Skip to main content
Log in

Modulation of apical Na permeability of the toad urinary bladder by intracellular Na, Ca, and H

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The Na conductance of the apical membrane of the toad urinary bladder was measured at different concentrations of Na both in the external medium and in the cell. Bladders were bathed in high K-sucrose medium to reduce basal-lateral resistance and voltage, and the transepithelial currents measured under voltage-clamp conditions. Amiloride was used as a specific blocker of the apical Na channel. At constant external Na, the internal Na concentration was increased by blocking the basallateral Na pump with ouabain. With high Na activity in the mucosal medium (86mm), increases in intracellular Na activity from 10 to over 40mm increased the amiloride-sensitive slope conductance at zero voltage while apical Na permeability, estimated from current-voltage plots using the constant field equation, decreased by less than 20%. Lowering the serosal Ca concentration from 1 to 0.1mm had no effect on the change inP Na with increasing Nac, but increasing serosal Ca to 5mm enhanced the reduction inP Na with increasing Na c , presumably by increasing Ca influx into the cell.P Na was also reduced by serosal vanadate (0.5mm), a putative blocker of ATP-dependent Ca extrusion from the cell, and by acute exposure to CO2, which presumably acidifies the cytoplasm. Current-voltage relationships of the amiloridesensitive transport pathway were also measured in the absence of a Na gradient across the apical membrane. These plots show that outward current passes through the channels somewhat less easily than does inward current. The shape of theI-V relationships was not significantly altered by changes in cellular Na, Ca or H, indicating that the effects of these ions onP Na are voltage independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balfour, W.E., Grantham, J.J., Glynn, I.M. 1978. Vanadate stimulated natriuresis.Nature (London) 275:768

    Google Scholar 

  • Beauwens, R., Crabbé, J., Rentmeesters, M. 1981. Effects of vanadate on the functional properties of the isolated toad bladder.J. Physiol. (London) 310:293–305

    Google Scholar 

  • Begenisich, R., Danko, M. 1983. Hydrogen ion block of the sodium pore in squid giant axon.J. Gen. Physiol. 82:599–618

    PubMed  Google Scholar 

  • Benzanilla, F., Armstrong, C.M. 1972. Negative conductance caused by entry of sodium and cesium ions into the potassium channel of squid axons.J. Gen. Physiol. 60:588–602

    Article  PubMed  Google Scholar 

  • Boron, W.F., Boulpaep, E. 1983. Intracellular pH regulation in the renal proximal tubule of the salamander.J. Gen. Physiol. 81:29–52

    PubMed  Google Scholar 

  • Boron, W.F., DeWeer, P. 1976. Intracellular pH transients in squid giant axons caused by CO2, NH3 and metabolic inhibitors.J. Gen. Physiol. 67:91–112

    PubMed  Google Scholar 

  • Cantley, L.C., Jr., Josephson, L., Warner, R., Yanagisawa, M., Lechene, C., Guidotti, G. 1978. Vanadate is a potent (Na,K)-ATPase inhibitor found in ATP derived from muscle.J. Biol. Chem. 252:F421-F423

    Google Scholar 

  • Chase, H.S., Jr., Al-Awqati, Q. 1981. Regulation of the sodium permeability of the luminal border of the toad bladder by intracellular sodium and calcium.J. Gen. Physiol. 77:693–712

    PubMed  Google Scholar 

  • Chase, H.S., Jr., Al-Awqati, Q. 1983. Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder.J. Gen. Physiol. 81:643–665

    PubMed  Google Scholar 

  • Coronado, R., Miller, C. 1982. Conduction and block by organic cations in a K+-selective channel from sarcoplasmic reticulum incorporated into planar phospholipid bilayers.J. Gen. Physiol. 79:529–547

    PubMed  Google Scholar 

  • DiPolo, R. 1978. Ca pump driven by ATP in squid axons.Nature (London) 274:390–392

    Google Scholar 

  • DiPolo, R., Beaugé, L. 1981. The effects of vanadate on calcium transport in dialyzed squid axons. Sidedness of vanadatecation interactions.Biochim. Biophys. Acta 645:229–237

