Skip to main content

Advertisement

Log in

Recent Advances in the Neurobiology of Altered Motivation Following Bariatric Surgery

  • Eating Disorders (S Wonderlich and S Engel, Section Editors)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

There is compelling evidence in the clinical population that long-term weight loss secondary to bariatric surgery is mitigated by the reemergence of maladaptive feeding behaviors and in some cases new onset substance abuse.

Recent Findings

A review of the current literature suggests that physical restructuring of the GI tract during WLS alters secretion of feeding peptides and nutrient-sensing mechanisms that directly target the brain’s endogenous reward system, the mesolimbic dopamine system.

Summary

Post-surgical changes in GI physiology augment activation of the mesolimbic system. In some patients, this process may contribute to a reduced appetite for palatable food whereas in others it may support maladaptive motivated behavior for food and chemical drugs. It is concluded that future studies are required to detail the timing and duration of surgical-induced changes in GI-mesolimbic communication to more fully understand this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Adult Obesity Facts | Overweight & Obesity | CDC. (2019, January 31). Retrieved May 29, 2019, from https://www.cdc.gov/obesity/data/adult.html

  2. Flegal KM, Carroll MD, Kit BK, Ogden CL. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. JAMA. 2012;307(5):491–7. https://doi.org/10.1001/jama.2012.39.

    Article  PubMed  Google Scholar 

  3. Arterburn DE, Maciejewski ML, Tsevat J. Impact of morbid obesity on medical expenditures in adults. Int J Obes. 2005;29(3):334–9. https://doi.org/10.1038/sj.ijo.0802896.

    Article  CAS  Google Scholar 

  4. Drenick EJ, Bale GS, Seltzer F, Johnson DG. Excessive mortality and causes of death in morbidly obese men. JAMA. 1980;243(5):443–5. https://doi.org/10.1001/jama.1980.03300310031018.

    Article  CAS  PubMed  Google Scholar 

  5. Lutz TA, Bueter M. The physiology underlying Roux-en-Y gastric bypass: a status report. Am J Physiol Regul Integr Comp Physiol. 2014;307(11):R1275–91. https://doi.org/10.1152/ajpregu.00185.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sturm R, Hattori A. Morbid obesity rates continue to rise rapidly in the US. Int J Obes (2005). 2013;37(6):889–91. https://doi.org/10.1038/ijo.2012.159.

    Article  CAS  Google Scholar 

  7. Wang Y, Song Y, Chen J, Zhao R, Xia L, Cui Y, et al. Roux-en-Y gastric bypass versus sleeve gastrectomy for super super obese and super obese: systematic review and meta-analysis of weight results, comorbidity resolution. Obes Surg. 2019;29(6):1954–64. https://doi.org/10.1007/s11695-019-03817-4.

    Article  PubMed  Google Scholar 

  8. Bouret S, Levin BE, Ozanne SE. Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiol Rev. 2015;95(1):47–82. https://doi.org/10.1152/physrev.00007.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Casazza K, Brown A, Astrup A, Bertz F, Baum C, Brown MB, et al. Weighing the evidence of common beliefs in obesity research. Crit Rev Food Sci Nutr. 2015;55(14):2014–53. https://doi.org/10.1080/10408398.2014.922044.

    Google Scholar 

  10. Cooksey-Stowers K, Schwartz MB, Brownell KD. Food swamps predict obesity rates better than food deserts in the United States. Int J Environ Res Public Health. 2017;14(11). https://doi.org/10.3390/ijerph14111366.

    PubMed Central  Google Scholar 

  11. Godfrey KM, Reynolds RM, Prescott SL, Nyirenda M, Jaddoe VWV, Eriksson JG, et al. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol. 2017;5(1):53–64. https://doi.org/10.1016/S2213-8587(16)30107-3.

    Article  PubMed  Google Scholar 

  12. Hruby A, Hu FB. The epidemiology of obesity: A big picture. PharmacoEconomics. 2015;33(7):673–89. https://doi.org/10.1007/s40273-014-0243-x.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kim TJ, von dem Knesebeck O. Income and obesity: what is the direction of the relationship? A systematic review and meta-analysis. BMJ Open. 2018;8(1). https://doi.org/10.1136/bmjopen-2017-019862.

  14. Müller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J, et al. Ghrelin. Mol Metabolism. 2015;4(6):437–60. https://doi.org/10.1016/j.molmet.2015.03.005.

    Article  CAS  Google Scholar 

  15. Bliss ES, Whiteside E. The gut-brain axis, the human gut microbiota and their integration in the development of obesity. Front Physiol. 2018;9. https://doi.org/10.3389/fphys.2018.00900.

