Skip to main content

Advertisement

Log in

Microbially assisted phytoremediation approaches for two multi-element contaminated sites

  • Using microbes for the regulation of heavy metal mobility at ecosystem and landscape scale
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phytoremediation is an environmental friendly, cost-effective technology for a soft restoration of abandoned mine sites. The grasses Agrostis capillaris, Deschampsia flexuosa and Festuca rubra, and the annual herb Helianthus annuus were combined with microbial consortia in pot experiments on multi-metal polluted substrates collected at a former uranium mine near Ronneburg, Germany, and a historic copper mine in Kopparberg, Sweden, to test for phytoextraction versus phytostabilization abilities. Metal uptake into plant biomass was evaluated to identify optimal plant–microbe combinations for each substrate. Metal bioavailability was found to be plant species and element specific, and influenced by the applied bacterial consortia of 10 strains, each isolated from the same soil to which it was applied. H. annuus showed high extraction capacity for several metals on the German soil independent of inoculation. Our study could also show a significant enhancement of extraction for F. rubra and A. capillaris when combined with the bacterial consortium, although usually grasses are considered metal excluder species. On the Swedish mixed substrate, due to its toxicity, with 30 % bark compost, A. capillaris inoculated with the respective consortium was able to extract multi-metal contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer-Verlag, New York

    Book  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals - concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Amoroso MJ, Schubert D, Mitscherlich P, Schumann P, Kothe E (2000) Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces spec. J Basic Microbiol 40:295–301

    Article  CAS  Google Scholar 

  • Badsha KS, Badsha SJ (1988) Factors affecting the seasonal heavy metals concentration in upmoorland grass Holinia caerulea and Deschampsia flexuosa. Chemosphere 17:451–458

    Article  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  Google Scholar 

  • Bal HB, Das S, Dangar TK, Adhya TK (2013) ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J Basic Microbiol. doi:10.1002/jobm.201200445

    Google Scholar 

  • Bjoerkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 170:489–504

    Article  CAS  Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Carlsson E, Büchel G (2005) Screening of residual contamination at a former uranium heap leaching site, Thuringia, Germany. Chem Erde Geochem 65S1:75–95

    Article  Google Scholar 

  • Chaerle L, van der Straeten D (2001) Seeing is believing: imaging techniques to monitor plant health. Biochim Biophys Acta 1519:153–166

    Article  CAS  Google Scholar 

  • Chakkaravarthy VM, Arunachalam R, Vincent S, Paulkumar K, Annadurai G (2010) Biodegradation of tricalcium phosphate by phosphate solubilizing bacteria. J Biol Sci 10:531–535

    Article  Google Scholar 

  • Chen S, Chao L, Sun L, Sun T (2013) Effects of bacteria on cadmium bioaccumulation in the cadmium hyperaccumulator plant Beta vulgaris var. cicla L. Int J Phytoremediation 15:477–487

    Article  CAS  Google Scholar 

  • De Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–364

    Article  Google Scholar 

  • Dimkpa C, Svatos A, Merten D, Büchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172

    Article  CAS  Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696

    Article  CAS  Google Scholar 

  • DIN 18123 (1996) Baugrund, Untersuchung von Bodenproben – Bestimmung der Korngrößenverteilung, Deutsches Institut für Normung e. V. (in German)

  • Dushenkov S, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting KC, Ensley B (1997a) Removal of uranium from water using terrestrial plants. Env Sci Technol 31:3468–3474

    Article  CAS  Google Scholar 

  • Dushenkov S, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting KC, Ensley B (1997b) Phytoremediation: A novel approach to an old problem. In: Wise DL (ed) Global environmental biotechnology. Elsevier, Amsterdam, pp 563–572

    Google Scholar 

  • Dworkin M, Foster J (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–601

    CAS  Google Scholar 

  • Ebbs SD, Kochian LV (1998) Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Env Sci Technol 32:802–806

    Article  CAS  Google Scholar 

  • Ernst WHO (2005) Phytoextraction of mine wastes: options and impossibilities. Chem Erde Geochem 65S1:29–42

    Article  Google Scholar 

  • Fassler E, Robinson BH, Stauffer W, Gupta SK, Papritz A, Schulin R (2010) Phytomanagement of metal contaminated agricultural land using sunflower, maize and tobacco. Agricult Ecosyst Environ 136:49–58

    Article  Google Scholar 

  • Figueiredo MA, Seldin L, de Araujo F, Mariano, de Lima Ramos Mariano R (2010) Plant growth promoting rhizobacteria: Fundamentals and applications. In: Maheshwari DK (ed) Microbiology Monographs: Plant growth and health promoting bacteria. Springer, Heidelberg, pp 21–43