    Google Scholar 

  • DiPolo, R., Beaugé, L. 1982. The effect of pH on Ca+2 extrusion mechanisms on dialyzed squid axons.Biochim. Biophys. Acta 688:237–245

    PubMed  Google Scholar 

  • DiPolo, R., Rojas, H., Beaugé, L.A. 1979. Vanadate inhibits uncoupled Ca efflux but not Na−Ca exchange in squid axons.Nature (London) 281:228–229

    Google Scholar 

  • Eaton, D.C., 1981. Intracellular sodium low activity and sodium transport in rabbit urinary bladder.J. Physiol. (London) 316:527–544

    Google Scholar 

  • Eaton, D.C., Brodwick, M.S. 1980. Effects of barium on the potassium conductance of squid.J. Gen. Physiol. 75:727–750

    PubMed  Google Scholar 

  • Eaton, D.C., Hamilton, K., Johnson, K.E. 1984. Intracellular acidosis blocks the basolateral Na−K pump in rabbit urinary bladder.Biophys. J. 45:301a

    Google Scholar 

  • Edmonds, D.T. 1982. Modelling the control mechanism of the Na channel in apical membrane of tight epithelia.Proc. R. Soc. London B 217:111–115

    Google Scholar 

  • Eyring, H., Lumry, R., Woodbury, J.W. 1949. Some applications of modern rate theory to physiological systems.Rec. Chem. Prog. 10:100–114

    Google Scholar 

  • Fuchs, W., Hviid Larsen, E., Lindemann, B. 1977. Current voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137–166

    Google Scholar 

  • Garty, H., Lindemann, B. 1984. Feedback inhibition of sodium uptake in K+-depolarized toad urinary bladders.Biochim. Biophys. Acta 771:89–98

    PubMed  Google Scholar 

  • Gmaj, P., Murer, H., Kinne, R. 1979. Calcium ion transport across plasma membranes isolated from rat kidney cortex.Biochem. J. 178:549–557

    PubMed  Google Scholar 

  • Grinstein, S., Erlij, D. 1978. Intracellular Ca++ and the regulation Na+ transport in the frog skin.Proc. R. Soc. London B 202:353–360

    Google Scholar 

  • Helman, S.I. 1981. Electrical rectification of the sodium flux across the apical barrier of frog skin epithelium.In: Ion Transport by Epithelia. S.G. Schultz, editor. pp. 15–30. Raven, New York

    Google Scholar 

  • Hille, B. 1975. Ion selectivity, saturation and block in sodium channels. A four barrier model.J. Gen. Physiol. 66:535–560

    PubMed  Google Scholar 

  • Läuger, P. 1973. Ion transport through pores: A rate theory analysis.Biochim. Biophys. Acta 311:423–441

    PubMed  Google Scholar 

  • Lewis, S.A., Diamond, J.M. 1976. Na+ transport by rabbit urinary bladder, a tight epithelium.J. Membrane Biol. 28:1–40

    Article  Google Scholar 

  • Li, J.H.-Y., Palmer, L.G., Edelman, I.S., Lindemann, B. 1982. The role of sodium-channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone.J. Membrane Biol. 64:77–89

    Google Scholar 

  • Lindemann, B. 1982. Dependence of ion flow through channels on the density of fixed charges at the channel opening. Voltage control of inverse titration curves.Biophys. J. 39:15–22

    PubMed  Google Scholar 

  • Lopez, V., Stevens, T., Lindquist, R.N. 1976. Vanadium ion inhibition of alkaline phosphatase-catalyzed phosphate ester hydrolysis.Arch. Biochem. Biophys. 175:31–38

    PubMed  Google Scholar 

  • Meech, R.W., Thomas, R.C. 1977. The effect of calcium injection on the intracellular sodium and pH of snail neurones.J. Physiol. (London) 265:867–879

    Google Scholar 

  • Morel, F., LeBlanc, G. 1975. Transient current changes and Na compartmentalization in frog skin epithelium.Pfluegers Arch. 358:135–157

