Skip to main content
Log in

Selective suspension of single layer graphene mechanochemically exfoliated from carbon nanofibres

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

This paper presents the first report of the successful ball-milling exfoliation of graphitic filaments (GANF® carbon nanofibres) into single layer graphene. The addition of small amounts of solvent during the milling process makes it possible to enhance the intercalation of the exfoliating agent (melamine) between the graphene layers, thus promoting exceptional exfoliation. Advantage has also been taken of the fact that the Hansen solubility parameters of graphene are different from those of carbon fibres, which allows single and few-layer graphene to be suspended in a particular solvent, thus discriminating them from poorly exfoliated carbon nanofibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stankovich, S.; Dikin, A. D.; Dommett, H. B. G.; Kohlhaas, M. K.; Zimney, J. E.; Stach, A. E.; Piner, D. R.; Nguyen, T. S.; Ruoff, S. R. Graphene-based composite materials. Nature 2006, 442, 282–286.

    Article  Google Scholar 

  2. Bitounis, D.; Ali-Boucetta, H.; Hong, B. H.; Min, D.-H.; Kostarelos, K. Prospects and challenges of graphene in biomedical applications. Adv. Mater. 2013, 25, 2258–2268.

    Article  Google Scholar 

  3. Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622.

    Article  Google Scholar 

  4. Avouris, P.; Marcus, F.; Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nat. Photonics 2008, 2, 341–350.

    Article  Google Scholar 

  5. Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 2006, 313, 951–954.

    Article  Google Scholar 

  6. Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.

    Article  Google Scholar 

  7. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  8. Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620.

    Article  Google Scholar 

  9. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K.; Coleman, J. N.; et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

    Article  Google Scholar 

  10. León, V.; Quintana, M.; Herrero, M. A.; Fierro, J. L. G.; de la Hoz, A.; Prato, M.; Vázquez, E. Few-layer graphenes from ball-milling of graphite with melamine. Chem. Commun. 2011, 47, 10936–10938.

    Article  Google Scholar 

  11. Jia, G.; Wang, H.; Yan, L.; Wang, X.; Pei, R.; Yan, T.; Zhao, Y.; Guo, X. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 2005, 39, 1378–1383.

    Article  Google Scholar 

  12. Quintana, M.; Grzelczak, M.; Spyrou, K.; Kooi, B.; Bals, S.; Van Tendeloo, G.; Rudolf, P.; Prato, M. Production of large graphene sheets by exfoliation of graphite under high power ultrasound in the presence of tiopronin. Chem. Commun. 2012, 48, 12159–12161.

    Article  Google Scholar 

  13. Novoselov, K. S.; Geim, A. K.; Morozov, S. V, Jiang, D.; Zhang, Y.; Dubonos, S. V, Grigorieva, I. V, Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  14. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

    Article  Google Scholar 

  15. Gómez-Navarro, C.; Meyer, J. C.; Sundaram, R.S.; Chuvilin, A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U. Atomic structure of reduced graphene oxide. Nano Lett. 2010, 10, 1144–1148.

    Article  Google Scholar 

  16. Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K.; Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499–3503.

    Article  Google Scholar 

  17. León, V.; Rodriguez, A. M.; Prieto, P.; Prato, M.; Vázquez, E. Exfoliation of graphite with triazine derivatives under ball-milling conditions: Preparation of few-layer graphene via selective noncovalent interactions. ACS Nano 2014, 8, 563–571.

    Article  Google Scholar 

  18. Jeon, I.-Y.; Choi, H.-J.; Jung, S.-M.; Seo, J.-M.; Kim, M.-J.; Dai, L.; Baek, J.-B. Large-Scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 1386–1393.

    Article  Google Scholar 

  19. Zhao, W.; Wu, F.; Wu, H.; Chen, G. Preparation of colloidal dispersions of graphene sheets in organic solvents by using ball milling. J. Nanomater. 2010, 6, 528235.

    Google Scholar 

  20. Liu, L.; Xiong, D. Z.; Hu, D.; Wu, G.; Chen, P. Production of high quality single-or few-layered graphene by solid exfoliation of graphite in the presence of ammonia borane. Chem. Commun. 2013, 49, 7890–7892.

    Article  Google Scholar 

  21. Aparna, R.; Sivakumar, N.; Balakrishnan, A.; Nair, A. S.; Nair, S. V.; Subramanian, K. R. V. An effective route to produce few-layer graphene using combinatorial ball milling and strong aqueous exfoliants. J. Renew. Sustain. Energy 2013, 5, 033123.

    Article  Google Scholar 

  22. Yi, M.; Shen, Z.; Zhang, X.; Ma, S. Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters. J. Phys. D. Appl. Phys. 2013, 46, 25301–25309.

