Skip to main content
Log in

Harnessing the hidden allelic diversity of wild Cicer to accelerate genomics-assisted chickpea crop improvement

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Chickpea, commonly called Bengal gram or Garbanzo bean, faces a productivity crisis around the globe due to numerous biotic and abiotic stresses. The eroded genetic base of the cultivated Cicer gene pool is becoming a significant bottleneck in developing stress-resilient chickpea cultivars. In this scenario, the crop wild relatives (CWR) of chickpea, with the useful genomic wealth of their wild adaptation, give a ray of hope to improve the genetic background of the cultivated Cicer gene pool. To extrapolate these unearthed genomic diversities of wild, we require a thorough understanding of the pre-historic domestication episodes that are changing their shape with the expansion of the available scientific evidence. Keeping aforesaid in view, the current review article provides a glimpsed overview on several efforts done so far to reveal the mysterious origin and evolution of the Cicer gene pool, along with the constraints in their utilization for chickpea crop improvement. It encapsulates various stress-resilient CWR of chickpea and their use in several pre-breeding programs to develop numerous breeding populations for crop genetic enhancement. Further, this review will recapitulate the significant contributions of structural, functional and comparative genomics, pan-genomics and diverse genomics-assisted breeding strategy in dissecting the untapped trait-specific allelic/gene diversity and domestication pattern behind the CWR of chickpea, along with their potential and promises. We expect the newly explored genetic variations may be used in the breeding programs for re-wilding the cultigens’ genomic background to open a new avenue for genetic gain and crop improvement capacity of chickpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Singh M, Malhotra N, Singh K (2021) Broadening the genetic base of cultivated chickpea following introgression of wild Cicer species-progress, constraints and prospects. Genet Resour Crop Evol 68:2181–2205

    Article  Google Scholar 

  2. Deb AC, Khaleque MA (2009) Nature of gene action of some quantitative traits in chickpea (Cicer arietinum L.). World J Agric Sci 5:361–368

    Google Scholar 

  3. Gil J, Nadal S, Luna D et al (1996) Variability of some physico-chemical characters in Desi and Kabuli chickpea types. J Sci Food Agric 71:179–184

    Article  CAS  Google Scholar 

  4. Thudi M, Chitikineni A, Liu X et al (2016) Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea (Cicer arietinum L.). Sci Rep 6:38636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Varshney RK, Kudapa H, Roorkiwal M et al (2012) Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies. J Biosci 37:811–820

    Article  CAS  PubMed  Google Scholar 

  6. Ryan JG (1997) A global perspective on pigeonpea and chickpea sustainable production systems: present status and future potential. Recent Advant Pulses Res 44:27–32

    Google Scholar 

  7. Varshney RK, Thudi M, Nayak SN et al (2014) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462

    Article  CAS  PubMed  Google Scholar 

  8. Flowers TJ, Gaur PM, Gowda CL et al (2010) Salt sensitivity in chickpea. Plant Cell Environ 33:490–509

    Article  CAS  PubMed  Google Scholar 

  9. Singh AK, Tomar RKS, Kasana BS et al (2016) Integrated wilt management in chickpea (Cicer aritinum L.) in Bundelkhand region. Indian Res J Ext Educ 16:65–69

    CAS  Google Scholar 

  10. Rubiales D, Fondevilla S (2012) Future prospects for ascochyta blight resistance breeding in cool season food legumes. Front Plant Sci 3:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abbo S, Berger J, Turner NC (2003) Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct Plant Biol 30:1081–1087

    Article  PubMed  Google Scholar 

  12. Mallikarjuna N, Sharma H, Upadhyaya H (2007) Exploitation of wild relatives of pigeonpea and chickpea for resistance to Helicoverpa armigera. J SAT Agric Res 3:4

    Google Scholar 

  13. Varshney RK, Thudi M, Roorkiwal M et al (2019) Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat Genet 51:857–864

    Article  CAS  PubMed  Google Scholar 

  14. Varshney RK, Roorkiwal M, Sun S et al (2021) A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature 599:622–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Varshney RK, Song C, Saxena RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240

    Article  CAS  PubMed  Google Scholar 

  16. Van der Maesen L (1987) Origin, history and taxonomy of chickpea. In: The chickpea, pp 11–34

  17. Ladizinsky G, Adler A (1976) Genetic relationships among the annual species of Cicer L. Theor Appl Genet 48:197–203

    Article  CAS  PubMed  Google Scholar 

  18. Helbaek H (1970) Plant husbandry of Hacilar. In: Mellaart J (ed) Excavation in Hacilar. Edinburgh University Press, Edinburgh, pp 189–191

