Skip to main content
Log in

Effect of polar aprotic solvents on hydroxyethyl cellulose-based gel polymer electrolyte

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Quasi-solid bioelectrolytes based on hydroxyethyl cellulose (HEC) and sodium iodide (NaI) in three different polar aprotic solvent systems, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and dimethylacetamide (DMA), were fabricated and characterized. FTIR studies revealed active solvent-ion interactions in DMF-based electrolytes in comparison to DMA and DMSO. The effect of the solvent system on the crystallinity of HEC gel electrolytes was more significant at low NaI concentration. In each solvent system, the highest ionic conductivity was achieved at 70 wt% NaI and generally DMF-based electrolytes showed higher conductivity than the other solvents. The availability of multiple complexation sites present in DMF is ascribed to improvement in ion mobility and hence conductivity. Rheological analysis was carried out to elucidate the mechanical properties of the gels. Generally, the mechanical strength of the polymer gels was unaffected by the type of solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Varshney PK, Gupta S (2011) Natural polymer-based electrolytes for electrochemical devices: a review. Ionics 17(6):479–483. https://doi.org/10.1007/s11581-011-0563-1

    Article  CAS  Google Scholar 

  2. Di Noto V, Lavina S, Giffin GA, Negro E, Scrosati B (2011) Polymer electrolytes: present, past and future. Electrochimica Acta 57(supplement C):4–13. https://doi.org/10.1016/j.electacta.2011.08.048

    Article  CAS  Google Scholar 

  3. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, Luo G (2015) Electrolytes in dye-sensitized solar cells. Chem Rev 115(5):2136–2173. https://doi.org/10.1021/cr400675m

    Article  CAS  PubMed  Google Scholar 

  4. Long L, Wang S, Xiao M, Meng Y (2016) Polymer electrolytes for lithium polymer batteries. J Mater Chem A 4(26):10038–10069. https://doi.org/10.1039/C6TA02621D

    Article  CAS  Google Scholar 

  5. Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22(8):1259–1279. https://doi.org/10.1007/s11581-016-1756-4

    Article  CAS  Google Scholar 

  6. Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77(2):183–197. https://doi.org/10.1016/S0378-7753(98)00193-1

    Article  CAS  Google Scholar 

  7. Sato T, Banno K, Maruo T, Nozu R (2005) New design for a safe lithium-ion gel polymer battery. J Power Sources 152(supplement C):264–271. https://doi.org/10.1016/j.jpowsour.2005.03.212

    Article  CAS  Google Scholar 

  8. Nirmale TC, Karbhal I, Kalubarme RS, Shelke MV, Varma AJ, Kale BB (2017) Facile synthesis of unique cellulose triacetate based flexible and high performance gel polymer electrolyte for lithium ion batteries. ACS Appl Mater Interfaces 9(40):34773–34782. https://doi.org/10.1021/acsami.7b07020

    Article  CAS  PubMed  Google Scholar 

  9. Ahmad NH, Isa MIN (2016) Characterization of un-plasticized and propylene carbonate plasticized carboxymethyl cellulose doped ammonium chloride solid biopolymer electrolytes. Carbohydr Polym 137:426–432. https://doi.org/10.1016/j.carbpol.2015.10.092

    Article  CAS  PubMed  Google Scholar 

  10. Huang X, Liu Y, Deng J, Yi B, Yu X, Shen P, Tan S (2012) A novel polymer gel electrolyte based on cyanoethylated cellulose for dye-sensitized solar cells. Electrochimica Acta 80:219–226. https://doi.org/10.1016/j.electacta.2012.07.014

    Article  CAS  Google Scholar 

  11. Ledwon P, Andrade JR, Lapkowski M, Pawlicka A (2015) Hydroxypropyl cellulose-based gel electrolyte for electrochromic devices. Electrochimica Acta 159:227–233. https://doi.org/10.1016/j.electacta.2015.01.168

    Article  CAS  Google Scholar 

  12. Xiao S, Wang F, Yang Y, Chang Z, Wu Y (2014) An environmentally friendly and economic membrane based on cellulose as a gel polymer electrolyte for lithium ion batteries. RSC Adv 4(1):76–81. https://doi.org/10.1039/C3RA46115G

    Article  CAS  Google Scholar 

  13. Mudgil D, Barak S, Khatkar BS (2014) Guar gum: processing, properties and food applications—a review. J Food Sci Technol 51(3):409–418. https://doi.org/10.1007/s13197-011-0522-x

