Skip to main content
Log in

The electrophysiology of rabbit descending colon

I. Instantaneous transepithelial current-voltage relations and the current-voltage relations of the Na-entry mechanism

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A method is described for determining the “instantaneous” transepithelial current-voltage (I-V) relations across rabbit descending colon and deriving theI-V relations of the amiloride-sensitive Na-entry step across the apical membrane. The latter conforms closely to the predictions of the Goldman-Hodgkin-Katz “constant-field” flux equation over a wide range of values of the transapical electrical potential difference (−120 to +50 mV), suggesting that Na entry is the result of simple electrodiffusion through homogeneous pores or channels. The permeability of the apical membrane to Na averaged 0.012 cm/hr, and the intracellular Na activity averaged 10mm. In the studies, the rate of Na entry across the apical membrane varied, spontaneously, over a fourfold range; this variation is entirely attributable to parallel variations in the partial conductance of the apical membrane to Na with no change in the driving force for this movement.

Bathing the serosal surface of the tissue with a high-K solution abolishes the electrical potential difference across the basolateral membrane and markedly reduces the resistance of that barrier. Under these conditions, theI-V relations of the amiloride-sensitive Na-entry step across the apical membrane also conform closely to the predictions of the “constant-field” flux equation.

Finally, the significance of the point at which the transepithelialI-V relations in the absence and presence of amiloride intersect (“E Na”) and the origin of the “bends” in theseI-V relations at or around this point are discussed. We demonstrate that the point of intersection is simply that value of the transepithelial electrical potential difference at which Na entry is abolished and has no direct bearing on the energetics of the basolateral pump. The “bend” in theI-V relations appears to be due to an increase in the conductance of a pathway in the apical membrane that parallels the Na-entry pathway in the apical membrane that parallels the Na-entry pathway as well as an increase in the conductance of the paracellular pathway; thus, this “bend” does not appear to be directly related to changes in the “active Na transport pathway”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bentley, P.J. 1960. The effects of vasopressin on the short-circuit current across the wall of the isolated bladder of the toadBufo marinus.J. Endocrinol. 21:161–170

    Google Scholar 

  • Bindslev, N., Tormey, J.McD., Pietras, R.J., Wright, E.M. 1974. Electrically and osmotically induced changes in the permeability and structure of toad urinary bladder.Biochim. Biophys. Acta 332:286–297

    Google Scholar 

  • Chen, J.S., Walser, M. 1975. Sodium fluxes through the active transport pathway in toad bladder.J. Membrane Biol. 21:87–98

    Google Scholar 

  • Civan, M.M. 1970. Effects of active sodium transport on current-voltage relationship of toad bladder.Am. J. Physiol. 219:234–245

    PubMed  Google Scholar 

  • Civan, M.M., Hall, T.E., Gupta, B.L. 1980. Microprobe study of toad urinary bladder in absence of serosal K+ J. Membrane Biol. 55:187–202

    Google Scholar 

  • Clausen, C., Lewis, S.A., Diamond, J.M. 1979. Impedance analysis of a tight epithelium using a distributed resistance model.Biophys. J. 26:291–318

    PubMed  Google Scholar 

  • Finkelstein, A., Mauro, A. 1963. Equivalent circuits as related to ionic systems.Biophys. J. 3:215–233

    Google Scholar 

  • Finkelstein, A., Mauro, A. 1977. Physical principles and formalisms of electrical excitability.In: Handbook of Physiology, Section I: The Nervous System. E. Kandel, editor, Vol. 1, Part 1, pp. 161–213. American Physiological Society, Bethesda

    Google Scholar 

  • Finn, A.L., Rogenes, P. 1980. The effects of voltage clamping on ion transport pathways in tight epithelial.In: Current Topics in Membranes and Transport. E.L. Boulpaep, editor. Vol. 13, pp. 245–255. Academic Press, New York

    Google Scholar 

  • Frizzell, R.A., Koch, M.J., Schultz, S.G. 1976. Ion transport by rabbit colon. I. Active and passive components.J. Membrane Biol. 27:297–316

    Google Scholar 

  • Frizzell, R.A., Schultz, S.G. 1978. Effect of aldosterone on ion transport by rabbit colonin vitro.J. Membrane Biol. 39:1–26

    Google Scholar 

  • Frizzell, R.A., Turnheim, K. 1978. Ion transport by rabbit colon. II. Unidirectional sodium influx and the effects of amphotericin B and amiloride.J. Membrane Biol. 40:193–212

    Google Scholar 

  • Fromm, M., Schultz, S.G. 1981. Some properties of KCl-filled microelectrodes: Correlation of potassium “leakage” with tip resistance.J. Membrane Biol. 62:239–244

    Google Scholar 

  • Frömter, E., Gebler, B. 1977. Electrical properties of amphibian urinary bladder epithelia. III. The cell membrane resistances and the effect of amiloride.Pfluegers Arch. 371:99–108