    Google Scholar 

  19. Ladizinsky G (1995) Chickpea. In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman Scientific & Technical, Harlow, UK, pp 258–261

    Google Scholar 

  20. Kumar J, Abbo S (2001) Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments. Adv Agron 72:108–138

    Google Scholar 

  21. Gupta PK, Bahl JR (1983) Cytogenetics of crop plants. Macmillan, Delhi

    Google Scholar 

  22. Pundir R, Rao N, van den Maesen L (1985) Distribution of qualitative traits in the world germplasm of chickpea (Cicer arietinum L.). Euphytica 34:697–703

    Article  Google Scholar 

  23. Toker C, Berger J, Eker T et al (2021) Cicer turcicum: a new Cicer species and its potential to improve chickpea. Front Plant Sci 12:587

    Article  Google Scholar 

  24. Singh F , Diwakar B (1995) Chickpea Botany and Production Practices. Man Int Crops Res Inst Semi-Arid Trop

  25. Hammer K (1984) Das domestikationssyndrom. Die Kulturpflanze 32:11–34

    Article  Google Scholar 

  26. Sharma S (2017) Prebreeding using wild species for genetic enhancement of grain legumes at ICRISAT. Crop Sci 57:1132–1144

    Article  Google Scholar 

  27. Berger J, Abbo S, Turner NC (2003) Ecogeography of annual wild Cicer species. Crop Sci 43:1076–1090

    Article  Google Scholar 

  28. Malhotra R, Pundir R, Kaiser W (2000) Cicer species-conserved resources, priorities for collection and future prospects. In: Knight R (ed) Linking Research and Marketing Opportunities for Pulses in the 21st Century. Springer, Dordrecht, pp 603–611

    Chapter  Google Scholar 

  29. Singh M (2020) Chapter 1—introduction. In: Singh M (ed) Chickpea: crop wild relatives for enhancing genetic gains. Academic Press, pp 1–18

    Google Scholar 

  30. Singh R, Jauhar P (2005) Genetic resources, chromosome engineering, and crop improvement: grain legumes. CRC Press, Boca Raton

    Book  Google Scholar 

  31. Singh M, Bisht IS, Dutta M et al (2014) Characterization and evaluation of wild annual Cicer species for agro-morphological traits and major biotic stresses under Northwestern Indian conditions. Crop Sci 54:229–239

    Article  Google Scholar 

  32. Singh AK, Singh RV, Bharati RC et al (2010) Introduction of wild and weedy relatives of crop plants in India. Environ Ecol 28:1715–1721

    Google Scholar 

  33. Di Vito M, Zaccheo G, Catalano F (1995) Response of chickpea lines to Meloidogyne artiella and Pratylenchus thornei. Nematol Mediterr 23:81

    Google Scholar 

  34. Di Vito M, Singh KB, Greco N et al (1996) Sources of resistance to cyst nematode in cultivated and wild Cicer species. Genet Resour Crop Evol 43:103–107

    Article  Google Scholar 

  35. Singh KB, Di Vito M, Greco N, Saxena MC (1989) Reaction of wild Cicer spp. lines to Heterodera ciceri. Nematol Mediterr 17:113–114

    Google Scholar 

  36. Reen RA, Mumford MH, Thompson JP (2019) Novel sources of resistance to root-lesion nematode (Pratylenchus thornei) in a new collection of wild Cicer species (C. reticulatum and C. echinospermum) to improve resistance in cultivated chickpea (C. arietinum). Phytopathology 109:1270–1279

    Article  PubMed  Google Scholar 

  37. Sharma HC, Pampapathy G, Lanka SK et al (2005) Antibiosis mechanism of resistance to pod borer, Helicoverpa armigera in wild relatives of chickpea. Euphytica 142:107–117

    Article  Google Scholar 

  38. Sharma HC, Bhagwat MP, Pampapathy G et al (2006) Perennial wild relatives of chickpea as potential sources of resistance to Helicoverpa armigera. Genet Resour Crop Evol 53:131–138

    Article  Google Scholar 

  39. Golla SK, Rajasekhar P, Akbar SMD et al (2018) Proteolytic activity in the midgut of Helicoverpa armigera (Noctuidae: Lepidoptera) larvae fed on wild relatives of Chickpea, Cicer arietinum. J Econ Entomol 111:2409–2415

