologia21 (1981) 470–475.

    Article  PubMed  Google Scholar 

  108. Sehlin, J., Interrelationship between chloride fluxes in pancreatic islets and insulin release. Am. J. Physiol.235 (1978) E501-E508.

    PubMed  Google Scholar 

  109. Sehlin, J., Univalent ions in islet cell function. Horm. Metab. Res., suppl.10 (1980) 73–80.

    Google Scholar 

  110. Sehlin, J., Are Cl mechanisms in mouse pancreatic islets involved in insulin release? Upsala J. med. Sci.86 (1981) 177–182.

    PubMed  Google Scholar 

  111. Sehlin, J., Transport systems of islet cells, in: The islets of Langerhans-Biochemistry, Physiology and Pathology, pp. 53–74. Eds S.J. Cooperstein, and D.T. Watkins. Academic Press, New York 1981.

    Google Scholar 

  112. Sehlin, J., and Freinkel, N., Biphasic modulation of K+ permeability in pancreatic islets during acute stimulation with glucose. Diabetes32 (1983) 820–824.

    PubMed  Google Scholar 

  113. Sehlin, J., and Täljedal, I.-B., Transport of rubidium and sodium in pancreatic islets. J. Physiol.242 (1974) 505–515.

    PubMed  Google Scholar 

  114. Somers, G., Sener, A., Devis, G., and Malaisse, W.J., The stimulus-secretion coupling of glucose-induced insulin release. The anion-osmotic hypothesis for exocytosis. Pflügers Arch.388 (1980) 249–253.

    Article  Google Scholar 

  115. Stagner, J.I., Samols, E., and Weir, G.C., Sustained oscillations of insulin, glucagon and somatostatin from the isolated canine pancreas during exposure to a constant glucose concentration. J. clin. Invest.65 (1980) 939–942.

    PubMed  Google Scholar 

  116. Tamagawa, T., and Henquin, J.C., Chloride modulation of insulin release,86Rb+ efflux, and45Ca2+ fluxes in rat islets stimulated by various secretagogues. Diabetes32 (1983) 416–423.

    PubMed  Google Scholar 

  117. Tarvin, J.T., and Pace, C.S., Glucose-induced electrical activity in the pancreatic β-cell: effect of veratridine. Am. J. Physiol.240 (1981) C127-C134.

    PubMed  Google Scholar 

  118. Trus, M., Warner, H., and Matschinsky, F., Effect of glucose on insulin release and on intermediary metabolism of isolated perifused pancreatic islets from fed and fasted rats. Diabetes29 (1980) 1–14.

    Google Scholar 

  119. Wollheim, C.B., and Sharp, G.W.G., The regulation of insulin release by calcium. Physiol. Rev.61 (1981) 914–973.

    PubMed  Google Scholar 

  120. Yaseen, M.A., Smith, J.E., Doolabh, N., and Howell, S.L., Insulin secretion by exocytosis from permeabilized islets of Langerhans. Diabetologia25 (1983) 205 (Abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henquin, J.C., Meissner, H.P. Significance of ionic fluxes and changes in membrane potential for stimulus-secretion coupling in pancreatic B-cells. Experientia 40, 1043–1052 (1984). https://doi.org/10.1007/BF01971450

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01971450

Key words

Navigation