Skip to main content

Advertisement

Log in

Toxicity evaluation of silica nanoparticles for delivery applications

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Silica nanoparticles (SiNPs) are being explored as nanocarriers for therapeutics delivery, which can address a number of intrinsic drawbacks of therapeutics. To translate laboratory innovation into clinical application, their potential toxicity has been of great concern. This review attempts to comprehensively summarize the existing literature on the toxicity assessment of SiNPs. The current data suggest that the composition of SiNPs, their physicochemical properties, their administration route, their frequency and duration of administration, and the sex of animal models are related to their tissue and blood toxicity, immunotoxicity, and genotoxicity. However, the correlation between in vitro and in vivo toxicity has not been well established, mainly because both the in vitro and the in vivo-dosed quantities are unrealistic. This article also discusses important factors to consider in the toxicology of SiNPs and current approaches to reducing their toxicity. The aim is to give readers a better understanding of the toxicology of silica nanoparticles and to help identify key gaps in knowledge and techniques.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

© 2016 Acta Materialia Inc.)

Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The authors confirm that the data supporting the findings of this study are available within the article.

Key contribution

Emphasized the important parameters related to SiNPs in the toxicity assessment, listed the toxicity effects of SiNPs in major tissues of the body and reports on the immunotoxicity and genotoxicity of SiNPs, and briefly summarized the strategies for designing safer SiNPs, the current challenges, and the future research directions in SiNPs biosafety assessment.

References

  1. Alexis F, Rhee JW, Richie JP, Radovic-Moreno AF, Langer R, Farokhzad OC. New frontiers in nanotechnology for cancer treatment. Urol Oncol. 2008;26:74–85. https://doi.org/10.1016/j.urolonc.2007.03.017.

    Article  CAS  PubMed  Google Scholar 

  2. Yang Y, Zhang M, Song H, Yu C. Silica-based nanoparticles for biomedical applications: from nanocarriers to biomodulators. Acc Chem Res. 2020;53:1545–56. https://doi.org/10.1021/acs.accounts.0c00280.

    Article  CAS  PubMed  Google Scholar 

  3. Janjua TI, Cao Y, Yu C, Popat A. Clinical translation of silica nanoparticles. Nat Rev Mater. 2021;6:1072–4. https://doi.org/10.1038/s41578-021-00385-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tan A, Eskandar NG, Rao S, Prestidge CA. First in man bioavailability and tolerability studies of a silica-lipid hybrid (Lipoceramic) formulation: a Phase I study with ibuprofen. Drug Deliv Transl Res. 2014;4:212–21. https://doi.org/10.1007/s13346-013-0172-9.

    Article  CAS  PubMed  Google Scholar 

  5. Bukara K, Schueller L, Rosier J, Martens MA, Daems T, Verheyden L, Eelen S, Van Speybroeck M, Libanati C, Martens JAet al. Ordered mesoporous silica to enhance the bioavailability of poorly water-soluble drugs: proof of concept in man. Euro J Pharm Biopharm : Official J Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik E.V.2016;108:220–225.https://doi.org/10.1016/j.ejpb.2016.08.020.

  6. Meola TR, Abuhelwa AY, Joyce P, Clifton P, Prestidge CA. A safety, tolerability, and pharmacokinetic study of a novel simvastatin silica-lipid hybrid formulation in healthy male participants. Drug Deliv Transl Res. 2021;11:1261–72. https://doi.org/10.1007/s13346-020-00853-x.

    Article  CAS  PubMed  Google Scholar 

  7. Jue JS, Coons S, Hautvast G, Thompson SF, Geraats J, Richstone L, Schwartz MJ, Rastinehad AR. Novel automated three-dimensional surgical planning tool and magnetic resonance imaging/ultrasound fusion technology to perform nanoparticle Ablation and Cryoablation of the Prostate for Focal Therapy. J Endourol. 2022;36:369–72. https://doi.org/10.1089/end.2021.0266.

    Article  PubMed  Google Scholar 

  8. Wang J, Ni Q, Wang Y, Zhang Y, He H, Gao D, Ma X, Liang XJ. Nanoscale drug delivery systems for controllable drug behaviors by multi-stage barrier penetration. J Control Release. 2021;331:282–95. https://doi.org/10.1016/j.jconrel.2020.08.045.

    Article  CAS  PubMed  Google Scholar 

  9. Fu C, Liu T, Li L, Liu H, Chen D, Tang F. The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials. 2013;34:2565–75. https://doi.org/10.1016/j.biomaterials.2012.12.043.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang S, Gao H, Bao G. Physical principles of nanoparticle cellular endocytosis. ACS Nano. 2015;9:8655–71. https://doi.org/10.1021/acsnano.5b03184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang B, He X, Zhang Z, Zhao Y, Feng W. Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc Chem Res. 2013;46:761–9. https://doi.org/10.1021/ar2003336.

    Article  CAS  PubMed  Google Scholar 

  12. Li J, Chang X, Chen X, Gu Z, Zhao F, Chai Z, Zhao Y. Toxicity of inorganic nanomaterials in biomedical imaging. Biotechnol Adv. 2014;32:727–43. https://doi.org/10.1016/j.biotechadv.2013.12.009.

    Article  CAS  PubMed  Google Scholar 

  13. Frohlich E, Kueznik T, Samberger C, Roblegg E, Wrighton C, Pieber TR. Size-dependent effects of nanoparticles on the activity of cytochrome P450 isoenzymes. Toxicol Appl Pharmacol. 2010;242:326–32. https://doi.org/10.1016/j.taap.2009.11.002.

    Article  CAS  PubMed  Google Scholar 

  14. Hu Y, Wang J, Zhi Z, Jiang T, Wang S. Facile synthesis of 3D cubic mesoporous silica microspheres with a controllable pore size and their application for improved delivery of a water-insoluble drug. J Colloid Interface Sci. 2011;363:410–7. https://doi.org/10.1016/j.jcis.2011.07.022.

