Skip to main content
Log in

Quick and easy process for producing graphene material in liquid phase using high-power-density ultrasonication technique for preparing high microhardness nickel/graphene composite coating

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, we present a rapid and straightforward method for producing graphene material in the liquid phase using a high-power-density ultrasonication technique. The graphene exfoliation process was considered with varying ultrasonication times, ranging from 1 to 5 h. The obtained results indicated that graphene nanoflakes, exfoliated under a power density of 1600 W/L for a short duration (5 h), exhibited a thickness of fewer than 10 layers, with an average flake size of ~ 300 nm. The production yield measured 30.6 mg h−1, and the dispersed concentration reached 0.459 mg ml−1. Furthermore, the exfoliated graphene nanoflakes displayed remarkable stability, as evidenced by a zeta potential value exceeding 30 mV. The resulting graphene material was used directly as a reinforcing element in nickel electroplating without the need for any additional surface modification steps. The results demonstrated a significant 53% increase in microhardness compared to the nickel coating. Structural characterizations of the few-layers graphene and nanocomposite coatings were elaborately investigated and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al 2008 Nano Lett. 8 902

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Stoller M D, Park S, Zhu Y, An J and Ruoff R S 2008 Nano Lett. 8 3498

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T et al 2008 Science 320 1308

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J et al 2008 Solid State Commun. 146 351

    Article  ADS  CAS  Google Scholar 

  5. Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V et al 2005 Nature 438 197

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Dai J F, Wang G J, Ma L and Wu C K 2015 Rev. Adv. Mater. Sci. 40 60

    CAS  Google Scholar 

  8. Papageorgiou D G, Kinloch I A and Young R J 2017 Prog. Mater. Sci. 90 75

    Article  CAS  Google Scholar 

  9. Li J, Niu L, Zheng Z and Yan F 2014 Adv. Mater. 26 5239

    Article  CAS  PubMed  Google Scholar 

  10. Sensale-Rodriguez B, Fang T, Yan R, Kelly M M, Jena D, Liu L et al 2011 Appl. Phys. Lett. 99 113104

    Article  ADS  Google Scholar 

  11. Shelke M V, Gullapalli H, Kalaga K, Rodrigues M T F, Devarapalli R R, Vajtai R et al 2017 Adv. Mater. Interfaces 4 1601043

    Article  Google Scholar 

  12. Strauss V, Marsh K, Kowal M D, El-Kady M and Kaner R B 2018 Adv. Mater. 30 1704449

    Article  Google Scholar 

  13. Duoc P N D, Binh N H, Hau T V, Thanh C T, Trinh P V, Tuyen N V et al 2020 J. Hazard. Mater. 400 123185

    Article  CAS  PubMed  Google Scholar 

  14. Hau T V, Trinh P V, Nam N P H, Tu N V, Lam V D, Phuong D D et al 2020 RSC Adv. 10 22080

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  15. Anh N N, Chuc N V, Thang B H, Nhat P V, Hao N, Phuong D D et al 2020 Global Chall. 4 2000010

    Article  Google Scholar 

  16. Rafiee M A, Rafiee J, Wang Z, Song H, Yu Z and Koratkar N 2009 ACS Nano 3 3884

    Article  CAS  PubMed  Google Scholar 

  17. Tung D T, Tam L T T, Dung H T, Dung N T, Hong P N, Nguyet H M et al 2021 Electrochim. Acta 392 138992

    Article  CAS  Google Scholar 

  18. Teng C, Xie D, Wang J, Yang Z, Ren G and Zhu Y 2017 Adv. Funct. Mater. 27 1700240

    Article  Google Scholar 

  19. Lee H, Bratescu M A, Ueno T and Saito N 2014 RSC Adv. 4 51758

    Article  ADS  CAS  Google Scholar 

  20. Su C Y, Lu A Y, Xu Y, Chen F R, Khlobystov A N and Li L 2011 ACS Nano 5 2332

    Article  CAS  PubMed  Google Scholar 

  21. Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S et al 2008 Nat. Nanotechnol. 3 563

