Skip to main content

Advertisement

Log in

Bioprospecting of indigenous biosurfactant-producing oleophilic bacteria for green remediation: an eco-sustainable approach for the management of petroleum contaminated soil

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In the present study, the efficiency of four different strains of Pseudomonas aeruginosa and their biosurfactants in the bioremediation process were investigated. The strains were found to be capable of metabolizing a wide range of hydrocarbons (HCs) with preference for high molecular weight aliphatic (ALP) over aromatic (ARO) compounds. After treating with individual bacteria and 11 different consortia, the residual crude oils were quantified and qualitatively analyzed. The bacterial strains degraded ALP, ARO, and nitrogen, sulphur, oxygen (NSO) containing fractions of the crude oil by 73–67.5, 31.8–12.3 and 14.7–7.3%, respectively. Additionally, the viscosity of the residual crude oil reduced from 48.7 to 34.6–39 mPa s. Further, consortium designated as 7 and 11 improved the degradation of ALP, ARO, and NSO HCs portions by 80.4–78.6, 42.7–42.4 and 21.6–19.2%, respectively. Moreover, addition of biosurfactant further increased the degradation performance of consortia by 81.6–80.7, 43.8–42.6 and 22.5–20.7%, respectively. Gas chromatographic analysis confirmed the ability of the individual strains and their consortium to degrade various fractions of crude oil. Experiments with biosurfactants revealed that polyaromatic hydrocarbons (PAHs) are more soluble in the presence of biosurfactants. Phenanthrene had the highest solubility among the tested PAHs, which further increased as biosurfactant doses raised above their respective critical micelle concentrations (CMC). Furthermore, biosurfactants were able to recover 73.5–63.4% of residual oil from the sludge within their respective CMCs. Hence, selected surfactant-producing bacteria and their consortium could be useful in developing a greener and eco-sustainable way for removing crude oil pollutants from soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

This manuscript and its additional information files contain all of the data generated or analyzed during the study.

References

  • Abbasi H, Hamedi MM, Lotfabad TB, Zahiri HS, Sharafi H, Masoomi F, Moosavi-Movahedi AA, Ortiz A, Amanlou M, Noghabi KA (2012) Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant. J Biosci Bioeng 113(2):211–219

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NA (2009) Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20. Appl Biochem Biotechnol 157(2):329–345

    Article  PubMed  Google Scholar 

  • Abosede EE (2013) Effect of crude oil pollution on some soil physical properties. J Agric Vet Sci 6(3):14–17

    Google Scholar 

  • Adams PZ, Jackson PP (1996) Bioremediation of oil spill. Theory and Practice. In: Nigeria National Petroleum Corporation Publication, Department of Petroleum Resources, pp 3−10

  • Adebusoye SA, Ilori MO, Amund OO, Teniola OD, Olatope SO (2007) Microbial degradation of petroleum hydrocarbons in a polluted tropical stream. World J Microbiol Biotechnol 23(8):1149–1159

    Article  CAS  Google Scholar 

  • Ahmed F, Fakhruddin AN (2018) A review on environmental contamination of petroleum hydrocarbons and its biodegradation. J Environ Sci Nat Resour 11(3):1–7. https://doi.org/10.19080/IJESNR.2018.11.555811

    Article  Google Scholar 

  • Altomare DF, Di Lena M, Porcelli F, Trizio L, Travaglio E, Tutino M, Dragonieri S, Memeo V, De Gennaro G (2013) Exhaled volatile organic compounds identify patients with colorectal cancer. Br J Surg 100(1):144–150. https://doi.org/10.1002/bjs.8942

    Article  CAS  PubMed  Google Scholar 

  • Alzahrani AM, Rajendran P (2019) Petroleum hydrocarbon and living organisms. In: Ince M, Ince OK (eds) Hydrocarbon pollution and its effect on the environment. IntechOpen. https://doi.org/10.5772/intechopen.86948

  • Arjoon K, Speight JG (2020) Chemical and physical analysis of a petroleum hydrocarbon contamination on a soil sample to determine its natural degradation feasibility. Inventions 5(3):43. https://doi.org/10.3390/inventions5030043

