Skip to main content

Advertisement

Log in

Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth-promoting agents in metal-degraded soils

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, we evaluated the phylogenetic diversity of culturable bacterial endophytes of Zea mays plants growing in an agricultural soil contaminated with Zn and Cd. Endophytic bacterial counts were determined in roots and shoots, and isolates were grouped by random amplified polymorphic DNA and identified by 16S ribosomal RNA (rRNA) gene sequencing. Endophytes were further characterized for the production of plant growth-promoting (PGP) substances, such as NH3, siderophores, indol-3-acetic acid (IAA), hydrogen cyanide and extracellular enzymes, and for the capacity to solubilize phosphate. The endophytes producing higher amounts of IAA were screened for their tolerance to Zn and Cd and used as bioinoculants for maize seedlings grown in the Zn/Cd-contaminated soil. The counts of endophytes varied between plant tissues, being higher in roots (6.48 log10 g−1 fresh weight) when compared to shoots (5.77 log10 g−1 fresh weight). Phylogenetic analysis showed that endophytes belong to three major groups: α-Proteobacteria (31 %), γ-Proteobacteria (26 %) and Actinobacteria (26 %). Pseudomonas, Agrobacterium, Variovorax and Curtobacterium were among the most represented genera. Endophytes were well-adapted to high Zn/Cd concentrations (up to 300 mg Cd l−1 and 1,000 mg Zn l−1) and showed ability to produce several PGP traits. Strains Ochrobactrum haematophilum ZR 3-5, Acidovorax oryzae ZS 1-7, Frigoribacterium faeni ZS 3-5 and Pantoea allii ZS 3-6 increased root elongation and biomass of maize seedlings grown in soil contaminated with Cd and Zn. The endophytes isolated in this study have potential to be used in bioremediation/phytoremediation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3

Similar content being viewed by others

References

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  Google Scholar 

  • Alloway BJ (1995) Soil processes and the behaviour of heavy metals. In: Alloway BJ (ed) Heavy metals in soils. Blackie Academic & Professional, New York, pp 11–25

    Chapter  Google Scholar 

  • Amorim CL, Duque AF, Afonso CMM, Castro PML (2013) Bioaugmentation for treating transient 4-fluorocinnamic acid shock loads in a rotating biological contactor. BioresourTechnol 144:554–562

    Article  CAS  Google Scholar 

  • Andreazza R, Okeke BC, Lambais MR, Bortolon L, de Melo GWB, de Oliveira CFA (2010) Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria. Chemosphere 81:1149–1154

    Article  CAS  Google Scholar 

  • Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53:306–316

    Article  CAS  Google Scholar 

  • Calheiros CSC, Teixeira A, Pires C, Franco AR, Duque AF, Crispim LFC, Moura SC, Castro PML (2010) Bacterial community dynamics in horizontal flow constructed wetlands with different plants for high salinity industrial wastewater polishing. Water Res 44:5032–5038

    Article  CAS  Google Scholar 

  • Cappuccino JC, Sherman N (1992) Negative staining. In: Cappuccino JC, Sherman N (eds) Microbiology: a laboratory manual. Benjamin/Cummings PubCo, Redwood City, pp 125–179

    Google Scholar 

  • Carrillo-Castañeda G, Munoz JJ, Peralta-Videa JR, Gomez E, Gardea-Torresdey JL (2002) Plant growth-promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. J Plant Nutr 26:1801–1814

    Article  Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil SciSoc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  • Chen L, Luo S, Xiao X, Guo H, Chen J, Wan Y, Li B, Xua T, Xi Q, Rao C, Liu C, Zeng G (2010) Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Appl Soil Ecol 46:383–389

    Article  Google Scholar 

  • Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J SystEvol Microbiol 57:2259–2261

    Article  CAS  Google Scholar 

  • Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197

    Article  Google Scholar 

  • Doestsh RN (1981) Determinative methods of light microscopy. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GH (eds) Manual methods for general microbiology. American Society for Microbiology, Washington, pp 21–33

    Google Scholar 

  • Euzéby JP (1997) List of bacterial names with standing in nomenclature: a folder available on the Internet. IntJ Syst Bacteriol 47:590–592

    Article  Google Scholar 

  • Farina R, Beneduzi A, Ambrosini A, Campos SB, Lisboa BB, Wendisch V, Vargas LK, Passaglia LMP (2012) Diversity of plant growth-promoting rhizobacteria communities associated with the stages of canola growth. Appl Soil Ecol 55:44–52

    Article  Google Scholar 

  • Farrag K, Senesi N, Nigro F, Petrozza A, Palma A, Shaarawi S, Brunetti G (2012) Growth responses of crop and weed species to heavy metals in pot and field experiments. Environ Sci Pollut R 19:3636–3644

    Article  CAS  Google Scholar 

  • Figueiredo JEF, Gomes EA, Guimarães CT, Lana PUG, Teixeira MA, Bressan W (2009) Molecular analysis of endophytic bacteria from the genus Bacillus isolated from tropical maize (Zea mays L.). Braz J Microbiol 40:522–534

