Skip to main content
Log in

Electrophysiology ofNecturus urinary bladder: I. “Instantaneous” current-voltage relations in the presence of varying mucosal sodium concentrations

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The “instantaneous” transepithelial current-voltage (I–V) relations ofNecturus urinary bladder were determined under short-circuit conditions during impalement of a cell with a microelectrode as described previously (Thompson et al.,J. Membrane Biol. 66: 41–54, 1982). These studies were performed in the presence of 5, 15 and 45mm Na in the mucosal solution, [Na] m , and in the absence and presence of a maximally effective dose of amiloride.

TheI–V relations of the amiloride-sensitive Na-entry step at the apical membrane conformed closely to that predicted by the Goldman-Hodgkin-Katz (GHK) “constant field” flux equation over a wide range under all conditions. From theseI–V relations we calculated: (a) the permeability of the apical membrane to Na,P mNa ; (b) thechord conductance of the apical membrane to Na under short-circuit conditions,0 G mNa ; and, (c) the intracellular Naactivity, (Na) c . In addition, from theI–V relations in the absence and presence of amiloride and the voltage-divider ratio, we determined theslope conductances of the transcellular pathway (g c) and the apical (g m) and basolateral (g s) membranes at each different steady state. Our findings indicate that:

  1. (a)

    While the rate of active Na transport (I sc) increases hyperbolically with increasing [Na] m , (Na) c is maintained constant at approximately 6mm and is independent of both [Na] m and theI sc.

  2. (b)

    The increase inI sc with increasing [Na] m is entirely attributable to an increase in0 G mNa ; the thermodynamic driving force for Na-entry across the apical membrane is maintained constant under these conditions.

  3. (c)

    P mNa decreases with increasing [Na] m .

  4. (d)

    g c, gm andg s increase linearly with increasingI sc.

A possible mechanism that could account forboth the increase in basolateral pump activity in the face of a constant (Na) c ,and the increase ing s that parallels the increase in pump activity is the “recruitment” of additional “pump-leak units” to the basolateral membrane with increasing [Na] m . Other possibilities are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blaustein, M.P. 1974. The interrelationship between sodium and calcium fluxes across cell membranes.Rev. Physiol. Biochem. Pharmacol. 70:33–82

    PubMed  Google Scholar 

  • Chase, H.S., Jr., Al-Awqati, Q. 1981. Regulation of the sodium permeability of the luminal border of toad bladder by intracellular sodium and calcium.J. Gen. Physiol. 77:693–712

    PubMed  Google Scholar 

  • Clausen, C., Lewis, S.A., Diamond, J.M. 1979. Impedance analysis of a tight epithelium using a distributed resistance model.Biophys. J. 26:291–318

    PubMed  Google Scholar 

  • Davis, C.W., Finn, A.L. 1982. Sodium transport inhibition by amiloride reduces basolateral membrane potassium conductance in tight epithelia.Science 216:525–527

    PubMed  Google Scholar 

  • Driessche, W. van, Lindemann, B. 1979. Concentration dependence of currents through single sodium-selective pores in frog skin.Nature (London) 282:519–520

    Google Scholar 

  • Eaton, D.C. 1981. Intracellular sodium ion activity and sodium transport in rabbit urinary bladder.J. Physiol. (London) 316:527–544

    Google Scholar 

  • Finkelstein, A., Mauro, A. 1963. Equivalent circuits as related to ionic systems.Biophys. J. 3:215–237

    Google Scholar 

  • Finkelstein, A., Mauro, A. 1977. Physical principles and formalisms of electrical excitability.In: The Handbook of Physiology: Section 1: The Nervous System, Vol. 1, Part 1. E.R. Kandel, editor. pp. 161–213. American Physiological Society, Bethesda

    Google Scholar 

  • Finn, A.L., Bright, J. 1978. The paracellular pathway in toad urinary bladder: Permselectivity and kinetics of opening.J. Membrane Biol. 44:67–83