    Article  Google Scholar 

  • Balachandran C, Duraipandiyan V, Balakrishna K, Ignacimuthu S (2012) Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERI-CPDA-1) isolated from oil contaminated soil. Bioresour Technol 112:83–90

    Article  CAS  PubMed  Google Scholar 

  • Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 65(6):2697–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharagava RN, Saxena G, Mulla SI (2020) Introduction to industrial wastes containing organic and inorganic pollutants and bioremediation approaches for environmental management. In: Saxena G, Bharagava R (eds) Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 1–18. https://doi.org/10.1007/978-981-13-1891-7_1

    Chapter  Google Scholar 

  • Bharali P, Konwar BK (2011) Production and physico-chemical characterization of a biosurfactant produced by Pseudomonas aeruginosa OBP1 isolated from petroleum sludge. Appl Biochem Biotechnol 164(8):1444–1460

    Article  CAS  PubMed  Google Scholar 

  • Bharali P, Singh SP, Yasir B, Nipu D, Konwar BK, Singh CB (2018) Characterization and assessment of biosurfactant producing indigenous hydrocarbonoclastic bacteria: potential application in bioremediation. Nova Biotechnol Chim 17(2):103–114

    Article  CAS  Google Scholar 

  • Brown PJ, Long SM, Spurgeon DJ, Svendsen C, Hankard PK (2004) Toxicological and biochemical responses of the earthworm Lumbricus rubellus to pyrene, a non-carcinogenic polycyclic aromatic hydrocarbon. Chemosphere 57(11):1675–1681

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotechnol 4(3):331–338

    Article  CAS  Google Scholar 

  • Chaerun SK, Tazaki K, Asada R, Kogure K (2005) Interaction between clay minerals and hydrocarbon-utilizing indigenous microorganisms in high concentrations of heavy oil: implications for bioremediation. Clay Miner 40(1):105–114. https://doi.org/10.1180/0009855054010159

    Article  CAS  Google Scholar 

  • Chhatre S, Purohit H, Shanker R, Khanna P (1996) Bacterial consortia for crude oil spill remediation. Water Sci Technol 34(10):187–193

    Article  CAS  Google Scholar 

  • Chirwa EM, Mampholo CT, Fayemiwo OM, Bezza FA (2017) Biosurfactant assisted recovery of the C5–C11 hydrocarbon fraction from oily sludge using biosurfactant producing consortium culture of bacteria. J Environ Manag 196:261–269

    Article  Google Scholar 

  • Contreras-Ramos SM, Alvarez-Bernal D, Dendooven L (2006) Eisenia fetida increased removal of polycyclic aromatic hydrocarbons from soil. Environ Pollut 141(3):396–401. https://doi.org/10.1016/j.envpol.2005.08.057

    Article  CAS  PubMed  Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere 72(9):1229–1234

    Article  CAS  PubMed  Google Scholar 

  • del Mar Sánchez-Peinado M, González-López J, Martínez-Toledo MV, Pozo C, Rodelas B (2010) Influence of linear alkylbenzene sulfonate (LAS) on the structure of Alphaproteobacteria, Actinobacteria, and Acidobacteria communities in a soil microcosm. Environ Sci Pollut Res 17(3):779–790

    Article  Google Scholar 

  • Déziel E, Lépine F, Dennie D, Boismenu D, Mamer OA, Villemur R (1999) Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta 1440(2–3):244–252

    Article  PubMed  Google Scholar 

  • Déziel E, Lépine F, Milot S, Villemur R (2000) Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochem Biophys Acta 1485(2–3):145–152

    PubMed  Google Scholar 

  • Eddouaouda K, Mnif S, Badis A, Younes SB, Cherif S, Ferhat S, Mhiri N, Chamkha M, Sayadi S (2012) Characterization of a novel biosurfactant produced by Staphylococcus sp. strain 1E with potential application on hydrocarbon bioremediation. J Basic Microbiol 52(4):408–418

    Article  CAS  PubMed  Google Scholar 

  • Etoumi A, El Musrati I, El Gammoudi B, El Behlil M (2008) The reduction of wax precipitation in waxy crude oils by Pseudomonas species. J Ind Microbiol Biotechnol 35(11):1241–1245