  16. de Lartigue G, Barbier de la Serre C, Espero E, Lee J, Raybould HE. Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons. Am J Physiol Endocrinol Metab. 2011;301(1):E187–95. https://doi.org/10.1152/ajpendo.00056.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sanmiguel C, Gupta A, Mayer EA. Gut microbiome and obesity: a plausible explanation for obesity. Curr Obes Rep. 2015;4(2):250–61. https://doi.org/10.1007/s13679-015-0152-0.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kang JH, Le QA. Effectiveness of bariatric surgical procedures. Medicine. 2017;96(46):e8632. https://doi.org/10.1097/MD.0000000000008632.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Geary N, Bächler T, Whiting L, Lutz TA, Asarian L. RYGB progressively increases avidity for a low-energy, artificially sweetened diet in female rats. Appetite. 2016;98:133–41. https://doi.org/10.1016/j.appet.2015.11.029.

    Article  PubMed  Google Scholar 

  20. Mathes CM, Letourneau C, Blonde GD, le Roux CW, Spector AC. Roux-en-Y gastric bypass in rats progressively decreases the proportion of fat calories selected from a palatable cafeteria diet. Am J Physiol Regul Integr Comp Physiol. 2016;310(10):R952–9. https://doi.org/10.1152/ajpregu.00444.2015.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mumphrey MB, Hao Z, Townsend RL, Patterson LM, Münzberg H, Morrison CD, et al. Eating in mice with gastric bypass surgery causes exaggerated activation of brainstem anorexia circuit. Int J Obes (2005). 2016;40(6):921–8. https://doi.org/10.1038/ijo.2016.38.

    Article  CAS  Google Scholar 

  22. Washington MC, Mhalhal TR, Johnson-Rouse T, Berger J, Heath J, Seeley R, et al. Roux-en-Y gastric bypass augments the feeding responses evoked by gastrin-releasing peptides. J Surg Res. 2016;206(2):517–24. https://doi.org/10.1016/j.jss.2016.08.057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. •• Sirohi S, Richardson BD, Lugo JM, Rossi DJ, Davis JF. Impact of Roux-en-Y gastric bypass surgery on appetite, alcohol intake behaviors, and midbrain ghrelin signaling in the rat. Obesity. 2017;25(7):1228–36. https://doi.org/10.1002/oby.21839. Discovered that GHSR-1a signaling is altered in mesolimbic dopamine neurons in rats behaviorally characterized for increased alcohol intake and reduced hedonic food intake.

    Article  CAS  PubMed  Google Scholar 

  24. Orellana ER, Jamis C, Horvath N, Hajnal A. Effect of vertical sleeve gastrectomy on alcohol consumption and preferences in dietary obese rats and mice: a plausible role for altered ghrelin signaling. Brain Res Bull. 2018;138:26–36. https://doi.org/10.1016/j.brainresbull.2017.08.004.

    Article  CAS  PubMed  Google Scholar 

  25. Biegler JM, Freet CS, Horvath N, Rogers AM, Hajnal A. Increased intravenous morphine self-administration following Roux-en-Y gastric bypass in dietary obese rats. Brain Res Bull. 2016;123:47–52. https://doi.org/10.1016/j.brainresbull.2015.08.003.

    Article  CAS  PubMed  Google Scholar 

  26. Pories WJ. Bariatric surgery: risks and rewards. J Clin Endocrinol Metab. 2008;93(11 Suppl 1):S89–96. https://doi.org/10.1210/jc.2008-1641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stefater MA, Wilson-Pérez HE, Chambers AP, Sandoval DA, Seeley RJ. All bariatric surgeries are not created equal: insights from mechanistic comparisons. Endocr Rev. 2012;33(4):595–622. https://doi.org/10.1210/er.2011-1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wolfe BM, Kvach E, Eckel RH. Treatment of obesity: weight loss and bariatric surgery. Circ Res. 2016;118(11):1844–55. https://doi.org/10.1161/CIRCRESAHA.116.307591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pepino MY, Bradley D, Eagon JC, Sullivan S, Abumrad NA, Klein S. Changes in taste perception and eating behavior after bariatric surgery-induced weight loss in women. Obesity (Silver Spring, Md.). 2014;22(5):E13–20. https://doi.org/10.1002/oby.20649.

    Article  Google Scholar 

  30. Magro DO, Geloneze B, Delfini R, Pareja BC, Callejas F, Pareja JC. Long-term weight regain after gastric bypass: a 5-year prospective study. Obes Surg. 2008;18(6):648–51. https://doi.org/10.1007/s11695-007-9265-1.