    Article  CAS  PubMed  Google Scholar 

  15. Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24:1504–34. https://doi.org/10.1002/adma.201104763.

    Article  CAS  PubMed  Google Scholar 

  16. Kesse S, Boakye-Yiadom KO, Ochete BO, Opoku-Damoah Y, Akhtar F, Filli MS, Asim Farooq M, Aquib M, Maviah Mily BJ, Murtaza Get al. Mesoporous silica nanomaterials: versatile nanocarriers for cancer theranostics and drug and gene delivery. Pharmaceutics. 2019;11.https://doi.org/10.3390/pharmaceutics11020077.

  17. Li Y, Li N, Pan W, Yu Z, Yang L, Tang B. Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery. ACS Appl Mater Interfaces. 2017;9:2123–9. https://doi.org/10.1021/acsami.6b13876.

    Article  CAS  PubMed  Google Scholar 

  18. Kumar P, Tambe P, Paknikar KM, Gajbhiye V. Mesoporous silica nanoparticles as cutting-edge theranostics: advancement from merely a carrier to tailor-made smart delivery platform. J Control Release. 2018;287:35–57. https://doi.org/10.1016/j.jconrel.2018.08.024.

    Article  CAS  PubMed  Google Scholar 

  19. Giret S, Wong Chi Man M, Carcel C.Mesoporous-silica-functionalized nanoparticles for drug delivery. Chemistry (Weinheim an der Bergstrasse, Germany). 2015;21:13850–13865.https://doi.org/10.1002/chem.201500578.

  20. Geng H, Zhao Y, Liu J, Cui Y, Wang Y, Zhao Q, Wang S. Hollow mesoporous silica as a high drug loading carrier for regulation insoluble drug release. Int J Pharm. 2016;510:184–94. https://doi.org/10.1016/j.ijpharm.2016.05.067.

    Article  CAS  PubMed  Google Scholar 

  21. Chen W, Cheng CA, Lee BY, Clemens DL, Huang WY, Horwitz MA, Zink JI. Facile strategy enabling both high loading and high release amounts of the water-insoluble drug clofazimine using mesoporous silica nanoparticles. ACS Appl Mater Interfaces. 2018;10:31870–81. https://doi.org/10.1021/acsami.8b09069.

    Article  CAS  PubMed  Google Scholar 

  22. Maleki A, Hamidi M. Dissolution enhancement of a model poorly water-soluble drug, atorvastatin, with ordered mesoporous silica: comparison of MSF with SBA-15 as drug carriers. Expert Opin Drug Deliv. 2016;13:171–81. https://doi.org/10.1517/17425247.2015.1111335.

    Article  CAS  PubMed  Google Scholar 

  23. GÜNaydin Ş, Yilmaz A. Improvement of solubility of celecoxib by inclusion in MCM-41 mesoporous silica: drug loading and release. Turkish J Chem. 2015;39:317–333.https://doi.org/10.3906/kim-1409-56.

  24. Lainé AL, Price D, Davis J, Roberts D, Hudson R, Back K, Bungay P, Flanagan N. Enhanced oral delivery of celecoxib via the development of a supersaturable amorphous formulation utilising mesoporous silica and co-loaded HPMCAS. Int J Pharm. 2016;512:118–25. https://doi.org/10.1016/j.ijpharm.2016.08.034.

    Article  CAS  PubMed  Google Scholar 

  25. Kerkhofs S, Saïdi F, Vandervoort N, Van den Mooter G, Martineau C, Taulelle F, Martens JA. Silica capsules enclosing P123 triblock copolymer micelles for flurbiprofen storage and release. J Mater Chem B. 2015;3:3054–61. https://doi.org/10.1039/c5tb00058k.

    Article  CAS  PubMed  Google Scholar 

  26. Song Y, Zhu P, Wu Y, Tan L, Wei W, Liu S, Huang Q, Chen J.Epsilon-poly-l-lysine decorated ordered mesoporous silica contributes to the synergistic antifungal effect and enhanced solubility of a lipophilic drug. Mater Sci Eng C Mater Biol App.2019;99:231–240.https://doi.org/10.1016/j.msec.2019.01.077.

  27. Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, Nel AE. Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano. 2011;5:4131–44. https://doi.org/10.1021/nn200809t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lu J, Li Z, Zink JI, Tamanoi F. In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomed Nanotechnol Biol Med. 2012;8:212–20. https://doi.org/10.1016/j.nano.2011.06.002.

    Article  CAS  Google Scholar 

  29. Peerzade S, Qin X, Laroche FJF, Palantavida S, Dokukin M, Peng B, Feng H, Sokolov I. Ultrabright fluorescent silica nanoparticles for in vivo targeting of xenografted human tumors and cancer cells in zebrafish. Nanoscale. 2019;11:22316–27. https://doi.org/10.1039/c9nr06371d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li L, Guan Y, Liu H, Hao N, Liu T, Meng X, Fu C, Li Y, Qu Q, Zhang Y, et al. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano. 2011;5:7462–70. https://doi.org/10.1021/nn202399w.

    Article  CAS  PubMed  Google Scholar 

  31. Prabhakar N, Zhang J, Desai D, Casals E, Gulin-Sarfraz T, Näreoja T, Westermarck J, Rosenholm JM. Stimuli-responsive hybrid nanocarriers developed by controllable integration of hyperbranched PEI with mesoporous silica nanoparticles for sustained intracellular siRNA delivery. Int J Nanomedicine. 2016;11:6591–608. https://doi.org/10.2147/ijn.S120611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cai D, Han C, Liu C, Ma X, Qian J, Zhou J, Li Y, Sun Y, Zhang C, Zhu W. Chitosan-capped enzyme-responsive hollow mesoporous silica nanoplatforms for colon-specific drug delivery. Nanoscale Res Lett. 2020;15:123. https://doi.org/10.1186/s11671-020-03351-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao J, He Z, Li B, Cheng T, Liu G. AND logic-like pH- and light-dual controlled drug delivery by surface modified mesoporous silica nanoparticles.Mater Sci Eng C Mater Biol App.2017;73:1–7.https://doi.org/10.1016/j.msec.2016.12.056.