    Article  Google Scholar 

  23. Bergin, S. D.; Sun, Z.; Rickard, D.; Streich, P. V, Hamilton, J. P.; Coleman, J. N. Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures. ACS Nano 2009, 3, 2340–2350.

    Article  Google Scholar 

  24. Coleman, J. N. Liquid exfoliation of defect-free graphene. Acc. Chem. Res. 2013, 46, 14–22.

    Article  Google Scholar 

  25. Coleman, J. N. Liquid-phase exfoliation of nanotubes and graphene. Adv. Funct. Mater. 2009, 19, 3680–3695.

    Article  Google Scholar 

  26. Hernandez, Y.; Lotya, M.; Rickard, D.; Bergin, S. D.; Coleman, J. N. Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 2010, 26, 3208–32013.

    Article  Google Scholar 

  27. Tibbetts, G. G.; Gorkiewicz, D. W.; Alig, R. L. A new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbons. Carbon 1993, 31, 809–814.

    Article  Google Scholar 

  28. Weisenberger, M.; Martin-Gullon, I.; Vera-Agullo, J.; Varela-Rizo, H.; Merino, C.; Andrews, R.; Qian, D.; Rantell, T. The effect of graphitization temperature on the structure of helical-ribbon carbon nanofibers. Carbon 2009, 47, 2211–2218.

    Article  Google Scholar 

  29. Bergin, S. D.; Nicolosi, V.; Streich, P. V.; Giordani, S.; Sun, Z.; Windle, A. H.; Ryan, P.; Niraj, N. P. P.; Wang, Z.-T. T.; Carpenter, L.; et al. Towards solutions of single-walled carbon nanotubes in common solvents. Adv. Mater. 2008, 20, 1876–1881.

    Article  Google Scholar 

  30. Abbott, S.; Hansen, C. M.; Yamamoto, H. Hansen Solubility Parameters in Practice; Hansen-solubility.com, 2008.

    Google Scholar 

  31. Lyklema, J. The surface tension of pure liquids: Thermodynamic components and corresponding states. Colloids Surf. A 1999, 156, 413–421.

    Article  Google Scholar 

  32. Tsierkezos, N. G.; Filippou, A. C. Thermodynamic investigation of N,N-dimethylformamide/toluene binary mixtures in the temperature range from 278.15 to 293.15 K. J. Chem. Thermodyn. 2006, 38, 952–961.

    Article  Google Scholar 

  33. Hansen, C. M. Hansen Solubility Parameters-A User’s Handbook; CRC Press: Boca Raton, Fl. 2007.

    Book  Google Scholar 

  34. Brandão, S. D. F.; Andrada, D.; Mesquita, A. F.; Santos, A. P.; Gorgulho, H. F.; Paniago, R.; Pimenta, M. A.; Fantini, C.; Furtado, C. A. The influence of oxygen-containing functional groups on the dispersion of single-walled carbon nanotubes in amide solvents. J. Phys. Condens. Matter 2010, 22, 334222.

    Article  Google Scholar 

  35. Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Rouzaud, J.-N.; Martínez-Alonso, A.; Tascón, J. M. D. Discovery of effective solvents for platelet-type graphite nanofibers. Carbon 2013, 53, 222–230.

    Article  Google Scholar 

  36. Casiraghi, C.; Pisana, S.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 2007, 91, 233108.

    Article  Google Scholar 

  37. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  Google Scholar 

  38. Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L.; Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 2007, 7, 238–242.

    Article  Google Scholar 

  39. Mao, H. Y.; Lu, Y. H.; Lin, J. D.; Zhong, S.; Wee, A. T. S.; Chen, W. Manipulating the electronic and chemical properties of graphene via molecular functionalization. Prog. Surf. Sci. 2013, 88, 132–159.

    Article  Google Scholar 

  40. Zhang, W.; Lin, C.-T.; Liu, K.-K.; Tite, T.; Su, C.-Y.; Chang, C.-H.; Lee, Y.-H.; Chu, C.-W.; Wei, K.-H.; Kuo, J.-L.; et al. Opening an electrical band gap of bilayer graphene with molecular doping. ACS Nano 2011, 5, 7517–7524.

    Article  Google Scholar 

  41. Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

    Article  Google Scholar 

  42. Friščić, T. New opportunities for materials synthesis using mechanochemistry. J. Mater. Chem. 2010, 20, 7599–7605.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ester Vázquez.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Rio-Castillo, A.E., Merino, C., Díez-Barra, E. et al. Selective suspension of single layer graphene mechanochemically exfoliated from carbon nanofibres. Nano Res. 7, 963–972 (2014). https://doi.org/10.1007/s12274-014-0457-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0457-4

Keywords

Navigation