    Article  PubMed  Google Scholar 

  31. Karmali S, Brar B, Shi X, Sharma AM, de Gara C, Birch DW. Weight recidivism post-bariatric surgery: a systematic review. Obes Surg. 2013;23(11):1922–33. https://doi.org/10.1007/s11695-013-1070-4.

    Article  PubMed  Google Scholar 

  32. Still CD, Wood GC, Chu X, Manney C, Strodel W, Petrick A, et al. Clinical factors associated with weight loss outcomes after Roux-en-Y gastric bypass surgery. Obesity (Silver Spring, Md.). 2014;22(3):888–94. https://doi.org/10.1002/oby.20529.

    Article  Google Scholar 

  33. Ullrich J, Ernst B, Wilms B, Thurnheer M, Schultes B. Roux-en-Y gastric bypass surgery reduces hedonic hunger and improves dietary habits in severely obese subjects. Obes Surg. 2013;23(1):50–5. https://doi.org/10.1007/s11695-012-0754-5.

    Article  PubMed  Google Scholar 

  34. Brethauer SA, Aminian A, Romero-Talamás H, Batayyah E, Mackey J, Kennedy L, et al. Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Ann Surg. 2013;258(4):628–36; discussion 636–637. https://doi.org/10.1097/SLA.0b013e3182a5034b.

    Article  PubMed  PubMed Central  Google Scholar 

  35. DeMaria EJ, Pate V, Warthen M, Winegar DA. Baseline data from American Society for Metabolic and Bariatric Surgery-designated Bariatric Surgery Centers of Excellence using the Bariatric Outcomes Longitudinal Database. Surg Obes Relat Dis Off J Am Soc Bariatric Surg. 2010;6(4):347–55. https://doi.org/10.1016/j.soard.2009.11.015.

    Article  Google Scholar 

  36. Davis JF, Schurdak JD, Magrisso IJ, Mul JD, Grayson BE, Pfluger PT, et al. Gastric bypass surgery attenuates ethanol consumption in ethanol-preferring rats. Biol Psychiatry. 2012;72:354–60. https://doi.org/10.1016/j.biopsych.2012.01.035.

    Article  CAS  PubMed  Google Scholar 

  37. Davis JF, Tracy AL, Schurdak JD, Magrisso IJ, Grayson BE, Seeley RJ, et al. Roux en Y gastric bypass increases ethanol intake in the rat. Obes Surg. 2013;23(7):920–30. https://doi.org/10.1007/s11695-013-0884-4.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dutta S, Morton J, Shepard E, Peebles R, Farrales-Nguyen S, Hammer LD, et al. Methamphetamine use following bariatric surgery in an adolescent. Obes Surg. 2006;16(6):780–2. https://doi.org/10.1381/096089206777346646.

    Article  PubMed  Google Scholar 

  39. Ertelt TW, Mitchell JE, Lancaster K, Crosby RD, Steffen KJ, Marino JM. Alcohol abuse and dependence before and after bariatric surgery: a review of the literature and report of a new data set. Surg Obes Relat Dis. 2008;4(5):647–50. https://doi.org/10.1016/j.soard.2008.01.004.

    Article  PubMed  Google Scholar 

  40. Hajnal A, Zharikov A, Polston JE, Fields MR, Tomasko J, Rogers AM, et al. Alcohol reward is increased after Roux-en-Y gastric bypass in dietary obese rats with differential effects following ghrelin antagonism. PLoS One. 2012;7(11):e49121. https://doi.org/10.1371/journal.pone.0049121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thanos PK, Subrize M, Delis F, Cooney RN, Culnan D, Sun M, et al. Gastric bypass increases ethanol and water consumption in diet-induced obese rats. Obes Surg. 2012;22(12):1884–92. https://doi.org/10.1007/s11695-012-0749-2.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Boudreau D, Von Korff M, Rutter CM, Saunders K, Ray GT, Sullivan MD, et al. Trends in long-term opioid therapy for chronic non-cancer pain. Pharmacoepidemiol Drug Saf. 2009;18(12):1166–75. https://doi.org/10.1002/pds.1833.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sirohi S, Skripnikova E, Davis JF. Vertical sleeve gastrectomy attenuates hedonic feeding without impacting alcohol drinking in rats. Obesity (Silver Spring, Md.). 2019;27(4):603–11. https://doi.org/10.1002/oby.22415.

    Article  CAS  Google Scholar 

  44. King WC, Chen J-Y, Mitchell JE, Kalarchian M, Steffen KJ, Engel SG, et al. Prevalence of alcohol use disorders before and after bariatric surgery. JAMA. 2012;307:2516–25. https://doi.org/10.1001/jama.2012.6147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Himes SM, Grothe KB, Clark MM, Swain JM, Collazo-Clavell ML, Sarr MG. Stop regain: a pilot psychological intervention for bariatric patients experiencing weight regain. Obes Surg. 2015;25(5):922–7. https://doi.org/10.1007/s11695-015-1611-0.