    Article  CAS  PubMed  Google Scholar 

  40. Kaiser WJ, Klein RE, Larsen RC et al (1993) Chickpea wilt incited by pea streak carlavirus. Plant Dis (USA). https://doi.org/10.1094/PD-77-0922

    Article  Google Scholar 

  41. Leonetti P, Accotto GP, Hanafy MS et al (2018) Viruses and phytoparasitic nematodes of Cicer arietinum L.: biotechnological approaches in interaction studies and for sustainable control. Fron Plant Sci 9:319

    Article  Google Scholar 

  42. Li Y, Ruperao P, Batley J et al (2017) Genome analysis identified novel candidate genes for Ascochyta blight resistance in chickpea using whole genome re-sequencing data. Front Plant Sci 8:359

    PubMed  PubMed Central  Google Scholar 

  43. Shah TM, Hassan M, Haq MA et al (2005) Evaluation of Cicer species for resistance to Ascochyta Blight. Pak J Bot 37:431–438

    Google Scholar 

  44. Pande S, Sharma M, Gaur PM et al (2010) Host plant resistance to Ascochyta blight of chickpea. Information bulletin no. 82, Project Report, ICRISAT

  45. Pande S, Ramgopal D, Kishore GK et al (2006) Evaluation of wild Cicer species for resistance to Ascochyta blight and Botrytis gray mold in controlled environment at ICRISAT, Patancheru, India. J SAT Agric Res 2:1–3

    Google Scholar 

  46. Collard BCY, Ades PK, Pang ECK et al (2001) Prospecting for sources of resistance to Ascochyta blight in wild Cicer species. Australas Plant Pathol 30:271–276

    Article  Google Scholar 

  47. Nene YL, Haware MP (1980) Screening chickpea for resistance to wilt. Plant Dis 64:379–380

    Article  Google Scholar 

  48. Kaiser WJ, Alacala-Jimenez AR, Hervas-Vargas A et al (1994) Screening of wild Cicer species for resistance to races 0 and 5 of Fusarium oxysporum f. sp. ciceris. Plant Dis 78:962–967

    Article  Google Scholar 

  49. Infantino A, Porta-Puglia A, Singh KB (1996) Screening wild Cicer species for resistance to Fusarium wilt. Plant Dis 80:42–44

    Article  Google Scholar 

  50. Singh M, Bhardwaj C, Singh S et al (2016) Chickpea genetic resources and its utilization in India: current status and future prospects. Indian J Genet Plant Breed. https://doi.org/10.5958/0975-6906.2016.00070.5

    Article  Google Scholar 

  51. Stevenson PC, Haware MP (1999) Maackiain in Cicer bijugum Rech. F. associated with resistance to Botrytis gray mold. Biochem Syst Ecol 27:761–767

    Article  CAS  Google Scholar 

  52. Kaur L, Sirari A, Kumar D et al (2013) Combining Ascochyta blight and Botrytis grey mould resistance in chickpea through interspecific hybridization. Phytopathol Mediterr 52:157–165

    CAS  Google Scholar 

  53. Canci H, Toker C (2009) Evaluation of yield criteria for drought and heat resistance in chickpea (Cicer arietinum L.). J Agron Crop Sci 195:47–54

    Article  Google Scholar 

  54. Toker C, Canci H, Yildirim TOLGA (2007) Evaluation of perennial wild Cicer species for drought resistance. Genet Resour Crop Evol 54:1781–1786

    Article  Google Scholar 

  55. Tekin M, Sari D, Catal M et al (2018) Eco-geographic distribution of Cicer isauricum PH Davis and threats to the species. Genet Rsour Crop Evol 65:67–77

    Article  Google Scholar 

  56. Srivastava R, Bajaj D, Malik A (2016) Transcriptome landscape of perennial wild Cicer microphyllum uncovers functionally relevant molecular tags regulating agronomic traits in chickpea. Sci Rep 6:1–17

    Article  CAS  Google Scholar 

  57. Canci HÜSEYİN, Toker C (2009) Evaluation of annual wild Cicer species for drought and heat resistance under field conditions. Genet Resour Crop Evol 56:1–6

    Article  Google Scholar 

  58. Singh K, Malhotra R, Halila M et al (1993) Current status and future strategy in breeding chickpea for resistance to biotic and abiotic stresses. Euphytica 73:137–149

