Skip to main content
Log in

Ionic transport properties of protonic conducting solid biopolymer electrolytes based on enhanced carboxymethyl cellulose - NH4Br with glycerol

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The present work investigates the ionic conductivity as well as its transport properties of carboxymethyl cellulose–NH4Br plasticized with various weight percentage of glycerol for solid biopolymer electrolytes (SBEs) prepared by solution-casting technique. It was shown from the FTIR analysis that the complexation transpires at C=O and C–O from COO of CMC upon the addition of glycerol into the SBEs system. The highest room temperature ionic conductivity of ~10−3 S cm−1 was achieved at 6 wt.% of glycerol owing to the broadening in the amorphous state as demonstrated in the XRD analysis. The conductivity-temperature plots were found to be in good agreement with the conventional Arrhenius relationship. It was further shown that the conducting element is mainly due to the protonation of H+ where ionic mobility and diffusion coefficient was found to contribute towards the enhancement in the ionic conductivity of SBEs system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rudhziah S, Rani MSA, Ahmad A, Mohamed NS, Kaddami H (2015) Potential of blend of kappa-carrageenan and cellulose derivatives for green polymer electrolyte application. Ind Crop Prod 72:133–141

    Article  CAS  Google Scholar 

  2. Wright PV (1975) Electrical conductivity in ionic complexes of poly (ethylene oxide). Polym Int 7(5):319–327

    CAS  Google Scholar 

  3. Armand MB, Chabagno JM, Duclot M (1978) Second international meeting on solid electrolytes. St Andrews, Scotland

    Google Scholar 

  4. Aziz NN (2010) Proton conducting polymer electrolytes of methylcellulose doped ammonium fluoride: conductivity and ionic transport studies. Int J Phys Sci 5:748–752

    Google Scholar 

  5. Avellaneda CO, Vieira DF, Al-Kahlout A, Heusing S, Leite ER, Pawlicka A, Aegerter MA (2008) All solid-state electrochromic devices with gelatin-based electrolyte. Sol Energy Mater Sol Cells 92:228–233

    Article  CAS  Google Scholar 

  6. Nithya S, Selvasekarapandian S, Karthikeyan S, Inbavalli D, Sikkinthar S, Sanjeeviraja C (2014) AC impedance studies on proton-conducting PAN: NH4SCN polymer electrolytes. Ionics 20:1391–1398

    Article  CAS  Google Scholar 

  7. Ramlli MA, Isa MIN (2014) Conductivity study of carboxyl methyl cellulose solid biopolymer electrolytes (SBE) doped with ammonium fluoride. Res J Recent Sci 3:59–66

    Google Scholar 

  8. Ahmad NH, Isa MIN (2015) Structural and ionic conductivity studies of CMC based polymerelectrolyte doped with NH4Cl. Adv Mater Res 1107:247–252

    Article  Google Scholar 

  9. Rozali MLH, Isa MIN (2014) Electrical behaviour of carboxy methyl cellulose doped adipic acid solid biopolymer electrolyte. International Journal of Material Science 4:59

    Article  Google Scholar 

  10. Shukur MF, Ithnin R, Kadir MFZ (2014) Electrical characterization of corn starch-LiOAc electrolytes and application in electrochemical double layer capacitor. Electrochim Acta 136:204–216

    Article  CAS  Google Scholar 

  11. Rani MSA, Rudhziah S, Ahmad A, Mohamed NS (2014) Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber. Polymers 6:2371–2385

    Article  CAS  Google Scholar 

  12. Nik Aziz NA, Idris NK, Isa MIN (2010) Solid polymer electrolytes based on methylcellulose: FTIR and ionic conductivity studies. Int J Polym Anal Charact 15:319–327

    Article  CAS  Google Scholar 

  13. Samsudin AS, Lai HM, Isa MIN (2014) Biopolymer materials based carboxymethyl cellulose as a proton conducting biopolymer electrolyte for application in rechargeable proton battery. Electrochim Acta 129:1–13