    Google Scholar 

  • Fuchs, W., Hviid Larsen, E., Lindemann, B. 1977. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137–166

    Google Scholar 

  • Goldman, D. 1943. Potential, impedance and rectification in membranes.J. Gen. Physiol. 27:37–60

    Google Scholar 

  • Graf, J., Giebisch, G. 1979. Intracellular sodium activity and sodium transport inNecturus gallbladder epithelium.J. Membrane Biol. 47:327–355

    Google Scholar 

  • Grinstein, S., Erlij, D. 1978. Intracellular calcium and the regulation of sodium transport in the frog skin.Proc. R. Soc. London B 202:353–360

    Google Scholar 

  • Helman, S.I., Fisher, R.S., 1977. Microelectrode studies of the active Na transport pathway of frog skin.J. Gen. Physiol. 69:571–604

    PubMed  Google Scholar 

  • Helman, S.I., O'Neil, R.G., Fisher, R.S. 1975 Determination of theE Na of frog skin from studies of its current-voltage relationship.Am. J. Physiol. 229:947–951

    PubMed  Google Scholar 

  • Higgins, J.T., Jr., Gebler, B., Frömter, E. 1977. Electrical properties of amphibian urinary bladder. II. The cell potential profile inNecturus maculosus.Pfluegers Arch. 371:87–97

    Google Scholar 

  • Hodgkin, A.L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (London) 108:37–77

    Google Scholar 

  • Lee, C.O., Armstrong, W.McD. 1972. Activities of sodium and potassium ions in epithelial cells of small intestine.Science 175:1261–1264

    Google Scholar 

  • Lewis, S.A., Diamond, J.M. 1946. Na+ transport by rabbit urinary bladder, a tight epithelium.J. Membrane Biol. 28:1–40

    Google Scholar 

  • Lewis, S.A., Eaton, D.C., Diamond, J.M. 1976. The mechanism of Na+ transport by rabbit urinary bladder.J. Membrane Biol. 28:41–70

    Google Scholar 

  • Lewis, S.A., Graf, J. 1979. Assessment of impalement damage.Appendix to: Graf, J., Giebisch, G. 1979. Intracellular sodium activity of sodium transport inNecturus gallbladder epithelium.J. Membrane Biol. 47:350–355

    Google Scholar 

  • Lewis, S.A., Wills, N.K. 1980. Resistive artifacts in liquid-ion exchanger microelectrode estimates of Na+ activity in epithelial cells.Biophys. J. 31:127–138

    PubMed  Google Scholar 

  • Li, J.H.-Y., Palmer, L.G., Edelman, I.S., Lindemann, B. 1979. Effect of ADH on Na channel parameters in toad urinary bladder.Pflueger's Arch. 382:R13

    Google Scholar 

  • Lindemann, B. 1975. Impalement arifacts in microelectrode recording of epithelial membrane potentials.Biophys. J. 15:1161–1164

    PubMed  Google Scholar 

  • Lindemann, B., Van Driessche, W. 1977. Sodium-specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover.Science 195:292–294

    PubMed  Google Scholar 

  • Macchia, D.D., Helman, S.I. 1979. Transepithelial current-voltage relationships of toad urinary bladder and colon estimates ofE Na and shunt resistance.Biophys. J. 27:371–392

    PubMed  Google Scholar 

  • Macknight, A.D.C., DiBona, D.R., Leaf, A. 1980. Sodium transport across toad urinary bladder: A model tight epithelium.Physiol. Rev. 60:615–715

    PubMed  Google Scholar 

  • Mandel, L.J., Curran, P.F. 1973. Response of the frog skin to steady-state voltage clamping. II. The active pathway.J. Gen. Physiol. 62:1–24

    Google Scholar 

  • Morel, F., LeBlanc, G. 1975. Transient current changes and Na compartmentalization in frog skin epithelium.Pfluegers Arch. 358:135–157

    Google Scholar 

  • Navarte, J., Finn, A.L. 1980. Microelectrode studies in toad urinary bladder epithelium. Effects of Na concentration changes in the mucosal solution on equivalent electromotive forces.J. Gen. Physiol. 75:323–344

    PubMed  Google Scholar 

  • Nelson, D.J., Ehrenfeld, J., Lindemann, B. 1978. Volume changes and potential artifacts of epithelial cells of frog skin following impalement with microelectrodes filled with 3m KCl.J. Membrane Biol. Special Issue:91–119

  • O'Doherty, J., Garcia-Diaz, J.F., Armstrong, W.M. 1979. Sodium-selective liquid ion-exchanger microelectrodes for intracellular measurements.Science 203:1349–1351

    PubMed  Google Scholar 

  • O'Neil, R.G., Helman, S.I. 1976. Influence of vasopressin and amiloride on shunt pathways of frog skin.Am. J. Physiol. 231:164–173

    PubMed  Google Scholar 

  • Palmer, L.G., Edelman, I.S., Lindemann, B. 1980. Current-voltage analysis of apical sodium transport in toad urinary bladder: Effects of inhibitors of transport and metabolismJ. Membrane Biol. 57:59–71