    Article  Google Scholar 

  59. Singh K, Ocampo B, Robertson L (1998) Diversity for abiotic and biotic stress resistance in the wild annual Cicer species. Genet Resour Crop Evol 45:9–17

    Article  Google Scholar 

  60. Robertson L, Singh K, Ocampo B (1995) A catalog of annual wild Cicer species. Beirut, Lebanon: International Center for Agricultural Research in the Dry Areas (ICARDA)

  61. Robertson L, Ocampo B, Singh K (1997) Morphological variation in wild annual Cicer species in comparison to the cultigen. Euphytica 95:309–319

    Article  Google Scholar 

  62. Singh U, Pundir R (1991) Amino acid composition and protein content of chickpea and its wild relatives. Int Chickpea Newsl 25:19–20

    Google Scholar 

  63. Ocampo B, Robertson LD, Singh KB (1998) Variation in seed protein content in the annual wild Cicer species. J Sci Food Agric 78:220–224

    Article  CAS  Google Scholar 

  64. Sharma S, Lavale SA, Nimje C et al (2021) Characterization and identification of annual wild Cicer species for seed protein and mineral concentrations for chickpea improvement. Crop Sci 61:305–319

    Article  CAS  Google Scholar 

  65. Saini HS, Weder JK, Knights EJ (1992) Inhibitor activities of chickpeas (Cicer arietinum L) against bovine, pocine and human trypsin and chymotrypsin. J Sci Food Agric 60:287–295

    Article  CAS  Google Scholar 

  66. Vandemark GJ, Grusak MA, McGee RJ (2018) Mineral concentrations of chickpea and lentil cultivars and breeding lines grown in the US Pacific Northwest. Crop J 6:253–262

    Article  Google Scholar 

  67. Kaur K, Grewal SK, Gill PS et al (2019) Comparison of cultivated and wild chickpea genotypes for nutritional quality and antioxidant potential. J Food Sci Technol 56:1864–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Summerfield R, Ellis R, Roberts E (1989) Vernalization in chickpea (Cicer arietinum); fact or artefact? Ann Bot 64:599–603

    Article  Google Scholar 

  69. Abbo S, Lev-Yadun S, Galwey N (2002) Vernalization response of wild chickpea. New Phytol 154:695–701

    Article  CAS  PubMed  Google Scholar 

  70. Berger JD, Buck R, Henzell JM, Turner NC (2005) Evolution in the genus Cicer—vernalisation response and low temperature pod set in chickpea (C. arietinum L.) and its annual wild relatives. Aust J Agric Res 56:1191–1200

    Article  Google Scholar 

  71. Mallikarjuna N (1999) Ovule and embryo culture to obtain hybrids from interspecific incompatible pollinations in chickpea. Euphytica 110:1–6

    Article  Google Scholar 

  72. Mallikarjuna N, Jadhav D (2008) Techniques to produce hybrid between Cicer arietinum L. x C. pinnatifidum Jaub. Indian J Genet Plant Breed 68:398–405

    Google Scholar 

  73. Lulsdorf M, Mallikarjuna N, Clarke H et al (2005) Finding solutions for interspecific hybridization problems in chickpea (Cicer arietinum L). In 4th International Food Legumes Research Conference.

  74. Badami P, Mallikarjuna N, Moss J (1997) Interspecific hybridization between Cicer arietinum and C. pinnatifidum. Plant Breed 116:393–439

    Article  Google Scholar 

  75. Pundir R, Mengesha M (1995) Cross compatibility between chickpea and its wild relative, Cicer echinospermum Davis. Euphytica 83:241–245

    Article  Google Scholar 

  76. Kahraman A, Pandey A, Khan MK et al (2017) Distinct Subgroups of Cicer echinospermum are associated with hybrid sterility and breakdown in interspecific crosses with cultivated chickpea. Crop Sci 57:3101–3111

    Article  Google Scholar 

  77. Sharma S, Upadhyaya HD (2015) Vernalization and photoperiod response in annual wild Cicer species and cultivated chickpea. Crop Sci 55:2393–2400

    Article  CAS  Google Scholar 

  78. Sharma S, Upadhyaya HD (2019) photoperiod response of annual wild Cicer Species and cultivated chickpea on phenology, growth, and yield traits. Crop Sci 59:632–639