    Google Scholar 

  • Palmer, L.G. 1982a. Na+ transport and flux ratio through apical Na+ channels in toad bladder.Nature (London) 297:688–690

    Google Scholar 

  • Palmer, L.G. 1982b. Ion selectivity of the apical membrane Na channel in the toad urinary bladder.J. Membrane Biol. 67:91–98

    Google Scholar 

  • Palmer, L.G. 1984a. Use of potassium depolarization to study apical transport properties in epithelia.Curr. Top. Membr. Trans. 20:105–121

    Google Scholar 

  • Palmer, L.G. 1984b. Voltage dependent block by amiloride and other monovalent cations of apical Na channels in the toad urinary bladder.J. Membrane Biol. 80:153–165

    Google Scholar 

  • Palmer, L.G., Edelman, I.S., Lindemann, B. 1980. Current-voltage analysis of apical sodium transport in toad urinary bladage analysis of apical sodium transport in toad urinary bladder: Effects of inhibitors of transport and metabolism.J. Membrane Biol. 57:59–71

    Google Scholar 

  • Rossi, J.P.F.C., Garrahan, P.J., Rega, A.F. 1981. Vanadate inhibition of active Ca+2 transport across human red cell membranes.Biochim. Biophys. Acta 648:145–150

    PubMed  Google Scholar 

  • Schatzmann, H.J. 1966. ATP-dependent Ca++ extrusion from human red cells.Experientia 22:364–368

    PubMed  Google Scholar 

  • Taylor, A., Windhager, E.E. 1979. Possible role of cytosolic calcium and Na−Ca exchange in regulation of transepithelial sodium transport.Am. J. Physiol. 236:F505-F512

    Google Scholar 

  • Thomas, S.R., Suzuki, Y., Thompson, S.M., Schultz, S.G. 1983. The electrophysiology ofNecturus urinary bladder. I. “Instantaneous” current-voltage relations in the presence of varying mucosal sodium concentrations.J. Membrane Biol. 73:157–175

    Article  Google Scholar 

  • Thompson, S.M., Suzuki, Y., Schultz, S.G. 1982. The electrophysiology of rabbit descending colon. I. Instantaneous transepithelial current-voltage relations and the current-voltage relations of the Na-entry mechanism.J. Membrane Biol. 66:41–54

    Article  Google Scholar 

  • Turnheim, K., Frizzell, R.A., Schultz, S.G. 1978. Interaction between cell sodium and the amiloride-sensitive sodium entry step in rabbit colon.J. Membrane Biol. 39:233–256

    Google Scholar 

  • Ussing, H.H., Zerahn, K. 1951. Active transport of sodium as the source of electric current in the short-circuited frog skin.Acta Physiol. Scand. 23:110–127

    PubMed  Google Scholar 

  • Van Driessche, W., Erlij, D. 1983. Noise analysis of inward and outward Na+ currents across the apical border of ouabaintreated frog skin.Pfluegers Arch. 398:179–188

    Google Scholar 

  • Van Driessche, W., Lindemann, B. 1979. Concentration dependence of currents through single sodium-selective pores in frog skin.Nature (London) 282:519–520

    Google Scholar 

  • Van Etten, E.L., Waymack, P.P., Rehkop, D.M. 1974. Transition metal ion inhibition of enzyme-catalyzed phosphate ester displacement reactions.J. Am. Chem. Soc. 96:6782–6785

    PubMed  Google Scholar 

  • Woodbury, J.W., White, S.H., Mackey, M.C., Hardy, W.L., Chang, D.B. 1970. Bioelectrochemistry.In: Electrochemistry. H. Eyring, W. Jost and D. Henderson, editors. Chapter 9. Academic, New York

    Google Scholar 

  • Woodhull, A.M. 1973. Ionic blockage of sodium channels.J. Gen. Physiol. 61:687–708

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, L.G. Modulation of apical Na permeability of the toad urinary bladder by intracellular Na, Ca, and H. J. Membrain Biol. 83, 57–69 (1985). https://doi.org/10.1007/BF01868738

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868738

Key Words

Navigation