    Chapter  Google Scholar 

  • Gawlik BM, Bidoglio G (2006) Background values in European soils and sewage sludges. European Commission, Brussels

    Google Scholar 

  • Grawunder A, Lonschinski M, Merten D, Büchel G (2009) Distribution and bonding of the residual contamination in the glacial sediments at the former uranium mining leaching heap of Gessen/Thuringia. Chem Erde Geochem 69S2:5–19

    Article  Google Scholar 

  • Gucwa-Przepióra E, Małkowski E, Sas-Nowosielska A, Kucharski R, Krzyzak J, Kita A, Römkens PF (2007) Effect of chemophytostabilization practices on arbuscular mycorrhiza colonization of Deschampsia cespitosa ecotype Waryński at different soil depths. Env Poll 150:338–346

    Article  Google Scholar 

  • Gupta R, Singal R, Shankar A, Kuhad RC, Saxena RK (1994) A modified plate assay for screening phosphate solubilizing microorganisms. J Gen Appl Microbiol 40:255–260

    Article  CAS  Google Scholar 

  • Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res Int 20:2150–2161

    Article  CAS  Google Scholar 

  • Haferburg G, Kothe E (2012) Biogeosciences in heavy metal-contaminated soils. In: Kothe E, Varma A (eds) Bio-geo interactions in metal-contaminated soils. Springer, Heidelberg, pp 17–34

    Chapter  Google Scholar 

  • Kabata-Pendias A (2001) Trace elements in soil and plants. CRC Press, NY, USA

    Google Scholar 

  • Kennedy IR, Pereg-Gerk LL, Wood C, Deaker R, Gilchrist K, Katupitiya S (1997) Biological nitrogen fixation in non-leguminous field crops: facilitating the evolution of an effective association between Azospirillum and wheat. Plant Soil 194:65–79

    Article  CAS  Google Scholar 

  • Li YM, Chaney RL (1998) Case studies in the field-industrial sites: phytostabilization of zinc-smelter contaminated sites: the Palmerton case. In: Vangronsveld J, Cunningham SD (eds) Metal-contaminated soils: in situ inactivation and phytoremediation. Springer, Berlin, pp 211–216

    Google Scholar 

  • Lopareva-Pohu A, Verdin A, Garçon G, Lounès-Hadj Sahraoui A, Pourrut B, Debiane D, Waterlot C, Laruelle F, Bidar G, Douay F, Shirali P (2011) Influence of fly ash aided phytostabilisation of Pb, Cd and Zn highly contaminated soils on Lolium perenne and Trifolium repens metal transfer and physiological stress. Environ Pollut 159:1721–1729

    Article  CAS  Google Scholar 

  • Marques AP, Moreira H, Franco AR, Rangel AO, Castro PM (2013) Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria - Effects on phytoremediation strategies. Chemosphere 92:74–83

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence, a practical guide. J Exp Bot 51:659–668

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Envi Health Persp 116:278–283

    Article  CAS  Google Scholar 

  • Milagres AM, Machuca A, Napoleao D (1999) Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J Microbiol Meth 37:1–6

    Article  CAS  Google Scholar 

  • Mordukhova EA, Skvortsova NP, Kochetkov VV, Dubei-kovskii AN, Boronin AM (1991) Synthesis of the phytohormone indole-3-acetic acid by rhizosphere bacteria of the genus Pseudomonas. Microbiology 60:494–500

    CAS  Google Scholar 

  • Narula N, Reinicke M, Haferburg G, Kothe E, Behl RK (2012) Plant-microbe interactions in heavy-metal contaminated soils. In: Kothe E, Varma A (eds) Bio-geo interactions in metal-contaminated soils. Springer, Heidelberg, pp 143–162

    Chapter  Google Scholar 

  • Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14:10197–10228

    Article  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of host plant root system. Appl Environ Microbiol 48:3795–3801

    Article  Google Scholar 

  • Phieler R, Voit A, Kothe E (2013) Microbially supported phytoremediation of heavy metal contaminated soils: Strategies and applications. Adv Biochem Eng Biotechnol in press

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Piotrowska-Seget Z, Besciak G, Bernas T, Kozdrój J (2012) GFP-tagged multimetal-tolerant bacteria and their detection in the rhizosphere of white mustard. Ann Microbiol 62:559–567