    Article  CAS  Google Scholar 

  79. Tanksley S, Nelson J (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  CAS  PubMed  Google Scholar 

  80. Sharma S, Upadhyaya H, Roorkiwal M et al (2016) Interspecific hybridization for chickpea (Cicer arietinum L.) improvement. In: Mason AS (ed) Polyploidy and hybridization for crop improvement. CRC Press, Boca Raton, pp 445–469

    Google Scholar 

  81. Singh M, Rani S, Malhotra N et al (2018) Transgressive segregations for agronomic improvement using interspecific crosses between C. arietinum L. x C. reticulatum Ladiz and C. arietinum L. x C. echinospermum Davis species. PLoS ONE 13:e0203082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Singh S, Gumber R, Joshi N et al (2005) Introgression from wild Cicer reticulatum to cultivated chickpea for productivity and disease resistance. Plant Breed 124:477–480

    Article  Google Scholar 

  83. Knights E, Southwell R, Schwinghamer M et al (2008) Resistance to Phytophthora medicaginis Hansen and Maxwell in wild Cicer species and its use in breeding root rot resistant chickpea (Cicer arietinum L.). Aust J Agric Res 59:383–387

    Article  Google Scholar 

  84. ICARDA (1995). Annual report for 1995. Germplasm Program Legumes, ICARDA, Aleppo, Syria.

  85. Singh B, Jaiswal H, Singh R et al (1984) Isolation of early-flowering recombinants from the interspecific cross between Cicer arietinum and Cicer reticulatum. Int Chickpea Newsl 11:14–16

    Google Scholar 

  86. Singh K, Ocampo B (1997) Exploitation of wild Cicer species for yield improvement in chickpea. Theor Appl Genet 95:418–423

    Article  Google Scholar 

  87. Jaiswal H, Singh B, Singh A et al (1986) Introgression of genes for yield and yield traits from C. reticulatum into C. arietinum. Int Chickpea Newsl 14:5–8

    Google Scholar 

  88. Upadhyaya H (2008) Crop germplasm and wild relatives: a source of novel variation for crop improvement. Korean J Crop Sci 53:12–17

    Google Scholar 

  89. Singh I, Singh R, Singh S, Sandhu J (2012) Introgression of productivity genes from wild to cultivated Cicer. Int Conf Sustain Agric Food Livelihood Secur Crop Improv 39:155–156

    Google Scholar 

  90. Singh RP, Singh I, Singh S, Sandhu J (2012) Assessment of genetic diversity among interspecific derivatives in chickpea. J Food Legum 25:150–152

    Google Scholar 

  91. Chaturvedi S, Nadarajan N (2010) Genetic enhancement for grain yield in chickpea–accomplishments and resetting research agenda. Electron J Plant Breed 1:611–615

    Google Scholar 

  92. Malhotra R, Singh K, Di Vito M et al (2002) Registration of ILC 10765 and ILC 10766 chickpea germplasm lines resistant to cyst nematode. (Registrations Of Germplasm). Crop Sci 42:1756–1757

    Article  Google Scholar 

  93. Rauf S, da Silva JT, Khan AA et al (2010) Consequences of plant breeding on genetic diversity. Int J Plant Breed 4:1–21

    Google Scholar 

  94. Sefera T, Abebie B, Gaur PM et al (2011) Characterisation and genetic diversity analysis of selected chickpea cultivars of nine countries using simple sequence repeat (SSR) markers. Crop Pasture Sci 62:177–187

    Article  Google Scholar 

  95. Garg R, Patel RK, Tyagi AK et al (2011) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 18:53–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Agarwal G, Jhanwar S, Priya P (2012) Comparative analysis of kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers. PLoS ONE 7:e52443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jhanwar S, Priya P, Garg R et al (2012) Transcriptome sequencing of wild chickpea as a rich resource for marker development. Plant Biotechnol J 10:690–702

    Article  CAS  PubMed  Google Scholar 

  98. Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome. https://doi.org/10.3835/plantgenome2013.03.0001in

    Article  Google Scholar 

  99. Jain M, Misra G, Patel RK (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729

    Article  CAS  PubMed  Google Scholar 

  100. Gupta S, Nawaz K, Parween S et al (2017) Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement. DNA Res 24:1–10

    PubMed  Google Scholar 

  101. Gaur PM, Jukanti AK, Samineni S et al (2013) Climate change and heat stress tolerance in chickpea. Climate Change and Heat Stress Tolerance in Chickpea, Wiley