    Google Scholar 

  • Rawlins, F., Mateu, L., Fragachan, F., Whittembury, G. 1970. Isolated toad skin epithelium: Transport characteristics.Pfluegers Arch. 316:64–80

    Google Scholar 

  • Rick, R., Dörge, A., Von Arnim, E., Thurau, K. 1978. Electron microprobe analysis of frog skin epithelium: Evidence for a syncytial Na transport compartment.J. Membrane Biol. 39:313–331

    Google Scholar 

  • Rick, R., Thurau, K. 1978. Electron microprobe analysis of the different epithelial cells of toad urinary bladder.J. Membrane Biol. 39:257–271

    Google Scholar 

  • Saito, T., Lief, P.D., Essig, A. 1974. Conductance of active and passive pathways in the toad bladder.Am. J. Physiol. 226:1265–1271

    PubMed  Google Scholar 

  • Schultz, S.G. 1979. Application of equivalent electrical circuit models to study of sodium transport across epithelial tissues.Fed. Proc. 38:2024–2029

    PubMed  Google Scholar 

  • Schultz, S.G. 1981. Homocellular regulatory mechanisms in sodium transporting epithelia.Am. J. Physiol. 241:F579-F590

    PubMed  Google Scholar 

  • Schultz, S.G., Frizzell, R.A., Nellans, H.N. 1977. Active sodium transport and the electrophysiology of rabbit colon.J. Membrane Biol. 33:351–384

    Google Scholar 

  • Schultz, S.G., Thompson, S.M., Suzuki, Y. 1981a. Equivalent electrical circuit models and the study of Na transport across epithelia: II. Nonsteady-state current-voltage relations.Fed. Proc. 40:2443–2449

    PubMed  Google Scholar 

  • Schultz, S.G., Thompson, S.M., Suzuki, Y. 1981b. On the mechanism of sodium entry across the apical membrane of rabbit colon.In: Epithelial Ion and Water Transport. A.D.C. Macknight and J.P. Leader, editors. pp. 285–296. Raven Press, New York

    Google Scholar 

  • Spooner, P.M., Edelman, I.S. 1975. Further studies on the effect of aldosterone on electrical resistance of toad bladder.Biochim. Biophys. Acta 406:304–314

    PubMed  Google Scholar 

  • Suzuki, K., Frömter, E. 1977. The potential and resistance profile ofNecturus gallbladder cells.Pfluegers Arch. 371:109–117

    Google Scholar 

  • Taylor, A. 1981. Role of cytosolic calcium and Na−Ca exchange in regulation of transepithelial sodium and water absorption.In: Ion Transport by Epithelia. S.G. Schultz, editor. pp. 233–260. Raven Press, New York

    Google Scholar 

  • Taylor, A., Windhager, E.E. 1979. Possible role cytosolic calcium and Na−Ca exchange in regulation of transepithelial sodium transport.Am. J. Physiol. 236:F505-F512

    PubMed  Google Scholar 

  • Thompson, S.M., Suzuki, Y., Schultz, S.G. 1982. The electrophysiology of rabbit descending colon: II. Current-voltage relations of the apical membrane, the basolateral membrane, and the parallel pathways.J. Membrane Biol. 66:55–61

    Google Scholar 

  • Turnheim, K., Frizzell, R.A., Schultz, S.G. 1978. Interaction between cell sodium and the amiloride-sensitive sodium entry step in rabbit colon.J. Membrane Biol. 39:233–256

    Google Scholar 

  • Ussing, H.H. 1960. The Alkali Metal Ions in Biology. Springer-Verlag, Berlin

    Google Scholar 

  • Ussing, H.H., Zerahn, K. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin.Acta Physiol. Scand. 23:110–127

    PubMed  Google Scholar 

  • Wills, N.K., Eaton, D.C., Lewis, S.A., Ifshin, M.S. 1979a. Currentvoltage relationship of the basolateral membrane of a tight epithelium.Biochim. Biophys. Acta 555:519–523

    PubMed  Google Scholar 

  • Wills, N.K., Lewis, S.A. 1980. Intracellular Na+ activity as a function of Na+ transport rate across a tight epithelium.Biophys. J. 30:181–186

    PubMed  Google Scholar 

  • Wills, N.K., Lewis, S.A., Eaton, D.C. 1979b. Active and passive properties of rabbit descending colon: A microelectrode and nystatin study.J. Membrane Biol. 45:81–108

    Google Scholar 

  • Wolff, D., Essig, A. 1977. Kinetics of bidirectional active sodium fluxes in the toad bladder.Biochim. Biophys. Acta 468:271–283

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, S.M., Suzuki, Y. & Schultz, S.G. The electrophysiology of rabbit descending colon. J. Membrain Biol. 66, 41–54 (1982). https://doi.org/10.1007/BF01868480

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868480

Key words

Navigation