  34. Sahoo B, Devi KS, Dutta S, Maiti TK, Pramanik P, Dhara D. Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications. J Colloid Interface Sci. 2014;431:31–41. https://doi.org/10.1016/j.jcis.2014.06.003.

    Article  CAS  PubMed  Google Scholar 

  35. Shi S, Chen F, Goel S, Graves SA, Luo H, Theuer CP, Engle JW, Cai W. In vivo tumor-targeted dual-modality PET/optical imaging with a yolk/shell-structured silica nanosystem. Nano-micro letters. 2018;10:65. https://doi.org/10.1007/s40820-018-0216-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kamkaew A, Cheng L, Goel S, Valdovinos HF, Barnhart TE, Liu Z, Cai W. Cerenkov radiation induced photodynamic therapy using chlorin e6-loaded hollow mesoporous silica nanoparticles. ACS Appl Mater Interfaces. 2016;8:26630–7. https://doi.org/10.1021/acsami.6b10255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen F, Valdovinos HF, Hernandez R, Goel S, Barnhart TE, Cai W. Intrinsic radiolabeling of Titanium-45 using mesoporous silica nanoparticles. Acta Pharmacol Sin. 2017;38:907–13. https://doi.org/10.1038/aps.2017.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li X, Xing L, Zheng K, Wei P, Du L, Shen M, Shi X. Formation of gold nanostar-coated hollow mesoporous silica for tumor multimodality imaging and photothermal therapy. ACS Appl Mater Interfaces. 2017;9:5817–27. https://doi.org/10.1021/acsami.6b15185.

    Article  CAS  PubMed  Google Scholar 

  39. Wen J, Yang K, Ding X, Li H, Xu Y, Liu F, Sun S. In situ formation of homogeneous tellurium nanodots in paclitaxel-loaded MgAl layered double hydroxide gated mesoporous silica nanoparticles for synergistic chemo/PDT/PTT trimode combinatorial therapy. Inorg Chem. 2019;58:2987–96. https://doi.org/10.1021/acs.inorgchem.8b02821.

    Article  CAS  PubMed  Google Scholar 

  40. Yang G, Gong H, Liu T, Sun X, Cheng L, Liu Z. Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. Biomaterials. 2015;60:62–71. https://doi.org/10.1016/j.biomaterials.2015.04.053.

    Article  CAS  PubMed  Google Scholar 

  41. Xie J, Yang C, Liu Q, Li J, Liang R, Shen C, Zhang Y, Wang K, Liu L, Shezad K,et al. Encapsulation of hydrophilic and hydrophobic peptides into hollow mesoporous silica nanoparticles for enhancement of antitumor immune response. Small (Weinheim an der Bergstrasse, Germany). 2017;13.https://doi.org/10.1002/smll.201701741.

  42. Liu Q, Zhou Y, Li M, Zhao L, Ren J, Li D, Tan Z, Wang K, Li H, Hussain M, et al. Polyethylenimine hybrid thin-shell hollow mesoporous silica nanoparticles as vaccine self-adjuvants for cancer immunotherapy. ACS Appl Mater Interfaces. 2019;11:47798–809. https://doi.org/10.1021/acsami.9b19446.

    Article  CAS  PubMed  Google Scholar 

  43. Lee JY, Kim MK, Nguyen TL, Kim J. Hollow mesoporous silica nanoparticles with extra-large mesopores for enhanced cancer vaccine. ACS Appl Mater Interfaces. 2020;12:34658–66. https://doi.org/10.1021/acsami.0c09484.

    Article  CAS  PubMed  Google Scholar 

  44. Abbaraju PL, Jambhrunkar M, Yang Y, Liu Y, Lu Y, Yu C. Asymmetric mesoporous silica nanoparticles as potent and safe immunoadjuvants provoke high immune responses. Chem Commun (Camb). 2018;54:2020–3. https://doi.org/10.1039/c8cc00327k.

    Article  CAS  PubMed  Google Scholar 

  45. Nguyen TL, Cha BG, Choi Y, Im J, Kim J.Injectable dual-scale mesoporous silica cancer vaccine enabling efficient delivery of antigen/adjuvant-loaded nanoparticles to dendritic cells recruited in local macroporous scaffold. Biomaterials. 2020;239:119859.https://doi.org/10.1016/j.biomaterials.2020.119859.

  46. Wagner J, Gößl D, Ustyanovska N, Xiong M, Hauser D, Zhuzhgova O, Hočevar S, Taskoparan B, Poller L, Datz S, et al. Mesoporous silica nanoparticles as pH-responsive carrier for the immune-activating drug resiquimod enhance the local immune response in mice. ACS Nano. 2021;15:4450–66. https://doi.org/10.1021/acsnano.0c08384.

    Article  CAS  PubMed  Google Scholar 

  47. Yang Y, Tang J, Song H, Yang Y, Gu Z, Fu J, Liu Y, Zhang M, Qiao ZA, Yu C.Dendritic mesoporous silica nanoparticle adjuvants modified with binuclear aluminum complex: coordination chemistry dictates adjuvanticity. Angewandte Chemie (International ed. in English). 2020;59:19610–19617.https://doi.org/10.1002/anie.202006861.

  48. Breznan D, Das DD, MacKinnon-Roy C, Bernatchez S, Sayari A, Hill M, Vincent R, Kumarathasan P. Physicochemical properties can be key determinants of mesoporous silica nanoparticle potency in vitro. ACS Nano. 2018;12:12062–79. https://doi.org/10.1021/acsnano.8b04910.

    Article  CAS  PubMed  Google Scholar 

  49. Gallud A, Delaval M, Kinaret P, Marwah VS, Fortino V, Ytterberg J, Zubarev R, Skoog T, Kere J, Correia M,et al. Multiparametric profiling of engineered nanomaterials: unmasking the surface coating effect. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2020;7:2002221.https://doi.org/10.1002/advs.202002221.

