Skip to main content
Log in

Functional biopolymers produced by biochemical technology considering applications in food engineering

  • Journal Review
  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Polysaccharides are widely used in foods as thickening, gelling, stabilizing, emulsifying, and water-binding agents. The majority of the polysaccharides currently employed in the food industry are derived from plants and seaweeds. Recently, microbial polysaccharides have emerged as an important set of biothickeners for foods. These biopolymers have overcome to great extent the flaws associated with the plants and seaweeds polysaccharides. This relatively new class of biopolymers has unique rheological properties because of their potential of forming very viscous solutions at low concentrations and pseudoplastic nature. This review deals with the current applications of these microbial biopolymers in the food industry with a special focus on the commonly used important exopolysaccharides in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Steinbüchel and S. K. Rhee Eds., Polysaccharides, and polyamides in the food industry. Properties, productions and patents, Willey-VCH Verlag GmbH & Co. KgaA, Weinheim (2005).

    Google Scholar 

  2. European Commission, document, CS/NF/DOS/7/ADD 3 FINAL (2000). http://europa.eu.int/comm/food/fs/sc/scf/index_en.html.

  3. H. Kornmann, P. Duboc, I. Marison and U. von Stockar, Appl. Environ. Microbiol., 69, 6091 (2003).

    Article  CAS  Google Scholar 

  4. I. W. Sutherland, Trends Biotechnol., 16, 41 (1998).

    Article  CAS  Google Scholar 

  5. S. Moonmangmee, H. Toyama, O. Adachi, G. Theeragool, N. Lotong and K. Matsushit, Biosci. Biotechnol. Biochem., 66, 777 (2002).

    Article  CAS  Google Scholar 

  6. H. H. Kim, J.-G. Na, Y. K. Chang and S. J. Lee, Korean J. Chem. Eng., 22, 80 (2005).

    Article  CAS  Google Scholar 

  7. A. Ruffing and R. R. Chen, Microb. Cell. Fact., 5, 25, (2006).

    Article  CAS  Google Scholar 

  8. G. Perugino, A. Trincone, M. Rossi and M. Moracci, Trends Biotechnol., 22, 31 (2004).

    Article  CAS  Google Scholar 

  9. D. H. Crout and G. Vic, Curr. Opin. Chem. Biol., 2, 98 (1998).

    Article  CAS  Google Scholar 

  10. L. Selbmann, S. Onofri, M. Fenice, F. Federici and M. Petruccioli, Res. Microbiol., 153, 585 (2002).

    Article  CAS  Google Scholar 

  11. http://www.techno-preneur.net/ScienceTechMag/oct-06/Microbial_Additives.pdf.

  12. S. Roller and I. C. M. Dea, Crit. Rev. Biotechnol., 12, 261 (1992).

    Article  CAS  Google Scholar 

  13. M. Tombs and S. E. Harding, An introduction to polysaccharide biotechnology, Taylor and Francis, London (1998).

    Google Scholar 

  14. L. De Vuyst and B. Degeest, FEMS Microbiol. Rev., 23, 153 (1999).

    Article  Google Scholar 

  15. A. Becker, F. Katzen, A. Pühler and L. Ielpi, Appl. Microbiol. Biotechnol., 50, 145 (1998).

    Article  CAS  Google Scholar 

  16. J. K. Park, T. Khan and J. Y. Jung, Carbohydr. Polym., 63, 482 (2006).

    Article  CAS  Google Scholar 

  17. A. Parikh and D. Madamwar, Bioresource Technol., 97, 1822 (2006).

    Article  CAS  Google Scholar 

  18. S. Y. Yang, K. S. Ji, Y. H. Baik, W. S. Kwak and T. A. McCaskey, Bioresource Technol., 97, 1858 (2006).

    Article  CAS  Google Scholar 

  19. F. Vaningelgem, M. Zamfir, F. Mozzi, T. Adriany, M. Vancanneyt, J. Swings and L. De Vuyst, Appl. Environ. Microbiol., 70, 900 (2004).