    Article  CAS  Google Scholar 

  14. Kamarudin KH, Isa MIN (2013) Structural and DC ionic conductivity studies of carboxy methylcellulose doped with ammonium nitrate as solid polymer electrolytes. Int J Phys Sci 8:1581–1587

    CAS  Google Scholar 

  15. Chai MN, Isa MIN (2013) The oleic acid composition effect on the carboxymethyl cellulose based biopolymer electrolyte. J Cryst Process Technol 3:14

    Google Scholar 

  16. Chai MN, Isa MIN (2011) Carboxyl methylcellulose solid polymer electrolytes: ionic conductivity and dielectric study. J Curr Eng Res 1:23–27

    Google Scholar 

  17. Pandey M, Joshi GM, Ghosh NN (2016) Electrical performance of lithium ion based polymer electrolyte with polyethylene glycol and polyvinyl alcohol network. Int J Polym Mater 65:759–768

    Article  CAS  Google Scholar 

  18. Flora XH, Ulaganathan M, Rajendran S (2013) Role of different plasticizers in li-ion conducting poly (acrylonitrile)-poly (methyl methacrylate) hybrid polymer electrolyte. Int J Polym Mater 62:737–742

    Article  CAS  Google Scholar 

  19. Isa MIN, Samsudin AS (2016) Potential study of biopolymer-based carboxymethylcellulose electrolytes system for solid-state battery application. Int J Polym Mater 65:561–567

    Article  CAS  Google Scholar 

  20. Mishra K, Hashmi SA, Rai DK (2013) Investigations on poly (ethylene oxide)+ NH4PF6 solid polymer electrolyte system. Int J Polym Mater 62(13):663–670

    Article  CAS  Google Scholar 

  21. Noor MM, Careem MA, Majid SR, Arof AK (2011) Characterisation of plasticised PVDF–HFP polymer electrolytes. Mater Res Innov 15(2):157–160

    Article  Google Scholar 

  22. Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2(2):307–344

    Article  CAS  PubMed Central  Google Scholar 

  23. Samsudin AS, Isa MIN (2014) Conductivity and transport properties study of plasticized carboxymethyl cellulose (CMC) based solid biopolymer electrolytes (SBE). Adv Mater Res 856:118–122

    Article  CAS  Google Scholar 

  24. Pradhan DK, Choudhary RNP, Samantaray BK, Karan NK, Katiyar RS (2007) Int. J. Electrochem Sci 2:861–871

    CAS  Google Scholar 

  25. Majid SR, Arof AK (2007) Electrical behavior of proton-conducting chitosan-phosphoric acid-based electrolytes. Physica B 390:209–215

    Article  CAS  Google Scholar 

  26. Chai MN, Isa MIN (2014) Electrical study of plasticized carboxy methylcellulose based solid polymer electrolyte. Int J Phys Sci 9:397–401

    Google Scholar 

  27. Samsudin AS, Isa MIN (2015) Conduction mechanism of enhanced CMC-NH4Br biopolymer electrolytes. Adv Mater Res 1108:27

    Article  Google Scholar 

  28. Starkey SR, Frech R (1997) Plasticizer interactions with polymer and salt in propylene carbonate-poly (acrylonitrile)-lithium triflate. Electrochim Acta 42(3):471–474

    Article  CAS  Google Scholar 

  29. Zainuddin NK, Samsudin AS (2017) Influence of polyethylene glycol (PEG) in CMC-NH4BR based polymer electrolytes: conductivity and electrical study. Makara. J Technol 21(1):37–42

    Google Scholar 

  30. Chai MN, Isa MIN (2015) Structural study of plasticized carboxy methylcellulose based solid biopolymer electrolyte. Adv Mater Res 1107:242–246

    Article  Google Scholar 

  31. Chelli R, Procacci P, Cardini G, Califano S (1999) Glycerol condensed phases part II. A molecular dynamics study of the conformational structure and hydrogen bonding. Phys Chem Chem Phys 1(5):879–885