  50. Kim IY, Joachim E, Choi H, Kim K. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomed Nanotechnol Biol Med. 2015;11:1407–16. https://doi.org/10.1016/j.nano.2015.03.004.

    Article  CAS  Google Scholar 

  51. Serpooshan V, Sheibani S, Pushparaj P, Wojcik M, Jang AY, Santoso MR, Jang JH, Huang H, Safavi-Sohi R, Haghjoo N, et al. Effect of cell sex on uptake of nanoparticles: the overlooked factor at the nanobio interface. ACS Nano. 2018;12:2253–66. https://doi.org/10.1021/acsnano.7b06212.

    Article  CAS  PubMed  Google Scholar 

  52. Yu T, Malugin A, Ghandehari H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano. 2011;5:5717–28. https://doi.org/10.1021/nn2013904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mohammadpour R, Dobrovolskaia MA, Cheney DL, Greish KF, Ghandehari H. Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Adv Drug Deliv Rev. 2019;144:112–32. https://doi.org/10.1016/j.addr.2019.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cai R, Chen C. The crown and the scepter: roles of the protein corona in nanomedicine. Adv Mater. 2019;31:e1805740.https://doi.org/10.1002/adma.201805740.

  55. Paula AJ, Araujo Júnior RT, Martinez DS, Paredes-Gamero EJ, Nader HB, Durán N, Justo GZ, Alves OL. Influence of protein corona on the transport of molecules into cells by mesoporous silica nanoparticles. ACS Appl Mater Interfaces. 2013;5:8387–93. https://doi.org/10.1021/am4014693.

    Article  CAS  PubMed  Google Scholar 

  56. Li H, Wang Y, Tang Q, Yin D, Tang C, He E, Zou L, Peng Q. The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomater. 2021;129:57–72. https://doi.org/10.1016/j.actbio.2021.05.019.

    Article  CAS  PubMed  Google Scholar 

  57. Shao D, Lu MM, Zhao YW, Zhang F, Tan YF, Zheng X, Pan Y, Xiao XA, Wang Z, Dong WF, et al. The shape effect of magnetic mesoporous silica nanoparticles on endocytosis, biocompatibility and biodistribution. Acta Biomater. 2017;49:531–40. https://doi.org/10.1016/j.actbio.2016.11.007.

    Article  CAS  PubMed  Google Scholar 

  58. Huang X, Li L, Liu T, Hao N, Liu H, Chen D, Tang F. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano. 2011;5:5390–9. https://doi.org/10.1021/nn200365a.

    Article  CAS  PubMed  Google Scholar 

  59. Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett. 2018;13:44. https://doi.org/10.1186/s11671-018-2457-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao Y, Sun X, Zhang G, Trewyn BG, Slowing II, Lin VS. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano. 2011;5:1366–75. https://doi.org/10.1021/nn103077k.

    Article  CAS  PubMed  Google Scholar 

  61. Hadipour Moghaddam SP, Mohammadpour R, Ghandehari H. In vitro and in vivo evaluation of degradation, toxicity, biodistribution, and clearance of silica nanoparticles as a function of size, porosity, density, and composition. J Control Release. 2019;311–312:1–15. https://doi.org/10.1016/j.jconrel.2019.08.028.

    Article  CAS  PubMed  Google Scholar 

  62. Mohammadpour R, Yazdimamaghani M, Cheney DL, Jedrzkiewicz J, Ghandehari H. Subchronic toxicity of silica nanoparticles as a function of size and porosity. J Control Release. 2019;304:216–32. https://doi.org/10.1016/j.jconrel.2019.04.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mohammadpour R, Cheney DL, Grunberger JW, Yazdimamaghani M, Jedrzkiewicz J, Isaacson KJ, Dobrovolskaia MA, Ghandehari H. One-year chronic toxicity evaluation of single dose intravenously administered silica nanoparticles in mice and their ex vivo human hemocompatibility. J Control Release. 2020;324:471–81. https://doi.org/10.1016/j.jconrel.2020.05.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yuan X, Peng S, Lin W, Wang J, Zhang L. Multistage pH-responsive mesoporous silica nanohybrids with charge reversal and intracellular release for efficient anticancer drug delivery. J Colloid Interface Sci. 2019;555:82–93. https://doi.org/10.1016/j.jcis.2019.07.061.

    Article  CAS  PubMed  Google Scholar 

  65. Elsaesser A, Howard CV. Toxicology of nanoparticles. Adv Drug Deliv Rev. 2012;64:129–37. https://doi.org/10.1016/j.addr.2011.09.001.

    Article  CAS  PubMed  Google Scholar 

  66. Oberdorster G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med. 2010;267:89–105. https://doi.org/10.1111/j.1365-2796.2009.02187.x.

    Article  CAS  PubMed  Google Scholar 

  67. Chou CC, Chen W, Hung Y, Mou CY. Molecular elucidation of biological response to mesoporous silica nanoparticles in vitro and in vivo. ACS Appl Mater Interfaces. 2017;9:22235–51. https://doi.org/10.1021/acsami.7b05359.

    Article  CAS  PubMed  Google Scholar 

  68. Corbo C, Molinaro R, Parodi A, Toledano Furman NE, Salvatore F, Tasciotti E. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine (Lond). 2016;11:81–100. https://doi.org/10.2217/nnm.15.188.

    Article  CAS  PubMed  Google Scholar 

  69. Oostingh GJ, Casals E, Italiani P, Colognato R, Stritzinger R, Ponti J, Pfaller T, Kohl Y, Ooms D, Favilli F, et al. Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects. Part Fibre Toxicol. 2011;8:8. https://doi.org/10.1186/1743-8977-8-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li Y, Boraschi D. Endotoxin contamination: a key element in the interpretation of nanosafety studies. Nanomedicine (Lond). 2016;11:269–87. https://doi.org/10.2217/nnm.15.196.