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Hamilton C E, Lomeda J R, Sun Z, Tour J M and Barron A R 2009 Nano Lett. 9 3460

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Bourlinos A B, Georgakilas V, Zboril R, Steriotis T A and Stubos A K 2009 Small 5 1841

    Article  CAS  PubMed  Google Scholar 

  24. Guardia L, Fernández-Merino M, Paredes J, Solís-Fernández P, Villar-Rodil S, Martínez-Alonso A et al 2011 Carbon 49 1653

    Article  CAS  Google Scholar 

  25. Bourlinos A B, Georgakilas V, Zboril R, Steriotis T A, Stubos A K and Trapalis C 2009 Solid State Commun. 149 2172

    Article  ADS  CAS  Google Scholar 

  26. Parviz D, Das S, Ahmed H T, Irin F, Bhattacharia S and Green M J 2012 ACS Nano 6 8857

    Article  CAS  PubMed  Google Scholar 

  27. Khan U, O’Neill A, Lotya M, De S and Coleman J N 2010 Small 6 864

    Article  CAS  PubMed  Google Scholar 

  28. Amiri A, Shanbedi M, Ahmadi G, Eshghi H, Kazi S, Chew B et al 2016 Sci. Rep. 6 1

    Article  Google Scholar 

  29. Jiang W, Li X, Chen Y, Li H, Shen L, Chen Y et al 2022 Surf. Topogr. Metrol. Prop. 10 015048

    Article  ADS  CAS  Google Scholar 

  30. Xiang L, Shen Q, Zhang Y, Bai W and Nie C 2019 Surf. Coat. Technol. 373 38

    Article  CAS  Google Scholar 

  31. Hassannejad H, Nouri A, Farrokhi-Rad M and Molavi F K 2020 Carbon Lett. 30 63

    Article  Google Scholar 

  32. Hau T V, Trinh P V, Nam N P H, Lam V D, Minh P N and Thang B H 2019 Mater. Res. Express 6 0850c4

    Article  Google Scholar 

  33. Hau T V, Trinh P V, Tu N V, Duoc P N D, Phuong M T, Toan N X et al 2021 Appl. Nanosci. 11 1481

    Article  ADS  Google Scholar 

  34. Li Z, Young R J, Backes C, Zhao W, Zhang X, Zhukov A A et al 2020 ACS Nano 14 10976

    Article  CAS  PubMed  Google Scholar 

  35. Pilli S, Bhunia P, Yan S, LeBlanc R J, Tyagi R D and Surampalli R Y 2021 Ultrason. Sonochem. 18 1

    Article  Google Scholar 

  36. Onyeche T I, Schläfer O, Bormann H, Schröder C and Sievers M 2002 Ultrasonics 40 31

    Article  CAS  PubMed  Google Scholar 

  37. Gogate P R and Kabadi A M 2009 Biochem. Eng. J. 44 60

    Article  CAS  Google Scholar 

  38. Lin Z, Karthik P S, Hada M, Nishikawa T and Hayashi Y 2017 Nanomaterials 7 125

    Article  PubMed  PubMed Central  Google Scholar 

  39. Han J T, Jang J I, Kim H, Hwang J Y, Yoo H K, Woo J S et al 2014 Sci. Rep. 4 5133

    Article  PubMed  PubMed Central  Google Scholar 

  40. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V et al 2009 Nano Lett. 9 30

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Dong X, Wang P, Fang W, Su C Y, Chen Y H, Li L J et al 2011 Carbon 49 3672