    Article  CAS  Google Scholar 

  20. F. Garcia-Ochoa, V. E. Santos, J. A. Casas and E. Gomez, Biotechnol. Adv., 18, 549 (2000).

    Article  CAS  Google Scholar 

  21. I. W. Sutherland, Biotechnol. Genet. Eng. Revs., 16, 217 (1999).

    CAS  Google Scholar 

  22. A. Laws, Y. Gu and V. Marshall, Biotechnol. Adv., 19, 597 (2001).

    Article  CAS  Google Scholar 

  23. I. W. Sutherland, in Surface carbohydrates of the prokaryotic cell, I. W. Sutherland, Ed., Academic Press, London (1977).

    Google Scholar 

  24. T. Khan, H. Khan and J. K. Park, Proc. Biochem., 42, 252 (2007).

    Article  CAS  Google Scholar 

  25. V. Crescenzi, Biotechnol. Prog., 11, 251 (1995).

    Article  CAS  Google Scholar 

  26. G. Franz, Adv. Polym. Sci., 76, 1 (1986).

    Google Scholar 

  27. D. F. Day and D. Kim, US Patent, 5,229,277 (1993).

  28. Y. Mi, Protection mechanisms of excipients on lactate dehydrogenase during freeze-thawing and lyophilization, PhD Thesis, The University of Tennessee, USA (2002).

    Google Scholar 

  29. H. D. Goff, R. D. Mccurdy, D. W. Stanley and A. P. Stone, Food Hydrocolloid., 8, 609 (1994).

    Google Scholar 

  30. R. Whistler and J. R. Daniel, in A. L. Branen, P. M. Davidson, and S. Salminen, Eds., Food Additives, Marcel Dekker, Inc., New York (1990).

    Google Scholar 

  31. B. Katzbauer, Polym. Degrad. Stabil., 59, 81 (1998).

    Article  CAS  Google Scholar 

  32. P. E. Jansson, L. Kenne and B. Lindberg, Carbohydr. Res., 45, 275 (1975).

    Article  CAS  Google Scholar 

  33. A. B. Rodd, D. E. Dunstan, D. V. Boger, J. Schmidt and W. Burchard, Macromol. Symp., 190, 79 (2002).

    Article  CAS  Google Scholar 

  34. A. B. Rodd, D. E. Dunstan, D. V. Boger, J. Schmidt and W. Burchard, Macromolecules, 34, 3339 (2001).

    Article  CAS  Google Scholar 

  35. S. Richter, T. Brand and S. Berger, Macromol. Rapid Comm., 26, 548 (2005).

    Article  CAS  Google Scholar 

  36. I. Sutherland, Microbiol. Today, 29, 70 (2002).

    Google Scholar 

  37. I. Jacobs, P. T. Gardiner and M. Molino, Patent WO 2005034650 (2005).

  38. P. Maletto, US Patent 20050095336 (2005).

  39. R. M. Brown, Position Paper, University of Texas (2005) www.botany.utexas.edu/facstaff/facpages/mbrown/position1.htm.

  40. J. Y. Jung, J. K. Park and H. N. Chang, Enzyme Microb. Technol., 37, 347 (2005).

    Article  CAS  Google Scholar 

  41. J. K. Park, J. Y. Jung and Y. H. Park, Biotechnol. Lett., 25, 2055 (2003).

    Article  CAS  Google Scholar 

  42. J. K. Park, S. H. Hyun and J. Y. Jung, Biotechnol. Bioproc. Eng., 9, 383 (2004).

    CAS  Google Scholar 

  43. www.res.titech.ac.jp/:_junkan/english/cellulose/.

  44. R. Jonas and L. F. Farah, Polym. Degrad. Stabil., 59, 101 (1998).

    Article  CAS  Google Scholar 

  45. R. E. Cannon and S. M. Anderson, Crit. Rev. Microbiol., 17, 435 (1991).

    CAS  Google Scholar 

  46. S. Bielecki, A. Krystynowicz, M. Turkiewicz and H. Kalinowska, in Biopolymers, E. J. Vandamme, S. De Baets and A. Steinbuechel, Eds., Wiley-VCH, Weinheim (2002).

