Skip to main content
Log in

Synthesis, molecular docking and dynamics study of novel epoxide derivatives of 1,2,4-trioxanes as antimalarial agents

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Malaria infection continues to pose a substantial threat to human health in the twenty-first century. The parasites’ resistance against conventional antimalarial drugs creates an emerging demand to develop new and efficient therapeutics against this mosquito-borne infection. Artemisinin, a sesquiterpene lactone, is a potent antimalarial drug found in nature. However, the lack of desirable physicochemical properties actuates researchers to develop new therapeutics based upon this compound. The 1,2,4-trioxane ring system of this natural product was identified as a crucial moiety for exhibiting antimalarial property. A related scientific investigation demonstrates that 1,2,4-trioxane derivatives bind to Plasmodium falciparum dihydrofolate reductase enzymes. The present work reports the synthesis of novel epoxide derivatives of 1,2,4-trioxanes and assesses their receptor binding profile towards Pf-DHFR employing molecular docking and dynamics experiments. The epoxides of 1,2,4-trioxane were synthesized using m-chloroperbenzoic acid and characterized by 1H & 13C NMR spectroscopy and mass spectrometry methods. The Pf-DHFR binding profile of epoxide derivatives of 1,2,4-trioxanes was evaluated utilizing in silico methods like Swiss ADME software. Various parameters calculated from 100 ns atomistic molecular dynamics trajectory, including MM-GBSA binding energy calculation, depict a good binding profile of synthesized compounds against this protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Code availability

Not applicable.

Availability of data and material

Experimental details and spectral data of all the compounds are available in the attached electronic supplementary information (ESI).

References

  1. Heller LE, Roepe PD (2019) Artemisinin-based antimalarial drug therapy: molecular pharmacology and evolving resistance. Trop Med Infect Dis 4:89. https://doi.org/10.3390/tropicalmed4020089

    Article  PubMed Central  Google Scholar 

  2. Fröhlich T, Çapcı Karagöz A, Reiter C, Tsogoeva SB (2016) Artemisinin-derived dimers: potent antimalarial and anticancer agents. J Med Chem 59:7360–7388. https://doi.org/10.1021/acs.jmedchem.5b01380

    Article  CAS  PubMed  Google Scholar 

  3. Slack RD, Jacobine AM, Posner GH (2012) Antimalarial peroxides: advances in drug discovery and design. Medchemcomm 3:281. https://doi.org/10.1039/c2md00277a

    Article  CAS  Google Scholar 

  4. Cumming JN, Ploypradith P, Posner GH (1996) Antimalarial activity of artemisinin (Qinghaosu) and related trioxanes: mechanism (s) of action. 253–297

  5. Klayman DL (1985) Qinghaosu (Artemisinin): an antimalarial drug from China. Science (80)228:1049–1055. https://doi.org/10.1126/science.3887571

  6. Ploypradith P (2004) Development of artemisinin and its structurally simplified trioxane derivatives as antimalarial drugs. Acta Trop 89:329–342. https://doi.org/10.1016/j.actatropica.2003.10.006

    Article  CAS  PubMed  Google Scholar 

  7. O’Neill PM, Posner GH (2004) A medicinal chemistry perspective on artemisinin and related endoperoxides. J Med Chem 47:2945–2964. https://doi.org/10.1021/jm030571c

    Article  CAS  PubMed  Google Scholar 

  8. Tiwari MK, Coghi P, Agrawal P et al (2020) Design, synthesis, structure-activity relationship and docking studies of novel functionalized Arylvinyl-1,2,4-trioxanes as potent antiplasmodial as well as anticancer agents. ChemMedChem 15:1216–1228. https://doi.org/10.1002/cmdc.202000045

    Article  CAS  PubMed  Google Scholar 

  9. Debnath P, Debnath B, Bhaumik S, Debnath S (2020) In silico identification of potential inhibitors of ADP-ribose phosphatase of SARS-CoV-2 nsP3 by combining E-Pharmacophore- and receptor-based virtual screening of database. ChemistrySelect 5:9388–9398. https://doi.org/10.1002/slct.202001419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sen D, Bhaumik S, Debnath P, Debnath S (2021) Potentiality of Moringa oleifera against SARS-CoV-2: identified by a rational computer aided drug design method J Biomol Struct Dyn 1–18. https://doi.org/10.1080/07391102.2021.1898475

  11. Chatterjee S, Maity A, Chowdhury S et al (2021) In silico analysis and identification of promising hits against 2019 novel coronavirus 3C-like main protease enzyme. J Biomol Struct Dyn 39:5290–5303. https://doi.org/10.1080/07391102.2020.1787228

    Article  CAS  PubMed  Google Scholar 

  12. Singh C, Verma VP, Naikade NK et al (2010) 6-(4′-Aryloxy-phenyl)vinyl-1,2,4-trioxanes: a new series of orally active peroxides effective against multidrug-resistant Plasmodium yoelii in Swiss mice. Bioorg Med Chem Lett 20:4459–4463. https://doi.org/10.1016/j.bmcl.2010.06.045

    Article  CAS  PubMed  Google Scholar 

  13. Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E (2020) AMDock: a versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4. Biol Direct 15:12. https://doi.org/10.1186/s13062-020-00267-2

    Article  PubMed  PubMed Central  Google Scholar 

  14. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Trott O, Olson AJ (2009) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem NA-NA. https://doi.org/10.1002/jcc.21334