    Article  CAS  PubMed  Google Scholar 

  • Ghazali FM, Rahman RN, Salleh AB, Basri M (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeterior Biodegrad 54(1):61–67. https://doi.org/10.1016/j.ibiod.2004.02.002

    Article  CAS  Google Scholar 

  • Gudiña EJ, Pereira JF, Rodrigues LR, Coutinho JA, Teixeira JA (2012) Isolation and study of microorganisms from oil samples for application in microbial enhanced oil recovery. Int Biodeterior Biodegrad 68:56–64

    Article  Google Scholar 

  • Guo J, Feng R, Ding Y, Wang R (2014) Applying carbon dioxide, plant growth-promoting rhizobacterium and EDTA can enhance the phytoremediation efficiency of ryegrass in a soil polluted with zinc, arsenic, cadmium and lead. J Environ Manag 141:1–8

    Article  CAS  Google Scholar 

  • Hao R, Lu A, Zeng Y (2004) Effect on crude oil by thermophilic bacterium. Pet Sci Eng 43(3–4):247–258

    Article  CAS  Google Scholar 

  • Helmy Q, Kardena E, Nurachman Z (2010) Application of biosurfactant produced by Azotobacter vinelandii AV01 for enhanced oil recovery and biodegradation of oil sludge. Int J Civ Environ Eng 10:7–14

    Google Scholar 

  • Hu G, Feng H, He P, Li J, Hewage K, Sadiq R (2020) Comparative life-cycle assessment of traditional and emerging oily sludge treatment approaches. J Clean Prod 251:119594. https://doi.org/10.1016/j.jclepro.2019.119594

    Article  Google Scholar 

  • Hui K, Tang J, Lu H, Xi B, Qu C, Li J (2020) Status and prospect of oil recovery from oily sludge: a review. Arab J Chem 13(8):6523–6543. https://doi.org/10.1016/j.arabjc.2020.06.009

    Article  CAS  Google Scholar 

  • Iloba BN, Jarret IE (2007) Effect of crude oil spills and on the abundance and distribution of soil microartropods at different depths. Int J Zool Res 3(1):24–32

    Google Scholar 

  • Ji Y, Mao G, Wang Y, Bartlam M (2013) Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases. Front Microbiol 4:58. https://doi.org/10.3389/fmicb.2013.00058

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones JG, Edington MA (1968) An ecological survey of hydrocarbon-oxidizing micro-organisms. Microbiology 52(3):381–390

    CAS  Google Scholar 

  • Joseph PJ, Joseph A (2009) Microbial enhanced separation of oil from a petroleum refinery sludge. J Hazard Mater 161(1):522–525

    Article  CAS  PubMed  Google Scholar 

  • Karlapudi AP, Venkateswarulu TC, Tammineedi J, Kanumuri L, Ravuru BK, ramu Dirisala V, Kodali VP (2018) Role of biosurfactants in bioremediation of oil pollution—a review. Petroleum 4(3):241–249

    Article  Google Scholar 

  • Koshlaf E, Ball A (2017) Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS Microbiol 3(1):25–49. https://doi.org/10.3934/microbiol.2017.1.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krivoshto IN, Richards JR, Albertson TE, Derlet RW (2008) The toxicity of diesel exhaust: implications for primary care. J Am Board Fam Med 21(1):55–62

    Article  PubMed  Google Scholar 

  • Kum C, Sekkin S, Kiral F, Akar F (2007) Effects of xylene and formaldehyde inhalations on renal oxidative stress and some serum biochemical parameters in rats. Toxicol Ind Health 23(2):115–120

    Article  CAS  PubMed  Google Scholar 

  • Lal B, Khanna S (1996) Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J Appl Bacteriol 81(4):355–362

    CAS  PubMed  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Mol Biol Rev 54(3):305–315

    CAS  Google Scholar 

  • Lee DW, Lee H, Kwon BO, Khim JS, Yim UH, Kim BS, Kim JJ (2018) Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment. Environ Pollut 241:254–264

    Article  CAS  PubMed  Google Scholar 

  • Lipińska A, Kucharski J, Wyszkowska J (2013) Urease activity in soil contaminated with polycyclic aromatic hydrocarbons. Pol J Environ Stud 22(5):1393–1400

    Google Scholar 

  • Liu H, Xu J, Liang R, Liu J (2014) Characterization of the medium-and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes. PLoS One 9(8):e105506. https://doi.org/10.1371/journal.pone.0105506