    Article  CAS  PubMed  Google Scholar 

  14. Chong MY, Numan A, Liew C-W, Ramesh K, Ramesh S (2017) Comparison of the performance of copper oxide and yttrium oxide nanoparticle based hydroxylethyl cellulose electrolytes for supercapacitors. J Appl Polym Sci 134(13):44636. https://doi.org/10.1002/app.44636

    Article  CAS  Google Scholar 

  15. Gupta S, Varshney PK (2017) Effect of plasticizer concentration on structural and electrical properties of hydroxyethyl cellulose (HEC)-based polymer electrolyte. Ionics 23(6):1613–1617. https://doi.org/10.1007/s11581-017-2116-8

    Article  CAS  Google Scholar 

  16. Sudhakar YN, Selvakumar M, Bhat DK (2015) Preparation and characterization of phosphoric acid-doped hydroxyethyl cellulose electrolyte for use in supercapacitor. Materials Renewable Sustainable Energy 4(3):10. https://doi.org/10.1007/s40243-015-0051-z

    Article  Google Scholar 

  17. Zhang MY, Li MX, Chang Z, Wang YF, Gao J, Zhu YS, Wu YP, Huang W (2017) A sandwich PVDF/HEC/PVDF gel polymer electrolyte for lithium ion battery. Electrochimica Acta 245(supplement C):752–759. https://doi.org/10.1016/j.electacta.2017.05.154

    Article  CAS  Google Scholar 

  18. Li MX, Wang XW, Yang YQ, Chang Z, Wu YP, Holze R (2015) A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. J Membrane Science 476(supplement C):112–118. https://doi.org/10.1016/j.memsci.2014.10.056

    Article  CAS  Google Scholar 

  19. Ellis BL, Nazar LF (2012) Sodium and sodium-ion energy storage batteries. Current Opinion Solid State Materials Sci 16(4):168–177. https://doi.org/10.1016/j.cossms.2012.04.002

    Article  CAS  Google Scholar 

  20. Dell RM (2000) Batteries: fifty years of materials development. Solid State Ionics 134(1):139–158. https://doi.org/10.1016/S0167-2738(00)00722-0

    Article  CAS  Google Scholar 

  21. Osman Z, Md Isa KB, Ahmad A, Othman L (2010) A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes. Ionics 16(5):431–435. https://doi.org/10.1007/s11581-009-0410-9

    Article  CAS  Google Scholar 

  22. Vondrák J, Reiter J, Velická J, Sedlařı́ková M (2004) PMMA-based aprotic gel electrolytes. Solid State Ionics 170(1):79–82. https://doi.org/10.1016/j.ssi.2003.08.060

    Article  CAS  Google Scholar 

  23. Zhang B, Zhou Y, Li X, Wang J, Li G, Yun Q, Wang X (2014) Li+−molecule interactions of lithium tetrafluoroborate in propylene carbonate + N,N-dimethylformamide mixtures: an FTIR spectroscopic study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 124(Supplement C):40–45. https://doi.org/10.1016/j.saa.2014.01.001

    Article  CAS  Google Scholar 

  24. Verbovy DM, Smagala TG, Brynda MA, Fawcett WR (2006) A FTIR study of ion-solvent interactions in N,N-dimethylacetamide. J Molecular Liquids 129(1):13–17. https://doi.org/10.1016/j.molliq.2006.08.008

    Article  CAS  Google Scholar 

  25. Kloss AA, Fawcett WR (1998) ATR-FTIR studies of ionic solvation and ion-pairing in dimethyl sulfoxide solutions of the alkali metal nitrates. J Chem Soc Faraday Trans 94(11):1587–1591. https://doi.org/10.1039/A800427G

    Article  CAS  Google Scholar 

  26. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie 44(22):3358–3303. https://doi.org/10.1002/anie.200460587

    Article  CAS  PubMed  Google Scholar 

  27. He R, Kyu T (2016) Effect of plasticization on ionic conductivity enhancement in relation to glass transition temperature of crosslinked polymer electrolyte membranes. Macromolecules 49(15):5637–5648. https://doi.org/10.1021/acs.macromol.6b00918

    Article  CAS  Google Scholar 

  28. Dissanayake MAKL, Thotawatthage CA, Senadeera GKR, Bandara TMWJ, WJMJSR J, Mellander BE (2012) Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with PAN based gel polymer electrolyte. J Photochemistry and Photobiology A: Chemistry 246:29–35. https://doi.org/10.1016/j.jphotochem.2012.06.023