    Article  CAS  PubMed  Google Scholar 

  71. Gorbet MB, Sefton MV. Endotoxin: the uninvited guest. Biomaterials. 2005;26:6811–7. https://doi.org/10.1016/j.biomaterials.2005.04.063.

    Article  CAS  PubMed  Google Scholar 

  72. Vallhov H, Qin J, Johansson SM, Ahlborg N, Muhammed MA, Scheynius A, Gabrielsson S. The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Lett. 2006;6:1682–6. https://doi.org/10.1021/nl060860z.

    Article  CAS  PubMed  Google Scholar 

  73. Shi Y, Yadav S, Wang F, Wang H. Endotoxin promotes adverse effects of amorphous silica nanoparticles on lung epithelial cells in vitro. J Toxicol Environ Health A. 2010;73:748–56. https://doi.org/10.1080/15287391003614042.

    Article  CAS  PubMed  Google Scholar 

  74. Marcelo G, Ariana-Machado J, Enea M, Carmo H, Rodríguez-González B, Luis Capelo J, Lodeiro C, Oliveira E.Toxicological evaluation of luminescent silica nanoparticles as new drug nanocarriers in different cancer cell lines. Materials (Basel, Switzerland). 2018;11.https://doi.org/10.3390/ma11081310.

  75. Wu T, Zhang S, Liang X, He K, Wei T, Wang Y, Zou L, Zhang T, Xue Y, Tang M. The apoptosis induced by silica nanoparticle through endoplasmic reticulum stress response in human pulmonary alveolar epithelial cells. Toxicology in vitro : an international journal published in association with BIBRA. 2019;56:126–32. https://doi.org/10.1016/j.tiv.2019.01.009.

    Article  CAS  PubMed  Google Scholar 

  76. Helal-Neto E, de Barros AO, Saldanha-Gama R, Brandão-Costa R, Alencar LM, Dos Santos CC, Martínez-Máñez R, Ricci-Junior E, Alexis F, Morandi V,et al. Molecular and cellular risk assessment of healthy human cells and cancer human cells exposed to nanoparticles. Int J Mol Sci. 2019;21.https://doi.org/10.3390/ijms21010230.

  77. Di Giampaolo L, Zaccariello G, Benedetti A, Vecchiotti G, Caposano F, Sabbioni E, Groppi F, Manenti S, Niu Q, Poma AM,et al. Genotoxicity and immunotoxicity of titanium dioxide-embedded mesoporous silica nanoparticles (TiO(2)@MSN) in primary peripheral human blood mononuclear cells (PBMC). Nanomaterials (Basel, Switzerland). 2021;11.https://doi.org/10.3390/nano11020270.

  78. Braun K, Stürzel CM, Biskupek J, Kaiser U, Kirchhoff F, Lindén M. Comparison of different cytotoxicity assays for in vitro evaluation of mesoporous silica nanoparticles. Toxicology in vitro : an international journal published in association with BIBRA. 2018;52:214–21. https://doi.org/10.1016/j.tiv.2018.06.019.

    Article  CAS  PubMed  Google Scholar 

  79. Sweeney S, Adamcakova-Dodd A, Thorne PS, Assouline JG. Biocompatibility of multi-imaging engineered mesoporous silica nanoparticles: in vitro and adult and fetal in vivo studies. J Biomed Nanotechnol. 2017;13:544–58. https://doi.org/10.1166/jbn.2017.2369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Heidegger S, Gössl D, Schmidt A, Niedermayer S, Argyo C, Endres S, Bein T, Bourquin C. Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery. Nanoscale. 2016;8:938–48. https://doi.org/10.1039/c5nr06122a.

    Article  CAS  PubMed  Google Scholar 

  81. Wan X, Zhang X, Pan W, Liu B, Yu L, Wang H, Li N, Tang B. Ratiometric fluorescent quantification of the size-dependent cellular toxicity of silica nanoparticles. Anal Chem. 2019;91:6088–96. https://doi.org/10.1021/acs.analchem.9b00633.

    Article  CAS  PubMed  Google Scholar 

  82. Orlando A, Cazzaniga E, Tringali M, Gullo F, Becchetti A, Minniti S, Taraballi F, Tasciotti E, Re F. Mesoporous silica nanoparticles trigger mitophagy in endothelial cells and perturb neuronal network activity in a size- and time-dependent manner. Int J Nanomedicine. 2017;12:3547–59. https://doi.org/10.2147/ijn.S127663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pinto SR, Helal-Neto E, Paumgartten F, Felzenswalb I, Araujo-Lima CF, Martínez-Máñez R, Santos-Oliveira R. Cytotoxicity, genotoxicity, transplacental transfer and tissue disposition in pregnant rats mediated by nanoparticles: the case of magnetic core mesoporous silica nanoparticles. Artificial cells, nanomedicine, and biotechnology. 2018;46:527–38. https://doi.org/10.1080/21691401.2018.1460603.

    Article  CAS  PubMed  Google Scholar 

  84. Mohammadpour R, Yazdimamaghani M, Reilly CA, Ghandehari H. Transient receptor potential ion channel-dependent toxicity of silica nanoparticles and poly(amido amine) dendrimers. J Pharmacol Exp Ther. 2019;370:751–60. https://doi.org/10.1124/jpet.118.253682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li H, Wu X, Yang B, Li J, Xu L, Liu H, Li S, Xu J, Yang M, Wei M.Evaluation of biomimetically synthesized mesoporous silica nanoparticles as drug carriers: Structure, wettability, degradation, biocompatibility and brain distribution. Mater Sci Eng C Mater Biol App.2019;94:453–464.https://doi.org/10.1016/j.msec.2018.09.053.

  86. Ansari AA, Khan A, Labis JP, Alam M, Manthrammel MA, Ahamed M, Akhtar MJ, Aldalbahi A, Ghaithan HMesoporous multi-silica layer-coated Y(2)O(3):Eu core-shell nanoparticles: Synthesis, luminescent properties and cytotoxicity evaluation. Mater Sci Eng C Mater Biol App.2019;96:365–373.https://doi.org/10.1016/j.msec.2018.11.046.