    Article  Google Scholar 

  • Fontana PD, Rago AM, Fontana CA, Vignolo GM, Cocconcelli PS, Mariotti JA (2013) Isolation and genetic characterization of Acidovorax avenae from red stripe infected sugarcane in Northwestern Argentina. Eur J Plant Pathol 137:525–534

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192–195

    Article  CAS  Google Scholar 

  • Gupta P, Samant K, Sahu A (2012) Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. Int J Microbio 1–5

  • Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  CAS  Google Scholar 

  • Ikeda AC, Bassani LL, Adamoski D, Stringari D, Cordeiro V, Glienke C, Steffens MBR, Hungria M, Galli-Terasawa LV (2013) Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microb Ecol 65:154–160

    Article  Google Scholar 

  • Jha PN, Kumar A (2007) Endophytic colonization of Typha australis by a plant growth promoting bacterium Klebsiella oxytoca strain GR-3. J Appl Microbiol 103:1311–1320

    Article  CAS  Google Scholar 

  • Kloepper JW, Beauchamp CJ (1992) A review of issues related to measuring colonization of plant roots by bacteria. Can J Microbiol 38:1219–1232

    Article  Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial Endophytes. Marcel Dekker, New York, pp 199–236

    Google Scholar 

  • Langella F, Grawunder A, Stark R, Weist A, Merten D, Haferburg G, Büchel G, Kothe E (2014) Microbially assisted phytoremediation approaches for two multi-element contaminated sites. Environ Sci Pollut R21:6845–6858

    Article  Google Scholar 

  • Li K, Ramakrishna W (2011) Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. J Hazard Mater 189:531–539

    Article  CAS  Google Scholar 

  • Liu Y, Zuo S, Zou Y, Wang J, Song W (2013) Investigation on diversity and population succession dynamics of endophytic bacteria from seeds of maize (Zea mays L., Nongda108) at different growth stages. Ann Microbiol 63:71–79

    Article  Google Scholar 

  • Luo S, Chen L, J-l C, Xiao X, Xu T, Wan Y, Rao C, Liu C, Liu Y, Lai C, Zeng G (2011) Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere 85:1130–1138

    Article  CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  Google Scholar 

  • Mortvedt JJ (1996) Heavy metal contaminants in inorganic and organic fertilizers. Fert Res 43:55–61

    Article  Google Scholar 

  • Nautiyal V (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. Microbiol Lett 170:265–270

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole-acetic acid in development of the host plant root system. Appl Environ Microbiol 8:3795–3801

    Article  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Piotrowska-Seget Z, Cycon M, Kozdroj J (2005) Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Appl Soil Ecol 28:237–246

    Article  Google Scholar 

  • Piotrowska-Seget Z, Beściak G, Bernaś T, Kozdrój J (2012) GFP-tagged multimetal-tolerant bacteria and their detection in the rhizosphere of white mustard. Ann Microbiol 62:559–567

    Article  CAS  Google Scholar 

  • Rai R, Dash PK, Prasanna BM, Singh A (2007) Endophytic bacterial flora in the stem tissue of a tropical maize (Zea mays L.) genotype: isolation, identification and enumeration. World J Microb Biot 23:853–858

    Article  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    Article  CAS  Google Scholar 

  • Rajkumar M, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  Google Scholar 

  • Rathnayake IVN, Megharaj M, Krishnamurti GSR, Bolan NS, Naidu R (2013) Heavy metal toxicity to bacteria—are the existing growth media accurate enough to determine heavy metal toxicity? Chemosphere 90:1195–1200

    Article  CAS  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interaction with hosts. Mol Plant Microbe In 19:827–837

    Article  CAS  Google Scholar 

  • Ruiz E, Rodríguez L, Alonso-Azcaráte J, Rincón J (2009) Phytoextraction of metal polluted soils around a Pb-Zn mine by crop plants. Inter J Phytorem 4:360–384

    Article  Google Scholar 

  • Schwy B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Poll 156:1164–1170

    Article  CAS  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 611–651

    Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Sun LN, Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2010) Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresource Technol 101:501–509

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. MolBiol Evo 28:2731–2739

    CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Tsezos M (2009) Metal-microbes interactions: beyond environmental protection. Adv Mater Res 71–73:527–532

    Article  Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141

    Article  CAS  Google Scholar 

  • Wallinga I, Vark W, Houba VJG, Lee JJ (1989) Plant analysis procedures. Syllabus, Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, Wageningen

    Google Scholar 

  • Whiting NS, de Souza PM, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2010) Phytoremediation potential of maize (Zea mays L.). A review. Afr J Gen Agric 6:275–287

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Funds from FCT—Fundação para a Ciência e a Tecnologia through projects PTDC/AGR/CFL/111583/2009 and PEst-OE/EQB/LA0016/2013. S.I.A. Pereira wishes to acknowledge a research grant from FCT (Ref. SFRH/BPD/65134/2009) and Fundo Social Europeu (Programa Operacional Potencial Humano (POPH), Quadro de Referência Estratégico Nacional (QREN)). The authors also thank to COST FA1103: Endophytes in Biotechnology and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. A. Pereira.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, S.I.A., Castro, P.M.L. Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth-promoting agents in metal-degraded soils. Environ Sci Pollut Res 21, 14110–14123 (2014). https://doi.org/10.1007/s11356-014-3309-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3309-6

Keywords

Navigation