    Article  CAS  Google Scholar 

  29. Yusuf SNF, Azzahari AD, Yahya R, Majid SR, Careem MA, Arof AK (2016) From crab shell to solar cell: a gel polymer electrolyte based on N-phthaloylchitosan and its application in dye-sensitized solar cells. RSC Adv 6(33):27714–27724. https://doi.org/10.1039/C6RA04188D

    Article  CAS  Google Scholar 

  30. Yusuf SNF, Azzahari AD, Selvanathan V, Yahya R, Careem MA, Arof AK (2017) Improvement of N-phthaloylchitosan based gel polymer electrolyte in dye-sensitized solar cells using a binary salt system. Carbohydrate Polymers 157:938–944. https://doi.org/10.1016/j.carbpol.2016.10.032

    Article  CAS  PubMed  Google Scholar 

  31. Shukur MF, Ibrahim FM, Majid NA, Ithnin R, Kadir MFZ (2013) Electrical analysis of amorphous corn starch-based polymer electrolyte membranes doped with LiI. Phys Scr 88(2):025601. https://doi.org/10.1088/0031-8949/88/02/025601

    Article  CAS  Google Scholar 

  32. Yang YQ, Chang Z, Li MX, Wang XW, Wu YP (2015) A sodium ion conducting gel polymer electrolyte. Solid State Ionics 269(supplement C):1–7. https://doi.org/10.1016/j.ssi.2014.11.015

    Article  CAS  Google Scholar 

  33. Xue Y (2017) Electrochemical and mechanical properties of sodium-ion conducting cross-linked polymer gel electrolyte, vol 12. doi:https://doi.org/10.20964/2017.11.56

  34. Vanitha D, Bahadur SA, Nallamuthu N, Athimoolam S, Manikandan A (2017) Electrical impedance studies on sodium ion conducting composite blend polymer electrolyte. J Inorg Organomet Polym Mater 27(1):257–265. https://doi.org/10.1007/s10904-016-0468-6

    Article  CAS  Google Scholar 

  35. Kumar D, Hashmi SA (2010) Ionic liquid based sodium ion conducting gel polymer electrolytes. Solid State Ionics 181(8):416–423. https://doi.org/10.1016/j.ssi.2010.01.025

    Article  CAS  Google Scholar 

  36. Zebardastan N, Khanmirzaei MH, Ramesh S, Ramesh K (2017) Presence of NaI in PEO/PVdF-HFP blend based gel polymer electrolytes for fabrication of dye-sensitized solar cells. Materials Sci Semiconductor Processing 66(supplement C):144–148. https://doi.org/10.1016/j.mssp.2017.04.016

    Article  CAS  Google Scholar 

  37. Subban RHY, Arof AK (1996) Sodium iodide added chitosan electrolyte film for polymer batteries. Phys Scr 53(3):382–384. https://doi.org/10.1088/0031-8949/53/3/021

    Article  CAS  Google Scholar 

  38. Rani M, Rudhziah S, Ahmad A, Mohamed N (2014) Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber. Polymers 6(9):2371–2385. https://doi.org/10.3390/polym6092371

    Article  CAS  Google Scholar 

  39. Yue L, Xie Y, Zheng Y, He W, Guo S, Sun Y, Zhang T, Liu S (2017) Sulfonated bacterial cellulose/polyaniline composite membrane for use as gel polymer electrolyte. Composites Sci Technol 145(supplement C):122–131. https://doi.org/10.1016/j.compscitech.2017.04.002

    Article  CAS  Google Scholar 

  40. Kavanagh GM, Ross-Murphy SB (1998) Rheological characterisation of polymer gels. Progress Polymer Sci 23(3):533–562. https://doi.org/10.1016/S0079-6700(97)00047-6

    Article  CAS  Google Scholar 

  41. Stoppe N, Horn R (2017) How far are rheological parameters from amplitude sweep tests predictable using common physicochemical soil properties? J Phys Conf Ser 790(1). https://doi.org/10.1088/1742-6596/790/1/012032

  42. Mezger TG (2011) The rheology handbook: for users of rotational and oscillatory rheometers. Vincentz Network, Hannover

    Google Scholar 

Download references

Funding

This work is supported by the University of Malaya through FG031-17AFR grant. V. Selvanathan is grateful to the Ministry of Higher Education (MOHE), Malaysia, for the MyBrainSc scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosiyah Yahya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvanathan, V., Halim, M.N.A., Azzahari, A.D. et al. Effect of polar aprotic solvents on hydroxyethyl cellulose-based gel polymer electrolyte. Ionics 24, 1955–1964 (2018). https://doi.org/10.1007/s11581-018-2455-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2455-0

Keywords

Navigation