  87. Tzankova V, Aluani D, Yordanov Y, Valoti M, Frosini M, Spassova I, Kovacheva D, Tzankov B. In vitro toxicity evaluation of lomefloxacin-loaded MCM-41 mesoporous silica nanoparticles. Drug Chem Toxicol. 2021;44:238–49. https://doi.org/10.1080/01480545.2019.1571503.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang X, Luan J, Chen W, Fan J, Nan Y, Wang Y, Liang Y, Meng G, Ju D. Mesoporous silica nanoparticles induced hepatotoxicity via NLRP3 inflammasome activation and caspase-1-dependent pyroptosis. Nanoscale. 2018;10:9141–52. https://doi.org/10.1039/c8nr00554k.

    Article  CAS  PubMed  Google Scholar 

  89. Chauhan S, Manivasagam G, Kumar P, Ambasta RK. Cellular toxicity of mesoporous silica nanoparticle in SHSY5Y and BMMNCs cell. Pharmaceutical nanotechnology. 2018;6:245–52. https://doi.org/10.2174/2211738506666181031160108.

    Article  CAS  PubMed  Google Scholar 

  90. Deng YD, Zhang XD, Yang XS, Huang ZL, Wei X, Yang XF, Liao WZ.Subacute toxicity of mesoporous silica nanoparticles to the intestinal tract and the underlying mechanism. J Hazard Mater. 2021;409:124502.https://doi.org/10.1016/j.jhazmat.2020.124502.

  91. Chen X, Zhu S, Hu X, Sun D, Yang J, Yang C, Wu W, Li Y, Gu X, Li M, et al. Toxicity and mechanism of mesoporous silica nanoparticles in eyes. Nanoscale. 2020;12:13637–53. https://doi.org/10.1039/d0nr03208e.

    Article  CAS  PubMed  Google Scholar 

  92. Paatero I, Casals E, Niemi R, Özliseli E, Rosenholm JM, Sahlgren C. Analyses in zebrafish embryos reveal that nanotoxicity profiles are dependent on surface-functionalization controlled penetrance of biological membranes. Sci Rep. 2017;7:8423. https://doi.org/10.1038/s41598-017-09312-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yu Y, Wang Z, Wang R, Jin J, Zhu YZ. Short-term oral administration of mesoporous silica nanoparticles potentially induced colon inflammation in rats through alteration of gut microbiota. Int J Nanomedicine. 2021;16:881–93. https://doi.org/10.2147/IJN.S295575.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Cabellos J, Gimeno-Benito I, Catalán J, Lindberg HK, Vales G, Fernandez-Rosas E, Ghemis R, Jensen KA, Atluri R, Vázquez-Campos S, et al. Short-term oral administration of non-porous and mesoporous silica did not induce local or systemic toxicity in mice. Nanotoxicology. 2020;14:1324–41. https://doi.org/10.1080/17435390.2020.1818325.

    Article  CAS  PubMed  Google Scholar 

  95. Mahmoud AM, Desouky EM, Hozayen WG, Bin-Jumah M, El-Nahass ES, Soliman HA, Farghali AA.Mesoporous silica nanoparticles trigger liver and kidney injury and fibrosis via altering TLR4/NF-κB, JAK2/STAT3 and Nrf2/HO-1 signaling in rats. Biomolecules. 2019;9.https://doi.org/10.3390/biom9100528.

  96. Hozayen WG, Mahmoud AM, Desouky EM, El-Nahass ES, Soliman HA, Farghali AA.Cardiac and pulmonary toxicity of mesoporous silica nanoparticles is associated with excessive ROS production and redox imbalance in Wistar rats. Biomed Pharmacotherapy = Biomedecine & Pharmacotherapie. 2019;109:2527–2538.https://doi.org/10.1016/j.biopha.2018.11.093.

  97. Li Z, Zhang Y, Feng N. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin Drug Deliv. 2019;16:219–37. https://doi.org/10.1080/17425247.2019.1575806.

    Article  CAS  PubMed  Google Scholar 

  98. Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J Control Release. 2016;240:332–48. https://doi.org/10.1016/j.jconrel.2016.01.020.

    Article  CAS  PubMed  Google Scholar 

  99. Guo C, Xia Y, Niu P, Jiang L, Duan J, Yu Y, Zhou X, Li Y, Sun Z. Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-kappaB signaling. Int J Nanomedicine. 2015;10:1463–77. https://doi.org/10.2147/IJN.S76114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. van der Zande M, Vandebriel RJ, Groot MJ, Kramer E, Herrera Rivera ZE, Rasmussen K, Ossenkoppele JS, Tromp P, Gremmer ER, Peters RJ, et al. Sub-chronic toxicity study in rats orally exposed to nanostructured silica. Part Fibre Toxicol. 2014;11:8. https://doi.org/10.1186/1743-8977-11-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cheng SH, Li FC, Souris JS, Yang CS, Tseng FG, Lee HS, Chen CT, Dong CY, Lo LW. Visualizing dynamics of sub-hepatic distribution of nanoparticles using intravital multiphoton fluorescence microscopy. ACS Nano. 2012;6:4122–31. https://doi.org/10.1021/nn300558p.

    Article  CAS  PubMed  Google Scholar 

  102. Lin SY, Hsu WH, Lo JM, Tsai HC, Hsiue GH. Novel geometry type of nanocarriers mitigated the phagocytosis for drug delivery. J Control Release. 2011;154:84–92. https://doi.org/10.1016/j.jconrel.2011.04.023.

    Article  CAS  PubMed  Google Scholar 

  103. Bertrand N, Leroux JC. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release. 2012;161:152–63. https://doi.org/10.1016/j.jconrel.2011.09.098.

    Article  CAS  PubMed  Google Scholar 

  104. Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y.Engineered nanoparticles for drug delivery in cancer therapy. Angewandte Chemie (International ed. in English). 2014;53:12320–12364.https://doi.org/10.1002/anie.201403036.