    Article  PubMed  Google Scholar 

  46. Tamboli RA, Breitman I, Marks-Shulman PA, Jabbour K, Melvin W, Williams B, et al. Early weight regain after gastric bypass does not affect insulin sensitivity but is associated with elevated ghrelin. Obesity. 2014;22(7):1617–22. https://doi.org/10.1002/oby.2077.

    Article  CAS  PubMed  Google Scholar 

  47. Hao Z, Münzberg H, Rezai-Zadeh K, Keenan M, Coulon D, Lu H, et al. Leptin deficient ob/ob mice and diet-induced obese mice responded differently to Roux-en-Y bypass surgery. Int J Obes. 2015;39(5):798–805. https://doi.org/10.1038/ijo.2014.189.

    Article  CAS  Google Scholar 

  48. Guijarro A, Suzuki S, Chen C, Kirchner H, Middleton FA, Nadtochiy S, et al. Characterization of weight loss and weight regain mechanisms after Roux-en-Y gastric bypass in rats. Am J Phys Regul Integr Comp Phys. 2007;293(4):R1474–89. https://doi.org/10.1152/ajpregu.00171.2007.

    Article  CAS  Google Scholar 

  49. Volkow ND, Baler RD. NOW vs LATER brain circuits: implications for obesity and addiction. Trends Neurosci. 2015;38:345–52.

    CAS  PubMed  Google Scholar 

  50. Marqués-Iturria I, Scholtens LH, Garolera M, Pueyo R, García-García I, González-Tartiere P, et al. Affected connectivity organization of the reward system structure in obesity. Neuroimage. 2015;111:100–6.

    PubMed  Google Scholar 

  51. Tuominen L, Tuulari J, Karlsson H, Hirvonen J, Helin S, Salminen P, et al. Aberrant mesolimbic dopamine-opiate interaction in obesity. Neuroimage. 2015;122:80–6.

    CAS  PubMed  Google Scholar 

  52. Geha P, Cecchi G, Todd Constable R, Abdallah C, Small DM. Reorganization of brain connectivity in obesity. Hum Brain Mapp. 2017;38:1403–20.

    PubMed  Google Scholar 

  53. Avery JA, Powell JN, Breslin FJ, Lepping RJ, Martin LE, Patrician TM, et al. Obesity is associated with altered mid-insula functional connectivity to limbic regions underlying appetitive responses to foods. J Psychopharmacol (Oxford). 2017;31:1475–84.

    Google Scholar 

  54. Ho M-C, Chen VC-H, Chao S-H, Fang C-T, Liu Y-C, Weng J-C. Neural correlates of executive functions in patients with obesity. PeerJ. 2018;6:e5002.

    PubMed  PubMed Central  Google Scholar 

  55. Chen VC-H, Liu Y-C, Chao S-H, McIntyre RS, Cha DS, Lee Y, et al. Brain structural networks and connectomes: the brain-obesity interface and its impact on mental health. Neuropsychiatr Dis Treat. 2018;14:3199–208.

    PubMed  PubMed Central  Google Scholar 

  56. Karlsson HK, Tuulari JJ, Tuominen L, Hirvonen J, Honka H, Parkkola R, et al. Weight loss after bariatric surgery normalizes brain opioid receptors in morbid obesity. Mol Psychiatry. 2016;21:1057–62.

    CAS  PubMed  Google Scholar 

  57. Thanos PK, Michaelides M, Subrize M, Miller ML, Bellezza R, Cooney RN, et al. Roux-en-Y gastric bypass alters brain activity in regions that underlie reward and taste perception. PLoS One. 2015;10:e0125570.

    PubMed  PubMed Central  Google Scholar 

  58. Wiemerslage L, Zhou W, Olivo G, Stark J, Hogenkamp PS, Larsson EM, et al. A resting-state fMRI study of obese females between pre- and postprandial states before and after bariatric surgery. Eur J Neurosci. 2017;45:333–41.

    PubMed  Google Scholar 

  59. Olivo G, Zhou W, Sundbom M, Zhukovsky C, Hogenkamp P, Nikontovic L, et al. Resting-state brain connectivity changes in obese women after Roux-en-Y gastric bypass surgery: a longitudinal study. Sci Rep. 2017;7:6616.

    PubMed  PubMed Central  Google Scholar 

  60. Holsen LM, Davidson P, Cerit H, Hye T, Moondra P, Haimovici F, et al. Neural predictors of 12-month weight loss outcomes following bariatric surgery. Int J Obes. 2018;42:785–93.