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu C, Zhang Y, Sun S, Huang L, Yu L, Liu X, Lai R, Luo Y, Zhang Z, Zhang Z (2018) Oil recovery from tank bottom sludge using rhamnolipids. J Petrol Sci Eng 170:14–20

    Article  CAS  Google Scholar 

  • Liu C, Xu Q, Hu X, Zhang S, Zhang P, You Y (2020) Optimization of process parameters of rhamnolipid treatment of oily sludge based on response surface methodology. ACS Omega 5(45):29333–29341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotfabad TB, Shourian M, Roostaazad R, Najafabadi AR, Adelzadeh MR, Noghabi KA (2009) An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids Surf B Biointerface 69(2):183–193

    Article  CAS  Google Scholar 

  • Ma YL, Lu W, Wan LL, Luo N (2015) Elucidation of fluoranthene degradative characteristics in a newly isolated Achromobacter xylosoxidans DN002. Appl Biochem Biotechnol 175:1294–1305

    Article  CAS  PubMed  Google Scholar 

  • Makkar RS, Cameotra SS, Banat IM (2011) Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1(1):1–9

    Article  Google Scholar 

  • Mehdi H, Giti E (2008) Investigation of alkane biodegradation using the microtiter plate method and correlation between biofilm formation, biosurfactant production and crude oil biodegradation. Int Biodeterior Biodegrad 62(2):170–178

    Article  CAS  Google Scholar 

  • Mishra S, Sarma PM, Lal B (2004) Crude oil degradation efficiency of a recombinant Acinetobacter baumannii strain and its survival in crude oil-contaminated soil microcosm. FEMS Microbiol Lett 235(2):323–331

    Article  CAS  PubMed  Google Scholar 

  • Monteiro M, Moreira N, Pinto J, Pires-Luís AS, Henrique R, Jerónimo C, Bastos MD, Gil AM, Carvalho M, Guedes de Pinho P (2017) GC-MS metabolomics-based approach for the identification of a potential VOC-biomarker panel in the urine of renal cell carcinoma patients. J Cell Mol Med 21(9):2092–2105. https://doi.org/10.1111/jcmm.13132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller MM, Kügler JH, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, Syldatk C, Hausmann R (2012) Rhamnolipids—next generation surfactants? J Biotechnol 162(4):366–380

    Article  PubMed  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133(2):183–198

    Article  CAS  PubMed  Google Scholar 

  • Mulligan CN, Gibbs BF (2004) Types, production and applications of biosurfactants. Proc Indian Acad Sci Part B 70(1):31–56

    CAS  Google Scholar 

  • Muriel-Millán LF, Rodríguez-Mejía JL, Godoy-Lozano EE, Rivera-Gómez N, Gutierrez-Rios RM, Morales-Guzmán D, Trejo-Hernández MR, Estradas-Romero A, Pardo-López L (2019) Functional and genomic characterization of a Pseudomonas aeruginosa strain isolated from the southwestern Gulf of Mexico reveals an enhanced adaptation for long-chain alkane degradation. Front Mar Sci 6:572. https://doi.org/10.3389/fmars.2019.00572

    Article  Google Scholar 

  • Naik PR, Sakthivel N (2006) Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. strain PUP6 with plant-growth-promoting traits and antifungal potential. Res Microbiol 157(6):538–546

    Article  CAS  PubMed  Google Scholar 

  • Odukoya J, Lambert R, Sakrabani R (2019) Understanding the impacts of crude oil and its induced abiotic stresses on agrifood production: a review. Horticulturae 5(2):47. https://doi.org/10.3390/horticulturae5020047

    Article  Google Scholar 

  • Ordinioha B, Brisibe S (2013) The human health implications of crude oil spills in the Niger delta, Nigeria: an interpretation of published studies. Niger Med J J Niger Med Assoc 54(1):10–16. https://doi.org/10.4103/0300-1652.108887

    Article  Google Scholar 

  • Peng G, Hakim M, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Tisch U, Haick H (2010) Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer 103(4):542–551. https://doi.org/10.1038/sj.bjc.6605810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perfumo A, Banat IM, Canganella F, Marchant R (2006) Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Appl Microbiol Biotechnol 72(1):132–138