    Article  Google Scholar 

  16. Quiroga R, Villarreal MA (2016) Vinardo: a scoring function based on autodock vina improves scoring, docking, and virtual screening. PLoS ONE 11:e0155183. https://doi.org/10.1371/journal.pone.0155183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Masters L, Eagon S, Heying M (2020) Evaluation of consensus scoring methods for AutoDock Vina, smina and idock. J Mol Graph Model 96:107532. https://doi.org/10.1016/j.jmgm.2020.107532

    Article  CAS  PubMed  Google Scholar 

  18. Bowers KJ, Chow DE, Xu H et al (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: ACM/IEEE SC 2006 Conference (SC’06). IEEE 43–43

  19. Laskowski RA, Jabłońska J, Pravda L et al (2018) PDBsum: structural summaries of PDB entries. Protein Sci 27:129–134. https://doi.org/10.1002/pro.3289

    Article  CAS  PubMed  Google Scholar 

  20. O’Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33. https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rao PS, Apparao A, Professor A (2014) Energy minimization and conformation analysis of molecules using steepest descent method.

  22. Huang J, Rauscher S, Nawrocki G et al (2017) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14:71–73. https://doi.org/10.1038/nmeth.4067

    Article  CAS  PubMed  Google Scholar 

  23. Debnath P, Bhaumik S, Sen D et al (2021) Identification of SARS-CoV-2 main protease inhibitors using structure based virtual screening and molecular dynamics simulation of DrugBank database. ChemistrySelect 6:4991–5013. https://doi.org/10.1002/slct.202100854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189. https://doi.org/10.1063/1.467468

    Article  CAS  Google Scholar 

  25. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  26. Gohlke H, Kiel C, Case DA (2003) Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras–RalGDS complexes. J Mol Biol 330:891–913. https://doi.org/10.1016/S0022-2836(03)00610-7

    Article  CAS  PubMed  Google Scholar 

  27. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rudrapal M, Chetia D, Singh V (2017) Novel series of 1,2,4-trioxane derivatives as antimalarial agents. J Enzyme Inhib Med Chem 32:1159–1173. https://doi.org/10.1080/14756366.2017.1363742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rawat V, Dey S, Sudalai A (2012) Synthesis of the anti-influenza agent (−)-oseltamivir free base and (−)-methyl 3-epi-shikimate. Org Biomol Chem 10:3988. https://doi.org/10.1039/c2ob25635e

    Article  CAS  PubMed  Google Scholar 

  30. Nighot D, Jain AK, Singh M, Rawat V (2020) A convenient 5-exo-dig cyclization route to diastereomerically pure methyl (2S)-2-(1-benzyl-3-oxo-1,3-dihydro-2H-isoindol-2-yl)-3-methylbutanoate. Chem Heterocycl Compd 56:1370–1374. https://doi.org/10.1007/s10593-020-02825-y

    Article  CAS  Google Scholar 

  31. Karnatak M, Hassam M, Vanangamudi M et al (2021) Novel naphthyl based 1,2,4-trioxanes: Synthesis and in vivo efficacy in the Plasmodium yoelii nigeriensis in Swiss mice. Bioorg Med Chem Lett 51:128372. https://doi.org/10.1016/j.bmcl.2021.128372

    Article  CAS  PubMed  Google Scholar 

  32. Cross JB, Thompson DC, Rai BK et al (2009) Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model 49:1455–1474. https://doi.org/10.1021/ci900056c

    Article  CAS  PubMed  Google Scholar 

  33. Wang Z, Sun H, Yao X et al (2016) Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys 18:12964–12975. https://doi.org/10.1039/C6CP01555G

    Article  CAS  PubMed  Google Scholar 

  34. Islam MA, Pillay TS (2019) Identification of promising anti-DNA gyrase antibacterial compounds using de novo design, molecular docking and molecular dynamics studies. J Biomol Struct Dyn 1–12. https://doi.org/10.1080/07391102.2019.1617785

  35. Kufareva I, Abagyan R (2012) Methods of protein structure comparison. Methods Mol Biol 857:231–257. https://doi.org/10.1007/978-1-61779-588-6_10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Dr. Ravi Kumar Muttineni, Founder & CSO of Immunocure Discovery Solutions Pvt Ltd, Hyderabad, Telangana, India, 500101, for conducting MM/GBSA experiments by providing software facilities in his establishment.

Funding

Ved Prakash Verma thanks the Department of Science and Technology, New Delhi, India, for the research grant. This research work was financially supported by DST-SERB File number: EEQ /2019/000078.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception & design. The manuscript was written through contributions of all authors. Akriti Kumari and Manvika Karnatak, conducted experiments related to chemical synthesis, purification, and characterization of organic compounds. Varun Rawat and Ved Prakash Verma conceptualized the synthetic work and contributed in manuscript preparation. Debanjan Sen conducted molecular dynamics simulation and contributed in manuscript preparation. Shahnawaz Khan participated in the interpretation of data.

Corresponding authors

Correspondence to Debanjan Sen, Varun Rawat or Ved Prakash Verma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7829 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, A., Karnatak, M., Sen, D. et al. Synthesis, molecular docking and dynamics study of novel epoxide derivatives of 1,2,4-trioxanes as antimalarial agents. Struct Chem 33, 907–919 (2022). https://doi.org/10.1007/s11224-022-01885-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01885-4

Keywords

Navigation