    Google Scholar 

  • Forte, T.M., Machen, T.E., Forte, J.G. 1977. Ultrastructural changes in oxyntic cells associated with secretory function: A membrane recycling hypothesis.Gastroenterology 73:941–955

    PubMed  Google Scholar 

  • Frazier, H.S. 1964. Specificity of sodium transport and the biologically active form of sodium ion.J. Clin. Invest. 43:1265

    Google Scholar 

  • Frizzell, R.A., Koch, M.J., Schultz, S.G. 1976. Ion transport by rabbit colon. I. Active and passive components.J. Membrane Biol. 27:297–316

    Google Scholar 

  • Fromm, M., Schultz, S.G. 1981. Some properties of KCl-filled microelectrodes: Correlation of potassium “leakage” with tip resistance.J. Membrane Biol. 62:239–244

    Google Scholar 

  • Frömter, E., Gebler, B. 1977. Electrical properties of amphibian urinary epithelia. III. The cell membrane resistance and the effect of amiloride.Pfluegers Arch. 371:99–108

    Google Scholar 

  • Frömter, E., Higgins, J.T., Gebler, B. 1981. Electrical properties of amphibian urinary bladder epithelia. IV. The currentvoltage relationship of the sodium channels in the apical cell membrane.In: Ion Transport by Epithelia. S.G. Schultz, editor. pp. 31–45. Raven Press, New York

    Google Scholar 

  • Fuchs, W., Larsen, E.H., Lindemann, B. 1977. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137–166

    Google Scholar 

  • Gluck, S., Cannon, C., Al-Awqati, Q. 1982. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H pumps into the luminal membrane.Proc. Natl. Acad. Sci. USA 79:4327–4331

    PubMed  Google Scholar 

  • Goldman, D.E. 1943. Potential, impedance and rectification in membranes.J. Gen. Physiol. 27:37–60

    Article  Google Scholar 

  • Graf, J., Giebisch, G. 1979. Intracellular sodium activity and sodium transport inNecturus gallbladder epithelium.J. Membrane Biol. 47:327–355

    Google Scholar 

  • Grasset, E., Gunter-Smith, P., Schultz, S.G. 1983. Effects of Na-coupled alanine transport on intracellular K activities and the K conductance of the basolateral membranes ofNecturus small intestine.J. Membrane Biol. 71:89–94

    Google Scholar 

  • Gunter-Smith, P.J., Grasset, E., Schultz, S.G. 1982. Sodiumcoupled amino acid and sugar transport byNecturus small intestine. An equivalent electrical circuit analysis of a rheogenic co-transport system.J. Membrane Biol. 66:25–39

    Google Scholar 

  • Hansen, U.P., Gradmann, D., Sanders, D., Slayman, C.L. 1981. Interpretation of current-voltage relationships for “active” ion transport systems: I. Steady-state reaction-kinetic analysis of class-I mechanisms.J. Membrane Biol. 63:165–190

    Google Scholar 

  • Helman, S.I., Fisher, R.S. 1977. Microelectrode studies of the active Na transport pathway of frog skin.J. Gen. Physiol. 69:571–604

    PubMed  Google Scholar 

  • Higgins, J.T., Jr., Cesaro, L., Gebler, B., Frömter, E. 1975. Electrical properties of amphibian urinary bladder. I. Inverse relationship between potential difference and resistance in tightly mounted preparations.Pfluegers Arch. 358:41–56

    Google Scholar 

  • Higgins, J.T., Gebler, B., Frömter, E. 1977. Electrical properties of amphibian urinary bladder. II. The cell potential profile inNecturus maculosa.Pflueger's Arch. 371:87–97

    Article  Google Scholar 

  • Hildmann, B., Schmidt, A., Murer, H. 1982. Ca++-transport across basal-lateral plasma membranes from rat small intestinal epithelial cells.J. Membrane Biol. 65:55–62

    Google Scholar 

  • Hille, B. 1975. Ionic selectivity of Na and K channels of nerve membrane.In: Membranes—A Series of Advances. G. Eisenman, editor. Vol. 3, pp. 255–323. Marcel Dekker, New York