    Google Scholar 

  47. J. Y. Jung, T. Khan, J. K. Park and H. N. Chang, Korean J. Chem. Eng., 24, 265 (2007).

    Article  CAS  Google Scholar 

  48. A. Okiyama, M. Motoki and S. Yamanaka, Food Hydrocolloid., 6, 479 (1992).

    CAS  Google Scholar 

  49. A. Okiyama, H. Shirae, H. Kano and Yamanaka, Food Hydrocolloid., 6, 471 (1992).

    CAS  Google Scholar 

  50. A. Okiyama, M. Motoki and S. Yamanaka, Food Hydrocolloid., 6, 493 (1993).

    CAS  Google Scholar 

  51. A. Okiyama, M. Motoki and S. Yamanaka, Food Hydrocolloid., 6, 503 (1993).

    Article  CAS  Google Scholar 

  52. M. V. García and L. Bontoux, The IPTS Report, Issue 20, December (1997).

  53. R. Chandrasekaran and A. Radha, Trends Food Sci. Technol., 6, 143 (1995).

    Article  CAS  Google Scholar 

  54. D. E. Pszczola, Food Technol-Chicago., 47, 94 (1993).

    Google Scholar 

  55. R. C. Deis, http://www.foodproductdesign.com/archive/1997/0397CS.html (1997).

  56. P.-E. Jannsson, B. Lindberg and P. A. Sandford, Carbohydr. Res., 124, 135 (1983).

    Article  Google Scholar 

  57. M. A. O’Neill, R. R. Selvendran and V. J. Morris, Carbohydr. Res., 124, 123 (1983).

    Article  CAS  Google Scholar 

  58. M. S. Kuo, A. J. Mort and A. Dell, Carbohydr. Res., 56, 173 (1986).

    Article  Google Scholar 

  59. Joint FAO/WHO Expert Committee on Food Additives (JECFA), Toxicological evaluation of certain food additives and contaminants, WHO Food Additives Series, No. 28, World Health Organization, Geneva (1991).

    Google Scholar 

  60. http://www.lsbu.ac.uk/water/hygellan.html.

  61. K. Nishinari, in Gums and stabilisers for the food industry, G. O. Phillips, P. A. Williams and D. J. Wedlock, Eds., The Royal Society of Chemistry, Cambridge (1996).

    Google Scholar 

  62. S. Ikeda, Y. Nitta, B. S. Kim, T. Temsiripong, R. Pongsawatmanit and K. Nishinari, Food Hydrocolloid., 18, 669 (2004).

    Article  CAS  Google Scholar 

  63. T. Omoto, Y. Uno and I. Asai, Prog. Colloid Polym. Sci., 114, 123 (1999).

    Article  CAS  Google Scholar 

  64. Joint FAO/WHO Expert Committee on Food Additives, Compendium of food additive specifications, addendum 5, FAO food and nutrition paper-52 Add. 5, Food and Agriculture Organization of the United Nations Rome (1997).

  65. A. J. Jay, I. J. Colquhoun, M. J. Ridout, G. J. Brownsey, V. J. Morris, A. M. Fialho, J. H. Leitão and I. Sá-Correia, Carbohydr. Polym., 35, 179 (1998).

    Article  CAS  Google Scholar 

  66. G. R. Sanderson, in Food gels, P. Harris, Ed., Elsevier, New York (1990).

    Google Scholar 

  67. Kelco International, Kelco international kelcogel gellan gum, Kelco Division of Merck and Co. Inc., Kelco International, London (1991).

    Google Scholar 

  68. R. M. Banik, B. Kanari and S. N. Upadhyay, World J. Microbiol. Biotechnol., 16, 407 (2000).

    Article  CAS  Google Scholar 

  69. V. J. Morris, Food Biotechnol., 4, 45 (1990).

    Article  CAS  Google Scholar 

  70. V. J. Morris, Proc. Am. Chem. Soci. Symp. Biotechnology of Polymers, 135 (1991).

  71. A. I. Rodríguez-Hernández, S. Durand, C. Garnier, A. Tecante and J. L. Doublier Food Hydrocolloid., 17, 621 (2003).

    Article  CAS  Google Scholar 

  72. Mumbai University Institute of Chemical Technology (MUICT), Proposal from for competitive selection as lead institution under technical education quality improvement programme of The Ministry of Human Resource Development Government of India (2003).

  73. R. Clark, in Frontiers in carbohydrate research, R. Chandrasekaran (Ed.), Elsevier Applied Sciences, New York (1992).