    CAS  Google Scholar 

  61. Pearce AL, Mackey E, Cherry JBC, Olson A, You X, Magge SN, et al. Effect of adolescent bariatric surgery on the brain and cognition: a pilot study. Obesity (Silver Spring). 2017;25:1852–60.

    Google Scholar 

  62. Li P, Shan H, Liang S, et al. Sleeve gastrectomy recovering disordered brain function in subjects with obesity: a longitudinal fMRI study. Obes Surg. 2018;28:2421–8.

    PubMed  Google Scholar 

  63. Han W, Tellez LA, Niu J, Medina S, Ferreira TL, Zhang X, et al. Striatal dopamine links gastrointestinal rerouting to altered sweet appetite. Cell Metab. 2016;23:103–12.

    PubMed  Google Scholar 

  64. Zhang Y, Ji G, Xu M, Cai W, Zhu Q, Qian L, et al. Recovery of brain structural abnormalities in morbidly obese patients after bariatric surgery. Int J Obes. 2016;40:1558–65.

    CAS  Google Scholar 

  65. Liu L, Ji G, Li G, et al. Structural changes in brain regions involved in executive-control and self-referential processing after sleeve gastrectomy in obese patients. Brain Imaging Behav 2018.

  66. Faulconbridge LF, Ruparel K, Loughead J, Allison KC, Hesson LA, Fabricatore AN, et al. Changes in neural responsivity to highly palatable foods following Roux-en-Y gastric bypass, sleeve gastrectomy, or weight stability: an fMRI study. Obesity (Silver Spring). 2016;24:1054–60.

    PubMed Central  Google Scholar 

  67. Zoon HFA, de Bruijn SEM, Jager G, Smeets PAM, de Graaf C, Janssen IMC, et al. Altered neural inhibition responses to food cues after Roux-en-Y gastric bypass. Biol Psychol. 2018;137:34–41.

    CAS  PubMed  Google Scholar 

  68. Zoon HFA, de Bruijn SEM, Smeets PAM, de Graaf C, Janssen IMC, Schijns W, et al. Altered neural responsivity to food cues in relation to food preferences, but not appetite-related hormone concentrations after RYGB-surgery. Behav Brain Res. 2018;353:194–202.

    CAS  PubMed  Google Scholar 

  69. Karlsson HK, Tuulari JJ, Hirvonen J, Lepomäki V, Parkkola R, Hiltunen J, et al. Obesity is associated with white matter atrophy: a combined diffusion tensor imaging and voxel-based morphometric study. Obesity. 2013;21:2530–7.

    PubMed  Google Scholar 

  70. Bohon C, Geliebter A. Change in brain volume and cortical thickness after behavioral and surgical weight loss intervention. Neuroimage Clin. 2019;21:101640.

    PubMed  Google Scholar 

  71. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Baler R. Food and drug reward: overlapping circuits in human obesity and addiction. Curr Top Behav Neurosci. 2012;11:1–24.

    CAS  PubMed  Google Scholar 

  72. Volkow ND, Wang G-J, Tomasi D, Baler RD. Obesity and addiction: neurobiological overlaps. Obes Rev. 2013;14:2–18.

    CAS  PubMed  Google Scholar 

  73. Hankir MK, Seyfried F, Hintschich CA, Diep TA, Kleberg K, Kranz M, et al. Gastric bypass surgery recruits a gut PPAR-α-striatal D1R pathway to reduce fat appetite in obese rats. Cell Metab. 2017;25:335–44.

    CAS  PubMed  Google Scholar 

  74. Wise RA. Role of brain dopamine in food reward and reinforcement. Philos Trans R Soc Lond Ser B Biol Sci. 2006;361:1149–58.

    CAS  Google Scholar 

  75. Rodd ZA, Melendez RI, Bell RL, Kuc KA, Zhang Y, Murphy JM, et al. Intracranial self-administration of ethanol within the ventral tegmental area of male Wistar rats: evidence for involvement of dopamine neurons. JNeurosci. 2004;24:1050–7.

    CAS  Google Scholar 

  76. Liu S, Globa AK, Mills F, Naef L, Qiao M, Bamji SX, et al. Consumption of palatable food primes food approach behavior by rapidly increasing synaptic density in the VTA. Proc Natl Acad Sci U S A. 2016;113:2520–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Diana M, Pistis M, Carboni S, Gessa GL, Rossetti ZL. Profound decrement of mesolimbic dopaminergic neuronal activity during ethanol withdrawal syndrome in rats: electrophysiological and biochemical evidence. Proc Natl Acad Sci U S A. 1993;90:7966–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cook JB, Hendrickson LM, Garwood GM, Toungate KM, Nania CV, Morikawa H. Junk food diet-induced obesity increases D2 receptor autoinhibition in the ventral tegmental area and reduces ethanol drinking. PLoS One. 2017;12:e0183685.