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon ofLoligo.J. Physiol. (London) 116:449–472

    Google Scholar 

  • Hodgkin, A.L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (London) 108:37–77

    Google Scholar 

  • Katchalsky, A., Curran, P.F. 1965. Nonequilibrium Thermodynamics in Biophysics. Harvard University Press, Cambridge, Mass

    Google Scholar 

  • Lee, C.O., Armstrong, W. McD. 1972. Activities of sodium and potassium ions in epithelial cells of small intestine.Science 175:1261–1264

    PubMed  Google Scholar 

  • Lew, V.L., Ferreira, H.G. 1978. Calcium transport and the properties of a calcium-activated potassium channel in red cell membranes.Curr. Top. Membr. Transport 10:217–277

    Google Scholar 

  • Lewis, S.A. 1982. Cytoplasmic vesicles fuse with the apical membrane of rabbit urinary bladder.Biophys. J. 37:269a

    Google Scholar 

  • Lewis, S.A., Eaton, D.C., Diamond, J.M. 1976. The mechanism of Na+ transport by rabbit urinary bladder.J. Membrane Biol. 28:41–70

    Google Scholar 

  • Lewis, S.A., Moura, J.L.C. de 1982. Cytoplasmic vesicle fusion alters the permeability properties of the apical membrane of the rabbit urinary bladder epithelium.Biophys. J. 37:268a

    Google Scholar 

  • Lewis, S.A., Wills, N.K. 1981. Interaction between apical and basolateral membranes during sodium transport across tight epithelia.In: Ion Transport by Epithelia. S.G. Schultz, editor. pp. 93–107. Raven Press, New York

    Google Scholar 

  • Li, J.H.-Y., Palmer, L.G., Edelman, I.S., Lindemann, B. 1982. The role of sodium-channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone.J. Membrane Biol. 64:77–89

    Google Scholar 

  • Lindemann, B. 1970. Electrical excitation of the outer resistive membrane in frog skin epithelium.In: Electrophysiology of Epithelial cells. G. Giebisch, editor. pp. 53–88. F.K. Schautter, Stuttgart-New York

    Google Scholar 

  • Lindemann, B., Voute, C. 1976. Structure and function of the epidermis.In: Frog Neurobiology. R. Llinas and W. Precht, editors. pp. 169–210. Springer-Verlag, Berlin

    Google Scholar 

  • Macknight, A.D.C., DiBona, D.R., Leaf, A. 1980. Sodium transport across toad urinary bladder: A model tight epithelium.Physiol. Rev. 60:615–715

    Google Scholar 

  • Macknight, A.D.C., Leaf, A. 1978. The sodium transport pool.Am. J. Physiol. 234:F1-F9

    PubMed  Google Scholar 

  • Mandel, L.J., Curran, P.F. 1973. Response of frog skin to steady-state voltage-clamping.J. Gen. Physiol. 62:1–24

    Google Scholar 

  • Muller, J.W., Kachadorian, A., DiScala, V.A. 1980. Evidence that ADH-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells.J. Cell Biol. 85:83–95

    PubMed  Google Scholar 

  • Mullins, L.J. 1981. Depolarization and calcium entry.In: The Biophysical Approach to Excitable Systems. (W.J. Adelman and D.E. Goldman, editors.) pp. 151–163. Plenum, New York

    Google Scholar 

  • Nagel, W. 1977. The dependence of the electrical potentials across the membranes of the frog skin upon the concentration of sodium in the mucosal solution.J. Physiol. (London) 269:777–796

    Google Scholar 

  • Narvarte, J., Finn, A.L. 1980a. Microelectrode studies in toad urinary bladder epithelium. Effects of Na concentration changes in the mucosal solution on equivalent electromotive forces.J. Gen. Physiol. 75:323–344

    PubMed  Google Scholar 

  • Narvarte, J., Finn, A.L. 1980b. Anion-sensitive sodium conductance in apical membrane of toad urinary bladder.J. Gen. Physiol. 76:69–81

    Google Scholar 

  • Palmer, L.G. 1982. Ion selectivity of the apical membrane Na channel in toad urinary bladder.J. Membrane Biol. 67:91–98

    Google Scholar 

  • Palmer, L.G., Edelman, I.S., Lindemann, B. 1980. Current-voltage analysis of apical sodium transport in toad urinary bladder: Effects of inhibitors of transport and metabolism. J. Membrane Biol.57:59–71.