    Article  CAS  PubMed  Google Scholar 

  • Pi Y, Meng L, Bao M, Sun P, Lu J (2016) Degradation of crude oil and relationship with bacteria and enzymatic activities in laboratory testing. Int Biodeterior Biodegrad 106:106–116

    Article  CAS  Google Scholar 

  • Primeia S, Inoue C, Chien MF (2020) potential of biosurfactants’ production on degrading heavy oil by bacterial consortia obtained from tsunami-induced oil-spilled beach areas in Miyagi, Japan. J Mar Sci Eng 8(8):577. https://doi.org/10.3390/jmse8080577

    Article  Google Scholar 

  • Queiroga CL, Nascimento LR, Serra GE (2003) Evaluation of paraffins biodegradation and biosurfactant production by Bacillus subtilis in the presence of crude oil. Brazil J Microbiol 34(4):321–324

    Article  CAS  Google Scholar 

  • Ren H, Zhou S, Wang B, Peng L, Li X (2020) Treatment mechanism of sludge containing highly viscous heavy oil using biosurfactant. Colloids Surf A Physicochem Eng Asp 585:124117. https://doi.org/10.1016/j.colsurfa.2019.124117

    Article  CAS  Google Scholar 

  • Riihimäki V, Savolainen K (1980) Human exposure to m-xylene. Kinetics and acute effects on the central nervous system. Ann Occup Hyg 23(4):411–422

    PubMed  Google Scholar 

  • Rudyk S (2018) Relationships between SARA fractions of conventional oil, heavy oil, natural bitumen and residues. Fuel 216:330–340. https://doi.org/10.1016/j.fuel.2017.12.001

    Article  CAS  Google Scholar 

  • Saadoun IM (2015) Impact of oil spills on marine life. In: Larramendy M, Soloneski S (eds) Emerging pollutants in the environment-current and further implications. Intech, Croatia, pp 75–104. https://doi.org/10.5772/60455

    Chapter  Google Scholar 

  • Saikia RR, Deka S (2013) Removal of hydrocarbon from refinery tank bottom sludge employing microbial culture. Environ Sci Pollut Res 20(12):9026–9033. https://doi.org/10.1007/s11356-013-1888-2

    Article  CAS  Google Scholar 

  • Salihu A, Abdulkadir I, Almustapha MN (2009) An investigation for potential development on biosurfactants. Biotechnol Mol Biol Rev 4(5):111–117

    CAS  Google Scholar 

  • Shao Z, Wang W (2013) Enzymes and genes involved in aerobic alkane degradation. Front Microbiol 4:116. https://doi.org/10.3389/fmicb.2013.00116

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma SL, Pant A (2000) Biodegradation and conversion of alkanes and crude oil by a marine Rhodococcus. Biodegradation 11(5):289–294

    Article  CAS  PubMed  Google Scholar 

  • She YH, Zhang F, Xia JJ, Kong SQ, Wang ZL, Shu FC, Hu JM (2011) Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding. Appl Biochem Biotechnol 163(2):223–234

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui S, Adams WA (2002) The fate of diesel hydrocarbons in soils and their effect on the germination of perennial ryegrass. Environ Toxicol 17(1):49–62. https://doi.org/10.1002/tox.10032

    Article  CAS  PubMed  Google Scholar 

  • Sierra-Garcia IN, de Oliveira VM (2013) Microbial hydrocarbon degradation: efforts to understand biodegradation in petroleum reservoirs. In: Chamy R, Rosenkranz F (eds) Biodegradation−engineering and technology, vol 10, p 55920. IntechOpen, London. https://doi.org/10.5772/55920

    Chapter  Google Scholar 

  • Smits TH, Balada SB, Witholt B, Van Beilen JB (2002) Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. J Bacteriol 184(6):1733–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urum K, Pekdemir T (2004) Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere 57(9):1139–1150

    Article  CAS  PubMed  Google Scholar 

  • Viamajala S, Peyton BM, Richards LA, Petersen JN (2007) Solubilization, solution equilibria, and biodegradation of PAH’s under thermophilic conditions. Chemosphere 66(6):1094–1106