    PubMed  PubMed Central  Google Scholar 

  79. Koyama S, Mori M, Kanamaru S, Sazawa T, Miyazaki A, Terai H, et al. Obesity attenuates D2 autoreceptor-mediated inhibition of putative ventral tegmental area dopaminergic neurons. Physiol Rep. 2014;2:e12004.

    PubMed  PubMed Central  Google Scholar 

  80. Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci. 2010;13:635–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. de Weijer BA, van de Giessen E, van Amelsvoort TA, Boot E, Braak B, Janssen IM, et al. Lower striatal dopamine D2/3 receptor availability in obese compared with non-obese subjects. EJNMMI Res. 2011;1:37.

    PubMed  PubMed Central  Google Scholar 

  82. Wu C, Garamszegi SP, Xie X, Mash DC. Altered dopamine synaptic markers in postmortem brain of obese subjects. Front Hum Neurosci. 2017;11:386.

    PubMed  PubMed Central  Google Scholar 

  83. Pak K, Kim S-J, Kim IJ. Obesity and brain positron emission tomography. Nucl Med Mol Imaging. 2018;52:16–23.

    PubMed  Google Scholar 

  84. van der Zwaal EM, de Weijer BA, van de Giessen EM, Janssen I, Berends FJ, van de Laar A, et al. Striatal dopamine D2/3 receptor availability increases after long-term bariatric surgery-induced weight loss. Eur Neuropsychopharmacol. 2016;26:1190–200.

    PubMed  Google Scholar 

  85. Blum K, Thanos PK, Wang G-J, Febo M, Demetrovics Z, Modestino EJ, et al. The food and drug addiction epidemic: targeting dopamine homeostasis. Curr Pharm Des. 2018;23:6050–61.

    PubMed  Google Scholar 

  86. de Weijer BA, van de Giessen E, Janssen I, Berends FJ, van de Laar A, Ackermans MT, et al. Striatal dopamine receptor binding in morbidly obese women before and after gastric bypass surgery and its relationship with insulin sensitivity. Diabetologia. 2014;57:1078–80.

    PubMed  PubMed Central  Google Scholar 

  87. Steele KE, Prokopowicz GP, Schweitzer MA, Magunsuon TH, Lidor AO, Kuwabawa H, et al. Alterations of central dopamine receptors before and after gastric bypass surgery. Obes Surg. 2010;20:369–74.

    PubMed  Google Scholar 

  88. •• Hamilton J, Swenson S, Hajnal A, Thanos PK. Roux-en-Y gastric bypass surgery normalizes dopamine D1, D2, and DAT levels. Synapse. 2018;72:e22058. Found restoration of D2-receptor binding in striatum and hence mesolimbic dopamine function in RYGB rats relative to obese controls.

    Google Scholar 

  89. Doumouras AG, Saleh F, Anvari S, Gmora S, Anvari M, Hong D. Mastery in bariatric surgery: the long-term surgeon learning curve of Roux-en-Y gastric bypass. Ann Surg. 2018;267:489–94.

    PubMed  Google Scholar 

  90. Merrer JL, Becker JAJ, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev. 2009;89:1379–412.

    PubMed  PubMed Central  Google Scholar 

  91. Hyytia P. Involvement of mu-opioid receptors in alcohol drinking by alcohol-preferring AA rats. Pharmacol Biochem Behav. 1993;45:697–701.

    CAS  PubMed  Google Scholar 

  92. Bazov I, Kononenko O, Watanabe H, et al. The endogenous opioid system in human alcoholics: molecular adaptations in brain areas involved in cognitive control of addiction. AddictBiol. 2011.

  93. Nogueiras R, Romero-Picó A, Vazquez MJ, Novelle MG, López M, Diéguez C. The opioid system and food intake: homeostatic and hedonic mechanisms. Obes Facts. 2012;5:196–207.

    PubMed  Google Scholar 

  94. Joutsa J, Karlsson HK, Majuri J, et al. Binge eating disorder and morbid obesity are associated with lowered mu-opioid receptor availability in the brain. Psychiatry Res Neuroimaging. 2018;276:41–5.

    PubMed  Google Scholar 

  95. Karlsson HK, Tuominen L, Tuulari JJ, Hirvonen J, Parkkola R, Helin S, et al. Obesity is associated with decreased μ-opioid but unaltered dopamine D2 receptor availability in the brain. J Neurosci. 2015;35:3959–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sirohi S, Skripnikova E, Davis JF. Vertical sleeve gastrectomy attenuates hedonic feeding without impacting alcohol drinking in rats. Obesity (Silver Spring). 2019;27:603–11.