    Article  CAS  Google Scholar 

  32. Pagliaro M, Rossi M (2010) Glycerol: properties and production. The future of glycerol 7

  33. Shukur MF, Ithnin R, MFZ K (2016, 1113) Ionic conductivity and dielectric properties of potato starch-magnesium acetate biopolymer electrolytes: the effect of glycerol and 1-butyl-3-methylimidazolium chloride. Ionics:22

  34. Sonnati MO, Amigoni S, de Givenchy EPT, Darmanin T, Choulet O, Guittard F (2013) Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications. Green Chem 15(2):283–306

    Article  CAS  Google Scholar 

  35. Samsudin AS, Isa MIN (2012) Structural and ionic transport study on CMC doped NH4Br: a new types of biopolymer electrolytes. J Appl Sci 12:174–179

    Article  CAS  Google Scholar 

  36. Samsudin AS, Isa MIN (2012) Structural and electrical properties of carboxy methylcellulose-dodecyltrimethyl ammonium bromide-based biopolymer electrolytes system. Int J Polym Mater 61:30–40

    Article  CAS  Google Scholar 

  37. Pushmalar V, Langford SJ, Ahmad M, Lim YY (2006) Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydr Polym 64:312–318

    Article  CAS  Google Scholar 

  38. Samsudin AS, Khairul WM, Isa MIN (2012) Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes. J Non-Cryst 358:1104–1112

    Article  CAS  Google Scholar 

  39. Biswal DR, Singh RP (2004) Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohyd Polym 57:379–387

    Article  CAS  Google Scholar 

  40. Yusof YM, Illias HA, Shukur MF, Kadir MFZ (2017) Characterization of starch-chitosan blend-based electrolyte doped with ammonium iodide for application in proton batteries. Ionics 23(3):681–697

    Article  CAS  Google Scholar 

  41. Ramlli MA, Maksud MA, Isa MIN (2017) Characterization of polyethylene glycol plasticized carboxymethyl cellulose-ammonium fluoride solid biopolymer electrolytes. AIP Conf Proc 1826:020001

  42. Kumar M, Tiwari T, Srivastava N (2012) Electrical transport behaviour of bio-polymer electrolyte system: potato starch+ ammonium iodide. Carbohyd Polym 88:54–60

    Article  CAS  Google Scholar 

  43. Arof AK, Shuhaimi NEA, Alias NA, Kufian MZ, Majid SR (2010) Application of chitosan/iota-carrageenan polymer electrolytes in electrical double layer capacitor (EDLC). J Solid State Electr 14:2145–2152

    Article  CAS  Google Scholar 

  44. Winie T, Ramesh S, Arof AK (2009) Studies on the structure and transport properties of hexanoyl chitosan-based polymer electrolytes. Physica B 404:4308–4311

    Article  CAS  Google Scholar 

  45. Yusof YM, Majid NA, Kasmani RM, Illias HA, Kadir MFZ (2014) The effect of plasticization on conductivity and other properties of starch/chitosan blend biopolymer electrolyte incorporated with ammonium iodide. Mol Cryst Liq Cryst 603:73–88

    Article  CAS  Google Scholar 

  46. Vijaya N, Selvasekarapandian S, Nithya H, Sanjeeviraja C (2015) Proton conducting polymer electrolyte based on poly (N-vinyl pyrrolidone) doped with ammonium iodide. Int J electroactive Mater 3:20–27

    Google Scholar 

  47. Pandey K, Asthana N, Dwivedi MM, Chaturvedi, SK (2013) Effect of plasticizers on structural and dielectric behaviour of [PEO + (NH4)2C4H8(COO)2] polymer electrolyte. J Polym 2013:752596

  48. Shukur MF, Azmi MS, Zawawi SMM, Majid NA, Illias HA, Kadir MFZ (2013) Conductivity studies of biopolymer electrolytes based on chitosan incorporated with NH4Br. Phys Scr 2013:014049