    Article  CAS  Google Scholar 

  42. Roscher S, Hoffmann R and Ambacher O 2019 Anal. Meth. 11 1224

    Article  CAS  Google Scholar 

  43. Liu L, Xiong Z, Hu D, Wu G and Chen P 2013 Chem. Commun. 49 7890

    Article  CAS  Google Scholar 

  44. Lv Y, Yu L, Jiang C, Chen S and Nie Z 2014 RSC Adv. 4 13350

    Article  ADS  CAS  Google Scholar 

  45. Trinh P V, Anh N N, Hong N T, Hong P N, Minh P N and Thang B H 2018 J. Mol. Liq. 269 344

    Article  ADS  Google Scholar 

  46. Ghadimi A, Saidur R and Metselaar H 2011 Int. J. Heat Mass Transf. 54 4051

    Article  CAS  Google Scholar 

  47. Ivall J, Langlois-Rahme G, Coulombe S and Servio P 2016 Nanotechnology 28 055702

    Article  ADS  PubMed  Google Scholar 

  48. Chen J, Li J, Xiong D, He Y, Ji Y and Qin Y J A S S 2016 Appl. Surf. Sci. 361 49

    Article  ADS  CAS  Google Scholar 

  49. Liu X D, Nagumo M and Umemoto M 1997 Mater. Trans. 38 1033

    Article  Google Scholar 

  50. Green A A and Hersam M C 2009 Nano Lett. 9 4031

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Choi E Y, San W, Lee Y B and Noh Y Y 2011 Nanotechnology 22 365601

    Article  PubMed  Google Scholar 

  52. Chabot V, Kim B, Sloper B, Tzoganakis C and Yu A 2013 Sci. Rep. 3 1

    Article  Google Scholar 

  53. Lotya M, King P J, Khan U, De S and Coleman J N 2010 ACS Nano 4 3155

    Article  CAS  PubMed  Google Scholar 

  54. Yi M, Shen Z, Zhang X and Ma S 2012 J. Mater. Sci. 47 8234

    Article  ADS  CAS  Google Scholar 

  55. Sanna R, Sanna D, Alzari V, Nuvoli D, Scognamillo S, Piccinini M et al 2012 J. Polym. Sci.. Part A Polym Chem. 50 4110

    Article  ADS  CAS  Google Scholar 

  56. Döbbelin M, Ciesielski A, Haar S, Osella S, Bruna M, Minoia A et al 2016 Nat. Commun. 7 1

    Article  Google Scholar 

  57. De S, King P J, Lotya M, O’Neill A, Doherty E M, Hernandez Y et al 2010 Small 6 458

    Article  CAS  PubMed  Google Scholar 

  58. Overgaard M H, Kühnel M, Hvidsten R, Petersen S V, Vosch T, Nørgaard K et al 2017 Adv. Mater. Technol. 2 1700011

    Article  Google Scholar 

  59. Torrisi F, Hasan T, Wu W, Sun Z, Lombardo A, Kulmala T S et al 2012 ACS Nano 6 2992

    Article  CAS  PubMed  Google Scholar 

  60. Buzaglo M, Shtein M, Kober S, Lovrinčić R, Vilan A and Regev O 2013 Phys. Chem. Chem. Phys. 15 4428

    Article  CAS  PubMed  Google Scholar 

  61. Liu W, Tanna V A, Yavitt B M, Dimitrakopoulos C and Winter H H 2015 ACS Appl. Mater. Interfaces 7 27027

    Article  CAS  PubMed  Google Scholar 

  62. Yi M, Shen Z, Zhang X and Ma S 2012 J. Phys. D Appl. Phys. 46 025301

    Article  ADS  Google Scholar 

  63. Gayathri S, Jayabal P, Kottaisamy M and Ramakrishnan V 2014 AIP Adv. 4 027116

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The research was financially supported by Ministry of Science and Technology of Vietnam (MOST) under project coded NĐT/BY/22/10 and Institute of Materials Science, VAST under Project No. CSCL04.05/22-23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Van Hau.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 601 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Hau, T., Phuong, M.T., Toan, N.X. et al. Quick and easy process for producing graphene material in liquid phase using high-power-density ultrasonication technique for preparing high microhardness nickel/graphene composite coating. Bull Mater Sci 47, 53 (2024). https://doi.org/10.1007/s12034-024-03144-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-024-03144-0

Keywords

Navigation