    CAS  Google Scholar 

  97. Hankir MK, Patt M, Patt JTW, Becker GA, Rullmann M, Kranz M, et al. Suppressed fat appetite after Roux-en-Y gastric bypass surgery associates with reduced brain μ-opioid receptor availability in diet-induced obese male rats. Front Neurosci. 2017;10.

  98. Pasternak GW, Pan Y-X. Mu opioids and their receptors: evolution of a concept. Pharmacol Rev. 2013;65:1257–317.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. le Roux CW, Welbourn R, Werling M, Osborne A, Kokkinos A, Laurenius A, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg. 2007;246(5):780–5. https://doi.org/10.1097/SLA.0b013e3180caa3e3.

    Article  PubMed  Google Scholar 

  100. Ivezaj V, Stoeckel LE, Avena NM, Benoit SC, Conason A, Davis JF, et al. Obesity and addiction: can a complication of surgery help us understand the connection? Obes Rev. 2017;18:765–75. https://doi.org/10.1111/obr.12542.

    Article  CAS  PubMed  Google Scholar 

  101. Drucker DJ. The biology of incretin hormones. Cell Metab. 2006;3:153–65. Retrieved from. https://doi.org/10.1016/j.cmet.2006.01.004\n.

  102. Dar MS, Chapman WH, Pender JR, Drake AJ, O’Brien K, Tanenberg RJ, et al. GLP-1 response to a mixed meal: what happens 10 years after Roux-en-Y gastric bypass (RYGB)? Obes Surg. 2012;22(7):1077–83. https://doi.org/10.1007/s11695-012-0624-1.

    Article  PubMed  Google Scholar 

  103. Chambers AP, Jessen L, Ryan KK, Sisley S, Wilsonpérez HE, Stefater MA, et al. Weight-independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats. Gastroenterology. 2011;141(3):950–8. https://doi.org/10.1053/j.gastro.2011.05.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Alhadeff AL, Rupprecht LE, Hayes MR. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology. 2012;153(2):647–58. https://doi.org/10.1210/en.2011-1443.

    Article  CAS  PubMed  Google Scholar 

  105. Fortin SM, Roitman MF. Central GLP-1 receptor activation modulates cocaine-evoked phasic dopamine signaling in the nucleus accumbens core. Physiol Behav. 2017;176:17–25. https://doi.org/10.1016/j.physbeh.2017.03.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schmidt HD, Mietlicki-Baase EG, Ige KY, Maurer JJ, Reiner DJ, Zimmer DJ, et al. Glucagon-like peptide-1 receptor activation in the ventral tegmental area decreases the reinforcing efficacy of cocaine. Neuropsychopharmacology. 2016;41(7):1917–28. https://doi.org/10.1038/npp.2015.362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cummings DE, Weigle DS, Frayo RS, Breen P, Ma MK, Dellinger EP, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346(21):1623–30. https://doi.org/10.1056/NEJMoa012908.

    Article  PubMed  Google Scholar 

  108. Camiña JP, Carreira MC, El Messari S, Llorens-Cortes C, Smith RG, Casanueva FF. Desensitization and endocytosis mechanisms of ghrelin-activated growth hormone secretagogue receptor 1a. Endocrinology. 2004;145(2):930–40. https://doi.org/10.1210/en.2003-0974.

    Article  CAS  PubMed  Google Scholar 

  109. Jerlhag E, Egecioglu E, Landgren S, Salomé N, Heilig M, Moechars D, et al. Requirement of central ghrelin signaling for alcohol reward. Proc Natl Acad Sci U S Am. 2009;106:11318–23. https://doi.org/10.1073/pnas.0812809106.

    Article  Google Scholar 

  110. Abizaid A, Liu ZW, Andrews ZB, Shanabrough M, Borok E, Elsworth JD, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Investig. 2006;116(12):3229–39. https://doi.org/10.1172/JCI29867.

    Article  CAS  PubMed  Google Scholar 

  111. Zigman JM, Nakano Y, Coppari R, Balthasar N, Marcus JN, Lee CE, et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J Clin Invest. 2005;115(12):3564–72. https://doi.org/10.1172/JCI26002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Holst B, Schwartz TW. Constitutive ghrelin receptor activity as a signaling set-point in appetite regulation. Trends Pharmacol Sci. 2004;25:113–7. https://doi.org/10.1016/j.tips.2004.01.010.