  49. Ramya CS, Selvasekarapandian S, Savitha T, Hirankumar G, Baskaran R, Angelo PC (2006) Conductivity and thermal behavior of proton conducting polymer electrolyte based on poly (N-vinyl pyrrolidone). Eur Polym J 42:2672–2677

    Article  CAS  Google Scholar 

  50. Hema M, Selvasekerapandian S, Sakunthala A, Arunkumar D, Nithya H (2008) Structural, vibrational and electrical characterization of PVA–NH4Br polymer electrolyte system. Physica B 403:2740–2747

    Article  CAS  Google Scholar 

  51. Shukur MF, Kadir MFZ (2015) Electrical and transport properties of NH4Br-doped cornstarch-based solid biopolymer electrolyte. Ionics 21:111–124

    Article  CAS  Google Scholar 

  52. GM W, Lin SJ, Yang CC (2006) Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes. J Membrane Sci 275:127–133

    Article  CAS  Google Scholar 

  53. Shuhaimi NEA, Teo LP, Woo HJ, Majid SR, Arof AK (2012) Electrical double-layer capacitors with plasticized polymer electrolyte based on methyl cellulose. Polym Bull 69:807–826

    Article  CAS  Google Scholar 

  54. Rajendran S, Sivakumar M, Subadevi R (2004) Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes. Mater Lett 58:641–649

    Article  CAS  Google Scholar 

  55. Qian X, Gu N, Cheng Z, Yang X, Wang E, Dong S (2001) Impedance study of (PEO) 10 LiClO 4–Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim Acta 46:1829–1836

    Article  CAS  Google Scholar 

  56. Stephan AM, Thirunakaran R, Renganathan NG, Sundaram V, Pitchumani S, Muniyandi N, Gangadharan R, Ramamoorthy P (1999) J Power Sources 81:752–758

    Article  Google Scholar 

  57. Teo LP, Buraidah MH, Nor AFM, Majid SR (2012) Conductivity and dielectric studies of Li2SnO3. Ionics 18:655–665

    Article  CAS  Google Scholar 

  58. Ramya CS, Selvasekarapandian S, Hirankumar G, Savitha T, Angelo PC (2008) Investigation on dielectric relaxations of PVP–NH 4 SCN polymer electrolyte. J Non-Cryst Solids 354:1494–1502

    Article  CAS  Google Scholar 

  59. Ramesh S, Arof AK (2001) Ionic conductivity studies of plasticized poly (vinyl chloride) polymer electrolytes. Mater Sci Eng B 85:11–15

    Article  Google Scholar 

  60. Chai MN, Isa MIN (2016) Novel proton conducting solid bio-polymer electrolytes based on carboxymethyl cellulose doped with oleic acid and plasticized with glycerol. Sci Rep 6

  61. Gondaliya N, Kanchan DK, Sharma P, Jayswal MS (2012) Dielectric and electric properties of plasticized PEO-AgCF3SO3-SiO2 nanocomposite polymer electrolyte system. Polym Composite 33:2195–2200

    Article  CAS  Google Scholar 

  62. Ramesh S, Yahaya AH, Arof AK (2002) Effect of dibutyl phthalate as plasticizer on high-molecular weight poly (vinyl chloride)–lithium tetraborate-based solid polymer electrolytes. Solid State Ionics 152:291–294

    Article  Google Scholar 

  63. Pradhan DK, Choudhary RNP, Samantaray BK (2009) Studies of dielectric and electrical properties of plasticized polymer nanocomposite electrolytes. Mater Chem Phys 115:557–561

    Article  CAS  Google Scholar 

  64. Samsudin AS, Isa MIN (2014) Study of the ionic conduction mechanism based on carboxymethyl cellulose biopolymer electrolytes. J Korean Phys Soc 65:1441–1447

    Article  CAS  Google Scholar 

  65. Kadir MFZ, Majid SR, Arof AK (2010) Plasticized chitosan–PVA blend polymer electrolyte based proton battery. Electrochim Acta 55:1475–1482