    Article  CAS  Google Scholar 

  • Rahmanian M, Habib K, Younes RD, MirHasan RS (2011) Effects of heavy metal resistant soil microbes inoculation and soil Cd concentration on growth and metal uptake of millet, couch grass and alfalfa. African J Microbiol Res 5:403–410

    CAS  Google Scholar 

  • Raskin I, Kumar PBAN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opinons Biotechnol 5:285–290

    Article  CAS  Google Scholar 

  • Robinson BH, Green SR, Mills TM, Clothier BE, van der Velde M, Laplane R, Fung L, Deurer M, Hurst S, Thayalakumaran T, van den Dijssel C (2003) Phytoremediation: using plants as biopumps to improve degraded environments. Australian J Soil Res 41:599–611

    Article  Google Scholar 

  • Rojas-Tapias DF, Bonilla RB, Dussan J (2012) Effect of inoculation with plant growth promoting bacteria on growth and copper uptake by sunflowers. Water Air Soil Pollut 223:643–654

    Article  CAS  Google Scholar 

  • Rouached H (2013) Recent developments in plant zinc homeostasis and the path toward improved biofortification and phytoremediation programs. Plant Signal Behav e22681

  • Ruiz Olivares A, Carrillo-González R, González-Chávez Mdel C, Soto Hernández RM (2013) Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. J Environ Manage 114:316–323

    Article  CAS  Google Scholar 

  • Rungin S, Indanandra C, Suttiyiriya P, Kruasuwan W, Jaemsaeng R, Thamchaipenet A (2012) Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Van Leeuwenhoek 102:463–472

    Article  CAS  Google Scholar 

  • Sachdev DP, Chaudhari HG, Kasture VM, Dhavale DD, Chopade BA (2009) Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian J Exp Biol 47:993–1000

    CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley D, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  CAS  Google Scholar 

  • Sarwar M, Kremer RJ (1995) Determination of bacterially derived auxins using a microplate method. Lett Appl Microbiol 20:282–285

    Article  CAS  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of Photosynthesis. Springer, Berlin, pp 49–70

    Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  Google Scholar 

  • Simon L, Tamás J, Kovács E, Kovács B, Biró B (2006) Stabilisation of metals in mine spoil with amendments and growth of red fescue in symbiosis with mycorrhizal fungi. Plant Soil Env 52:385–391

    CAS  Google Scholar 

  • Soudek P, Tykva R, Vaňková R, Vaněk T (2006) Accumulation of radioiodine from aqueous-solution by sunflower (Helianthus annuus L.) at the laboratory scale. Env Exp Bot 57:220–225

    Article  CAS  Google Scholar 

  • Vangronsveld JCHM, Cunningham SD (1998) Introduction to the concepts. In: Vangronsveld J, Cunningham SD (eds) Metal-contaminated soils: In situ inactivation and phytorestoration. Springer, Heidelberg, pp 1–15

    Google Scholar 

  • Vangronsveld J, Van Assche F, Clijsters H (1995) Reclamation of a bare industrial area contaminated by non-ferrous metals: In situ metal immobilization and revegetation. Env Poll 87:51–59

    Article  CAS  Google Scholar 

  • Weyens N, Croes S, Dupae J, Newman L, van der Lelie D, Carleer R, Vangronsveld J (2010) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Env Poll 158:2422–2427

    Article  CAS  Google Scholar 

  • Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth promoting rhizobacteria on metal uptake by Brassica juncea. Env Poll 140:124–135

    Article  CAS  Google Scholar 

  • Zeien H, Brümmer GW (1989) Chemische Extraktion zur Bestimmung von Schwermetallbindungsformen in Böden. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 59:505–515

    Google Scholar 

  • Zhang X, Xia H, Li Z, Zhuang P, Gao B (2010) Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Biores Technol 101:2063–2066

    Article  CAS  Google Scholar 

  • Zhuang P, Yang QW, Wang HB, Shu WS (2007) Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Poll 184:235–242

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded through EU (FP7-ENV-2008-1/226870 UMBRELLA) and supported by the Excellence Graduate School JSMC (DFG-GSC 24). We are grateful to Dr. Schröder (TLL, Jena), Buhler, Kamp and Neumann (FSU) and Mitra (MPI-CE, Jena). We want to thank all members of the Umbrella consortium for their help with the interdisciplinary work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Kothe.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langella, F., Grawunder, A., Stark, R. et al. Microbially assisted phytoremediation approaches for two multi-element contaminated sites. Environ Sci Pollut Res 21, 6845–6858 (2014). https://doi.org/10.1007/s11356-013-2165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2165-0

Keywords

Navigation