    Article  CAS  PubMed  Google Scholar 

  113. Petersen PS, Woldbye DPD, Madsen AN, Egerod KL, Jin C, Lang M, et al. In vivo characterization of high basal signaling from the ghrelin receptor. Endocrinology. 2009;150(11):4920–30. https://doi.org/10.1210/en.2008-1638.

    Article  CAS  PubMed  Google Scholar 

  114. Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodríguez De Fonseca F, … Piomelli D. Oleoylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature. 2003;425(6953). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12955147.

    CAS  PubMed  Google Scholar 

  115. Fu J, Gaetani S, Oveisi F, Verme JL, Serrano A, Rodríguez De Fonseca F, et al. Oleoylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature. 2003;425(6953):90–3. https://doi.org/10.1038/nature01921.

    Article  CAS  PubMed  Google Scholar 

  116. Tellez LA, Medina S, Han W, Ferreira JG, Licona-Limón P, Ren X, et al. A gut lipid messenger links excess dietary fat to dopamine deficiency. Science. 2013;341(6147):800–2. https://doi.org/10.1126/science.1239275.

    Article  CAS  PubMed  Google Scholar 

  117. •• Hankir MK, Seyfried F, Hintschich CA, Diep TA, Kleberg K, Kranz M, et al. Gastric bypass surgery recruits a gut PPAR-α-striatal D1R pathway to reduce fat appetite in obese rats. Cell Metabol. 2017;25(2):335–44. https://doi.org/10.1016/j.cmet.2016.12.006. Discovered that OEA-PPAR-α signaling increase mesolimbic dopamine secretion.

    Article  CAS  Google Scholar 

  118. Bottin JH, Thomas EL, Balogun B, Bech PR, Ghatei MA, Moorthy K, et al. Changes in appetite, food intake, and appetite regulating hormones during acute weight loss induced by Roux-en-y gastric bypass and low-calorie diet. Obes Facts. 2015;8:66–272. https://doi.org/10.1159/000382140.

    Article  Google Scholar 

  119. Shin AC, Zheng H, Pistell PJ, Berthoud HR. Roux-en-Y gastric bypass surgery changes food reward in rats. Int J Obes. 2011;35(5):642–51. https://doi.org/10.1038/ijo.2010.174.

    Article  CAS  Google Scholar 

  120. Habegger KM, Heppner KM, Amburgy SE, Ottaway N, Holland J, Raver C, et al. GLP-1R responsiveness predicts individual gastric bypass efficacy on glucose tolerance in rats. Diabetes. 2014;63(2):505–13. https://doi.org/10.2337/db13-0511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hayes MR, Schmidt HD. GLP-1 influences food and drug reward. Curr Opin Behav Sci. 2016;9:66–70.

    PubMed  PubMed Central  Google Scholar 

  122. Menzies JRW, Skibicka KP, Leng G, Dickson SL. Ghrelin, reward and motivation. Endocr Dev. 2013;25:101–11.

    CAS  PubMed  Google Scholar 

  123. Abizaid A, Liu Z-W, Andrews ZB, Shanabrough M, Borok E, Elsworth JD, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest. 2006;116:3229–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Skibicka KP, Hansson C, Alvarez-Crespo M, Friberg PA, Dickson SL. Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience. 2011;180:129–37.

    CAS  PubMed  Google Scholar 

  125. Jerlhag E, Egecioglu E, Landgren S, Salome N, Heilig M, Moechars D, et al. Requirement of central ghrelin signaling for alcohol reward. Proc Natl Acad Sci U S A. 2009;106:11318–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Barkholt P, Pedersen PJ, Hay-Schmidt A, Jelsing J, Hansen HH, Vrang N. Alterations in hypothalamic gene expression following Roux-en-Y gastric bypass. Mol Metab. 2016;5:296–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Blum K, Bailey J, Gonzalez AM, et al. Neuro-genetics of reward deficiency syndrome (RDS) as the root cause of “addiction transfer”: a new phenomenon common after bariatric surgery. J Genet Syndr Gene Ther. 2011;2012.

  128. Backman O, Stockeld D, Rasmussen F, Näslund E, Marsk R. Alcohol and substance abuse, depression and suicide attempts after Roux-en-Y gastric bypass surgery. Br J Surg. 2016;103:1336–42.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon F. Davis.

Ethics declarations

Conflict of Interest

Julianna N. Brutman, Sunil Sirohi, and Jon F. Davis each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Eating Disorders.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brutman, J.N., Sirohi, S. & Davis, J.F. Recent Advances in the Neurobiology of Altered Motivation Following Bariatric Surgery. Curr Psychiatry Rep 21, 117 (2019). https://doi.org/10.1007/s11920-019-1084-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-019-1084-2

Keywords

Navigation