  105. Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, Brown BS, Khaled SZ, Yazdi IK, Enzo MV, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol. 2013;8:61–8. https://doi.org/10.1038/nnano.2012.212.

    Article  CAS  PubMed  Google Scholar 

  106. Anselmo AC, Gupta V, Zern BJ, Pan D, Zakrewsky M, Muzykantov V, Mitragotri S. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano. 2013;7:11129–37. https://doi.org/10.1021/nn404853z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Iavicoli I, Fontana L, Nordberg G. The effects of nanoparticles on the renal system. Crit Rev Toxicol. 2016;46:490–560. https://doi.org/10.1080/10408444.2016.1181047.

    Article  CAS  PubMed  Google Scholar 

  108. Chen X, Zhouhua W, Jie Z, Xinlu F, Jinqiang L, Yuwen Q, Zhiying H. Renal interstitial fibrosis induced by high-dose mesoporous silica nanoparticles via the NF-kappaB signaling pathway. Int J Nanomedicine. 2015;10:1–22. https://doi.org/10.2147/IJN.S73538.

    Article  PubMed  Google Scholar 

  109. Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: the phagocyte problem. Nano Today. 2015;10:487–510. https://doi.org/10.1016/j.nantod.2015.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cataldi M, Vigliotti C, Mosca T, Cammarota M, Capone D.Emerging role of the spleen in the pharmacokinetics of monoclonal antibodies, nanoparticles and exosomes. Int J Mol Sci. 2017;18.https://doi.org/10.3390/ijms18061249.

  111. Yu T, Hubbard D, Ray A, Ghandehari H. In vivo biodistribution and pharmacokinetics of silica nanoparticles as a function of geometry, porosity and surface characteristics. J Control Release. 2012;163:46–54. https://doi.org/10.1016/j.jconrel.2012.05.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Xie G, Sun J, Zhong G, Shi L, Zhang D. Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol. 2010;84:183–90. https://doi.org/10.1007/s00204-009-0488-x.

    Article  CAS  PubMed  Google Scholar 

  113. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51. https://doi.org/10.1016/j.addr.2015.09.012.

    Article  CAS  PubMed  Google Scholar 

  114. Hayes AJ, Bakand S. Toxicological perspectives of inhaled therapeutics and nanoparticles. Expert Opin Drug Metab Toxicol. 2014;10:933–47. https://doi.org/10.1517/17425255.2014.916276.

    Article  CAS  PubMed  Google Scholar 

  115. Li JJ, Muralikrishnan S, Ng CT, Yung LY, Bay BH. Nanoparticle-induced pulmonary toxicity Exp Biol Med (Maywood). 2010;235:1025–33. https://doi.org/10.1258/ebm.2010.010021.

    Article  CAS  PubMed  Google Scholar 

  116. Bakand S, Hayes A. Toxicological considerations, toxicity assessment, and risk management of inhaled nanoparticles. Int J Mol Sci. 2016;17.https://doi.org/10.3390/ijms17060929.

  117. Li J, Yang H, Sha S, Li J, Zhou Z, Cao Y.Evaluation of in vitro toxicity of silica nanoparticles (NPs) to lung cells: influence of cell types and pulmonary surfactant component DPPC. Ecotoxicol Environ Saf. 2019;186:109770.https://doi.org/10.1016/j.ecoenv.2019.109770.

  118. Kim D, Finkenstaedt-Quinn S, Hurley KR, Buchman JT, Haynes CL. On-chip evaluation of platelet adhesion and aggregation upon exposure to mesoporous silica nanoparticles. Analyst. 2014;139:906–13. https://doi.org/10.1039/c3an01679j.

    Article  CAS  PubMed  Google Scholar 

  119. Guo C, Liu Y, Li Y.Adverse effects of amorphous silica nanoparticles: focus on human cardiovascular health. J Hazard Mater. 2021;406:124626.https://doi.org/10.1016/j.jhazmat.2020.124626.

  120. Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, Lee KH, Park SB, Lee JK, Cho MH. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicological sciences : an official journal of the Society of Toxicology. 2006;89:338–47. https://doi.org/10.1093/toxsci/kfj027.

    Article  PubMed  Google Scholar 

  121. Brohi RD, Wang L, Talpur HS, Wu D, Khan FA, Bhattarai D, Rehman ZU, Farmanullah F, Huo LJ. Toxicity of nanoparticles on the reproductive system in animal models: a review. Front Pharmacol. 2017;8:606. https://doi.org/10.3389/fphar.2017.00606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Boraschi D, Costantino L, Italiani P. Interaction of nanoparticles with immunocompetent cells: nanosafety considerations. Nanomedicine (Lond). 2012;7:121–31. https://doi.org/10.2217/nnm.11.169.

    Article  CAS  PubMed  Google Scholar 

  123. Chen L, Liu J, Zhang Y, Zhang G, Kang Y, Chen A, Feng X, Shao L. The toxicity of silica nanoparticles to the immune system. Nanomedicine (Lond). 2018;13:1939–62. https://doi.org/10.2217/nnm-2018-0076.

    Article  PubMed  Google Scholar 

  124. Bancos S, Stevens DL, Tyner KM. Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro. Int J Nanomedicine. 2015;10:183–206. https://doi.org/10.2147/ijn.S72580.

    Article  CAS  PubMed  Google Scholar 

  125. Funes SC, Rios M, Escobar-Vera J, Kalergis AM. Implications of macrophage polarization in autoimmunity. Immunology. 2018;154:186–95. https://doi.org/10.1111/imm.12910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Miao X, Leng X, Zhang Q. The current state of nanoparticle-induced macrophage polarization and reprogramming research. Int J Mol Sci. 2017;18.https://doi.org/10.3390/ijms18020336.