    Google Scholar 

  • Palmer, L.G., Li, J.H.-Y., Lindemann, B., Edelman, I. 1982. Aldosterone control of the density of sodium channels in the toad urinary bladder.J. Membrane Biol. 64:91–102

    Google Scholar 

  • Petty, K.J., Kokko, J.P., Marver, D. 1981. Secondary effect of aldosterone on Na−K ATPase activity in the rabbit cortical collecting tubule.J. Clin. Invest. 68:1514–1521

    Google Scholar 

  • Rotunno, A.A., Villalonga, F.A., Fernandez, M., Cereijido, M. 1970. The Penetration of sodium into the epithelium of frog skin.J. Gen. Physiol. 55:716–735

    PubMed  Google Scholar 

  • Saito, T., Lief, P.D., Essig, A. 1974. Conductance of active and passive pathways in the toad bladder.Am. J. Physiol. 226:1265–1271

    Google Scholar 

  • Schultz, S.G. 1980. Basic Principles of Membranes Transport. Cambridge University Press, New York

    Google Scholar 

  • Schultz, S.G. 1981. Homocellular regulatory mechanisms in sodium-transporting epithelia: Avoidance of extinction by “flush-through”.Am. J. Physiol. 241:F579-F590

    Google Scholar 

  • Schultz, S.G., Thompson, S.M., Suzuki, Y. 1981. Equivalent electrical circuit models and the study of Na transport across epithelia: Nonsteady-state current-voltage relations.Fed. Proc. 40:2443–2449

    Google Scholar 

  • Taylor, A. 1981. Role of cytosolic calcium and sodium-calcium exchange in regulation of transepithelial sodium and water absorption.In: Ion Transport by Epithelia. S.G. Schultz, editor. pp. 233–259. Raven Press, New York

    Google Scholar 

  • Taylor, A., Windhager, E.E. 1979. Possible role of cytosolic calcium and Na−Ca exchange in regulation of transepithelial sodium transport.Am. J. Physiol. 236:F505-F512

    Google Scholar 

  • Thomas, R.C. 1972. Electrogenic sodium pump in nerve and muscle cells.Physiol. Rev. 52:563–594

    Google Scholar 

  • Thompson, S.M., Suzuki, Y., Schultz, S.G. 1982a. The electrophysiology of rabbit descending colon: I. Instantaneous transepithelial current-voltage relations and the current-voltage relations of the Na-entry mechanism.J. Membrane Biol. 66:41–54

    Google Scholar 

  • Thompson, S.M., Suzuki, Y., Schultz, S.G. 1982b. The electrophysiology of rabbit descending colon: II. Current-voltage relations of the apical membrane, the basolateral membrane, and the parallel pathways.J. Membrane Biol. 66:55–61

    Google Scholar 

  • Wade, J.B., Stetson, D.L., Lewis, S.A. 1981. ADH action: Evidence for a membrane shuttle mechanism.Ann. N.Y. Acad. Sci. 372:106–117

    PubMed  Google Scholar 

  • Wills, N.K., Lewis, S.A. 1980. Intracellular Na activity as a function of Na transport rate across a tight epithelium.Biophys. J. 30:181–186

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randall Thomas, S., Suzuki, Y., Thompson, S.M. et al. Electrophysiology ofNecturus urinary bladder: I. “Instantaneous” current-voltage relations in the presence of varying mucosal sodium concentrations. J. Membrain Biol. 73, 157–175 (1983). https://doi.org/10.1007/BF01870439

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870439

Key Words

Navigation