    Google Scholar 

  74. M. McIntosh, B. A. Stone and V. A. Stanisich, Appl. Microbiol. Biotechnol., 68, 163 (2005).

    Article  CAS  Google Scholar 

  75. E. J. F. Spicer, E. I. Goldenthal and T. Ikeda, Food Chem. Toxicol., 37, 455 (1999).

    Article  CAS  Google Scholar 

  76. H. Saitô, M. Yokoi and Y. Yoshioka, Macromolecules, 22, 3892 (1989).

    Article  Google Scholar 

  77. Y. Deslandes, R. H. Marchessault and A. Sarko, Macromolecules, 13, 1466 (1980).

    Article  CAS  Google Scholar 

  78. H. Zhang, K. Nishinari, M. A. K. Williams, T. J. Foster and I. T. Norton, Int. J. Biol. Macromol., 30, 7 (2002).

    Article  Google Scholar 

  79. F. Yotsuzuka, in Handbook of dietary fiber, S. S. Cho, M. L. Dreher (Eds.) Dekker, New York (2001).

    Google Scholar 

  80. V. Jezequel, Cereal Food World, 43, 361 (1998).

    CAS  Google Scholar 

  81. I. Maeda, H. Saito, M. Masada, A. Misaki and T. Harada, Agric. Biol. Chem., 31, 1184 (1967).

    CAS  Google Scholar 

  82. H. Kimura, S. Moritaka and M. Misaki, J. Food Sci., 38, 668 (1974).

    Article  CAS  Google Scholar 

  83. T.-W. D. Chan and K. Y. Tang, Rapid Commun. Mass Spectrom., 17, 887 (2003).

    Article  CAS  Google Scholar 

  84. T. Funami, H. Yada and Y. Nakao, J. Food Sci., 63, 283 (1998).

    Article  CAS  Google Scholar 

  85. H. Bender, J. Lehman and K. Wallenfels, Biochim. Biophys. Acta, 36, 309 (1959).

    Article  CAS  Google Scholar 

  86. J. W. Lee, W. G. Yeomans, A. L. Allen, F. Deng, R. A. Gross and D. L. Kaplan, Appl. Environ. Microbiol., 65, 5265 (1999).

    CAS  Google Scholar 

  87. T. D. Leathers, in Biopolymers, E. J. Vandamme, S. De Baets, A. Steinbuechel (Eds.), Wiley-VCH, Weinheim (2002).

    Google Scholar 

  88. K. I. Shingel, Carbohydr. Res., 339, 447 (2004).

    Article  CAS  Google Scholar 

  89. B. McNeil and B. Kristiansen, Enzyme Microb. Technol., 12, 521 (1990).

    Article  CAS  Google Scholar 

  90. T. D. Leathers, Appl. Microbiol. Biotechnol., 62, 468 (2003).

    Article  CAS  Google Scholar 

  91. T. Kimoto, T. Shibuya and S. Shiobara, Food Chem. Toxicol., 35, 323 (1997).

    Article  CAS  Google Scholar 

  92. K. C. Heo, J. J. Lee, S. Y. Park and J. W. Rhim, Characteristics of pullulan-based edible films, IFT Annual Meeting, New Orleans, Louisiana (2001).

  93. U. S. Congress, Office of Technology Assessment, Biopolymers: making materials nature’s way-background paper, OTA-BP-E-102, Washington, DC: U.S. Government Printing Office, September (1993).

    Google Scholar 

  94. B. W. Wolf, K. A. Garleb, Y. S. Choe, P. M. Humphrey and K. C. Maki, J. Nutr., 133, 1051 (2003).

    CAS  Google Scholar 

  95. M. Yoneyama, K. Okada, T. Mandai, H. Aga, S. Saka and T. Ichikawa, Denpun Kagaku, 37, 123 (1990).

    CAS  Google Scholar 

  96. S. Yuen, Process Biochem., 9, 7 (1974).

    CAS  Google Scholar 

  97. H. Hijiya and M. Shiosaka, US Patent 3873333 (1975).

  98. H. Hijiya and M. Shiosaka, US Patent 3871892 (1975).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong Kon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, T., Park, J.K. & Kwon, JH. Functional biopolymers produced by biochemical technology considering applications in food engineering. Korean J. Chem. Eng. 24, 816–826 (2007). https://doi.org/10.1007/s11814-007-0047-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-007-0047-1

Key words

Navigation