  127. Liu S, Hao C, Bao L, Zhao D, Zhang H, Hou J, Wang D, Chen H, Feng F, Yao W. Silica particles mediate phenotypic and functional alteration of dendritic cells and induce Th2 cell polarization. Front Immunol. 2019;10:787. https://doi.org/10.3389/fimmu.2019.00787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lee K, Lee J, Kwak M, Cho YL, Hwang B, Cho MJ, Lee NG, Park J, Lee SH, Park JG, et al. Two distinct cellular pathways leading to endothelial cell cytotoxicity by silica nanoparticle size. J Nanobiotechnol. 2019;17:24. https://doi.org/10.1186/s12951-019-0456-4.

    Article  Google Scholar 

  129. Kim JH, Kim CS, Ignacio RM, Kim DH, Sajo ME, Maeng EH, Qi XF, Park SE, Kim YR, Kim MK, et al. Immunotoxicity of silicon dioxide nanoparticles with different sizes and electrostatic charge. Int J Nanomedicine. 2014;9(Suppl 2):183–93. https://doi.org/10.2147/ijn.S57934.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Guo C, Wang J, Jing L, Ma R, Liu X, Gao L, Cao L, Duan J, Zhou X, Li Y,et al. Mitochondrial dysfunction, perturbations of mitochondrial dynamics and biogenesis involved in endothelial injury induced by silica nanoparticles. Environ Poll (Barking, Essex : 1987). 2018;236:926–936.https://doi.org/10.1016/j.envpol.2017.10.060.

  131. Marzaioli V, Aguilar-Pimentel JA, Weichenmeier I, Luxenhofer G, Wiemann M, Landsiedel R, Wohlleben W, Eiden S, Mempel M, Behrendt H, et al. Surface modifications of silica nanoparticles are crucial for their inert versus proinflammatory and immunomodulatory properties. Int J Nanomedicine. 2014;9:2815–32. https://doi.org/10.2147/ijn.S57396.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lehman SE, Morris AS, Mueller PS, Salem AK, Grassian VH, Larsen SC. Silica nanoparticle-generated ROS as a predictor of cellular toxicity: mechanistic insights and safety by design. Environ Sci Nano. 2016;3:56–66. https://doi.org/10.1039/c5en00179j.

    Article  CAS  PubMed  Google Scholar 

  133. Abbaraju PL, Meka AK, Song H, Yang Y, Jambhrunkar M, Zhang J, Xu C, Yu M, Yu C. Asymmetric silica nanoparticles with tunable head-tail structures enhance hemocompatibility and maturation of immune cells. J Am Chem Soc. 2017;139:6321–8. https://doi.org/10.1021/jacs.6b12622.

    Article  CAS  PubMed  Google Scholar 

  134. An M, Yu C, Xi J, Reyes J, Mao G, Wei WZ, Liu H. Induction of necrotic cell death and activation of STING in the tumor microenvironment via cationic silica nanoparticles leading to enhanced antitumor immunity. Nanoscale. 2018;10:9311–9. https://doi.org/10.1039/c8nr01376d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Nguyen TL, Choi Y, Kim J.Mesoporous silica as a versatile platform for cancer immunotherapy. Adv Mater. 2019;31:e1803953.https://doi.org/10.1002/adma.201803953.

  136. Kumar A, Dhawan A. Genotoxic and carcinogenic potential of engineered nanoparticles: an update. Arch Toxicol. 2013;87:1883–900. https://doi.org/10.1007/s00204-013-1128-z.

    Article  CAS  PubMed  Google Scholar 

  137. Barnes CA, Elsaesser A, Arkusz J, Smok A, Palus J, Leśniak A, Salvati A, Hanrahan JP, Jong WH, Dziubałtowska E, et al. Reproducible comet assay of amorphous silica nanoparticles detects no genotoxicity. Nano Lett. 2008;8:3069–74. https://doi.org/10.1021/nl801661w.

    Article  CAS  PubMed  Google Scholar 

  138. Uboldi C, Giudetti G, Broggi F, Gilliland D, Ponti J, Rossi F. Amorphous silica nanoparticles do not induce cytotoxicity, cell transformation or genotoxicity in Balb/3T3 mouse fibroblasts. Mutat Res. 2012;745:11–20. https://doi.org/10.1016/j.mrgentox.2011.10.010.

    Article  CAS  PubMed  Google Scholar 

  139. Park MV, Verharen HW, Zwart E, Hernandez LG, van Benthem J, Elsaesser A, Barnes C, McKerr G, Howard CV, Salvati A, et al. Genotoxicity evaluation of amorphous silica nanoparticles of different sizes using the micronucleus and the plasmid lacZ gene mutation assay. Nanotoxicology. 2011;5:168–81. https://doi.org/10.3109/17435390.2010.506016.

    Article  CAS  PubMed  Google Scholar 

  140. Yan L, Zhao F, Wang J, Zu Y, Gu Z, Zhao Y.A safe-by-design strategy towards safer nanomaterials in nanomedicines. Adv Mater. 2019;31:e1805391.https://doi.org/10.1002/adma.201805391.

Download references

Funding

This work was financially supported by the Science and Technology Program of Guangzhou, China (NO.202103000089), the Guangdong Demonstration Base for Joint Cultivation of Postgraduates (2019), the Science Foundation for Distinguished Young Scholars of Guangdong (2020B1515020026), and the National Natural Science Foundation of China (21804025).

Author information

Authors and Affiliations

Authors

Contributions

The idea for the articles was created by Yue Tan. The literature searches and data analysis were done by Yue Tan. The article was drafted by Yue Tan. The article is critically reviewed and revised by Dawei Yu, Jiayao Feng, Huimin You, Yan Bai, Jincan He, Hua Cao, Qishi Che, Jiao Guo, and Zhengquan Su.

Corresponding author

Correspondence to Zhengquan Su.

Ethics declarations

Ethics approval and consent to participate

This is a review-type article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Yu, D., Feng, J. et al. Toxicity evaluation of silica nanoparticles for delivery applications. Drug Deliv. and Transl. Res. 13, 2213–2238 (2023). https://doi.org/10.1007/s13346-023-01312-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01312-z

Keywords

Navigation