    Article  CAS  Google Scholar 

  66. Achari VB, Reddy TJR, Sharma AK, Rao VN (2007) Electrical, optical, and structural characterization of polymer blend (PVC/PMMA) electrolyte films. Ionics 13:349–354

    Article  CAS  Google Scholar 

  67. Shuhaimi NEA, Teo LP, Majid SR, Arof AK (2010) Transport studies of NH 4 NO 3 doped methyl cellulose electrolyte. Synth Met 160:1040–1044

    Article  CAS  Google Scholar 

  68. Samsudin AS, Isa MIN (2102) Characterization of carboxy methylcellulose doped with DTAB as new types of biopolymer electrolytes. Bull Mater Sci 35:1123–1131

    Article  CAS  Google Scholar 

  69. Sivakumar M, Subadevi R, Rajendran S, NL W, Lee JY (2006) Electrochemical studies on [(1− x) PVA–xPMMA] solid polymer blend electrolytes complexed with LiBF4. Mater Chem Phys 97:330–336

    Article  CAS  Google Scholar 

  70. Cowie JMG, Spence GH (1998) Ion conduction in macroporous polyethylene film doped with electrolytes. Solid State Ionics 109:139–144

    Article  CAS  Google Scholar 

  71. Schantz S, Torell LM (1993) Evidence of dissolved ions and ion pairs in dilute poly (propylene oxide)-salt solutions. Solid State Ionics 60:47–53

    Article  CAS  Google Scholar 

  72. Selvasekarapandian S, Hirankumar G, Kawamura J, Kuwata N, Hattori T (2005) 1 H solid state NMR studies on the proton conducting polymer electrolytes. Mater Lett 59:2741–2745

    Article  CAS  Google Scholar 

  73. Hafiza MN, Bashirah ANA, Bakar NY, Isa MIN (2014) Electrical properties of carboxyl methylcellulose/chitosan dual-blend green polymer doped with ammonium bromide. Int J Polym Anal Ch 19:151–158

    Article  CAS  Google Scholar 

  74. Ahmad NHB, Isa MIN (2015) Proton conducting solid polymer electrolytes based carboxymethyl cellulose doped ammonium chloride: ionic conductivity and transport studies. Int J Plast Technol 19:47–55

    Article  CAS  Google Scholar 

  75. Salleh NS, Aziz SB, Aspanut Z, Kadir MFZ (2016) Electrical impedance and conduction mechanism analysis of biopolymer electrolytes based on methyl cellulose doped with ammonium iodide. Ionics 22:2157–2167

    Article  CAS  Google Scholar 

  76. Missan HPS, Chu PP, Sekhon SS (2006) Ion conduction mechanism in non-aqueous polymer electrolytes based on oxalic acid: effect of plasticizer and polymer. J Power Sources 158:1472–1479

    Article  CAS  Google Scholar 

  77. Rao M, Geng X, Liao Y, Hu S, Li W (2012) Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion battery. J Membrane Sci 399:37–42

    Article  CAS  Google Scholar 

  78. Chai MN, Ramlli MA, Isa MIN (2013) Proton conductor of propylene carbonate–plasticized carboxyl methylcellulose–based solid polymer electrolyte. Int J Polym Anal Ch 18:297–302

    Article  CAS  Google Scholar 

  79. Ramesh S, Ng KY (2009) Characterization of polymer electrolytes based on high molecular weight PVC and Li 2SO4. Curr Appl Phy 9:329–332

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank MOHE for FRGS Grant (RDU170115), Faculty Industrial Science & Technology, Universiti Malaysia Pahang for the technical and research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Samsudin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasali, N.M.J., Samsudin, A.S. Ionic transport properties of protonic conducting solid biopolymer electrolytes based on enhanced carboxymethyl cellulose - NH4Br with glycerol. Ionics 24, 1639–1650 (2018). https://doi.org/10.1007/s11581-017-2318-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2318-0

Keywords

Navigation