    Article  CAS  PubMed  Google Scholar 

  • Vinas M, Grifoll M, Sabaté J, Solanas AM (2002) Biodegradation of a crude oil by three microbial consortia of different origins and metabolic capabilities. J Ind Microbiol Biotechnol 28(5):252–260

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Chen S, Wang Z (2014) Electrophysiological follow-up of patients with chronic peripheral neuropathy induced by occupational intoxication with n-hexane. Cell Biochem Biophys 70(1):579–585

    Article  CAS  PubMed  Google Scholar 

  • Wongsa P, Tanaka M, Ueno A, Hasanuzzaman M, Yumoto I, Okuyama H (2004) Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens possessing high efficiency to degrade gasoline, kerosene, diesel oil, and lubricating oil. Curr Microbiol 49(6):415–422

    Article  CAS  PubMed  Google Scholar 

  • Wyrwas B, Chrzanowski Ł, Ławniczak Ł, Szulc A, Cyplik P, Białas W, Szymański A, Hołderna-Odachowska A (2011) Utilization of Triton X-100 and polyethylene glycols during surfactant-mediated biodegradation of diesel fuel. J Hazard Mater 197:97–103

    Article  CAS  PubMed  Google Scholar 

  • Yan P, Lu M, Yang Q, Zhang HL, Zhang ZZ, Chen R (2012) Oil recovery from refinery oily sludge using a rhamnolipid biosurfactant-producing Pseudomonas. Bioresour Technol 116:24–28

    Article  CAS  PubMed  Google Scholar 

  • Yasin G, Bhanger MI, Ansari TM, Naqvi SM, Ashraf M, Ahmad K, Talpur FN (2013) Quality and chemistry of crude oils. J Pet Technol Altern Fuels 4(3):53–63. https://doi.org/10.5897/JPTAF12.025

    Article  CAS  Google Scholar 

  • Yin H, Qiang J, Jia Y, Ye J, Peng H, Qin H, Zhang N, He B (2009) Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochem 44(3):302–308

    Article  CAS  Google Scholar 

  • Yu Y, Zhang Y, Zhao N, Guo J, Xu W, Ma M, Li X (2020) Remediation of crude oil-polluted soil by the bacterial rhizosphere community of Suaeda Salsa revealed by 16S rRNA genes. Int J Environ Res Public Health 17(5):1471. https://doi.org/10.3390/ijerph17051471

    Article  CAS  PubMed Central  Google Scholar 

  • Zhan X, Wu W, Zhou L, Liang J, Jiang T (2010) Interactive effect of dissolved organic matter and phenanthrene on soil enzymatic activities. J Environ Sci 22(4):607–614

    Article  CAS  Google Scholar 

  • Zhang GL, Wu YT, Qian XP, Meng Q (2005) Biodegradation of crude oil by Pseudomonas aeruginosa in the presence of rhamnolipids. J Zhejiang Univ Sci Biol 6(8):725–730. https://doi.org/10.1631/jzus.2005.B0725

    Article  CAS  Google Scholar 

  • Zhang X, Liu Z, Luc NT, Yu Q, Liu X, Liang X (2016) Impacts of soil petroleum contamination on nutrient release during litter decomposition of Hippophae rhamnoides. Environ Sci Proc Impact 18(3):398–405

    Article  CAS  Google Scholar 

Download references

Funding

PB acknowledges ONGC, India for the fellowship and funding the research (Sanction number: ONGCA/CHAIRS/PU/2010-Dated 31-03-2010 for the year 2009–2014).

Author information

Authors and Affiliations

Authors

Contributions

PB, YB, AR, ND, PM designed the experiments, analyzed the data. PB, YB, AR, ND, PM, conducted most of the experiments. VS, AT, VV, PDN, BKK provided the experimental materials and performed few experiments. PB, BKK, YB, AT, VS, AR wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Pranjal Bharali.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

The authors agreed and gave their permission for the manuscript to be published.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharali, P., Bashir, Y., Ray, A. et al. Bioprospecting of indigenous biosurfactant-producing oleophilic bacteria for green remediation: an eco-sustainable approach for the management of petroleum contaminated soil. 3 Biotech 12, 13 (2022). https://doi.org/10.1007/s13205-021-03068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-03068-0

Keywords

Navigation