    Book  Google Scholar 

  102. Saxena MS, Bajaj D, Kujur A et al (2014) Natural allelic diversity, genetic structure and linkage disequilibrium pattern in wild chickpea. PLoS ONE 9:e107484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Bajaj D, Das S, Upadhyaya HD et al (2015) A genome-wide combinatorial strategy dissects complex genetic architecture of seed coat colour in chickpea. Front Plant Sci 6:979

    Article  PubMed  PubMed Central  Google Scholar 

  104. Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551

    Article  CAS  PubMed  Google Scholar 

  105. Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218

    Article  CAS  PubMed  Google Scholar 

  106. Santra D, Ratnaparkhe M, Muelhbauer FJ (2000) Identification and mapping of QTLs conferring resistance to Ascochyta blight in chickpea. Crop Sci. https://doi.org/10.2135/cropsci2000.4061606x

    Article  Google Scholar 

  107. Collard BCY, Pang ECK, Ades PK, Taylor PWJ (2003) Preliminary investigation of QTLs associated with seedling resistance to ascochyta blight from Cicer echinospermum, a wild relative of chickpea. Theor Appl Genet 107:719–729

    Article  CAS  PubMed  Google Scholar 

  108. Amalraj A, Taylor J, Bithell S et al (2019) Mapping resistance to Phytophthora root rot identifies independent loci from cultivated (Cicer arietinum L.) and wild (Cicer echinospermum PH Davis) chickpea. Theor Appl Genet 132:1017–1033

    Article  CAS  PubMed  Google Scholar 

  109. Mugabe D, Coyne CJ, Piaskowski J et al (2019) Quantitative trait loci for cold tolerance in chickpea. Crop Sci 59:573–582

    Article  CAS  Google Scholar 

  110. Samineni S, Kamatam S, Thudi M (2016) Vernalization response in chickpea is controlled by a major QTL. Euphytica 207:453–461

    Article  CAS  Google Scholar 

  111. Srivastava R, Upadhyaya HD, Kumar R et al (2017) A multiple QTL-Seq strategy delineates potential genomic loci governing flowering time in chickpea. Front Plant Sci 8:1105

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ortega R, Hecht V, Freeman J et al (2019) Altered expression of an FT cluster underlies a major locus controlling domestication-related changes to chickpea phenology and growth habit. Front Plant Sci 10:824

    Article  PubMed  PubMed Central  Google Scholar 

  113. Varma Penmetsa R, Carrasquilla-Garcia N, Bergmann EM et al (2016) Multiple post-domestication origins of kabuli chickpea through allelic variation in a diversification-associated transcription factor. New Phytol 211:1440–1451

    Article  CAS  PubMed  Google Scholar 

  114. Das S, Singh M, Srivastava R et al (2016) mQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea. DNA Res 23:53–65

    CAS  PubMed  Google Scholar 

  115. Saxena MS, Bajaj D, Das S et al (2014) An integrated genomic approach for rapid delineation of candidate genes regulating agro-morphological traits in chickpea. DNA Res 21:695–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shin MG, Bulyntsev SV, Chang PL et al (2019) Multi-trait analysis of domestication genes in Cicer arietinumCicer reticulatum hybrids with a multidimensional approach: Modeling wide crosses for crop improvement. Plant Sci 285:122–131

    Article  CAS  PubMed  Google Scholar 

  117. Karaca N, Ates D, Nemli S et al (2020) Association mapping of magnesium and manganese concentrations in the seeds of C. arietinum and C. reticulatum. Genomics 112:1633–1642

    Article  CAS  PubMed  Google Scholar 

  118. Ozkuru E, Ates D, Nemli S et al (2019) Association mapping of loci linked to copper, phosphorus, and potassium concentrations in the seeds of C. arietinum and C. reticulatum. Genomics 111:1873–1881

    Article  CAS  PubMed  Google Scholar 

  119. Aw TL, Swanson B (1985) Influence of tannin on Phaseolus vulgaris protein digestibility and quality. J Food Sci 50:67–71

    Article  CAS  Google Scholar 

  120. Dixon RA, Liu C, Jun JH (2013) Metabolic engineering of anthocyanins and condensed tannins in plants. Curr Opin Biotechnol 24:329–335

    Article  CAS  PubMed  Google Scholar 

  121. Kozlov K, Singh A, Berger J et al (2019) Non-linear regression models for time to flowering in wild chickpea combine genetic and climatic factors. BMC Plant Biol 19:94

    Article  PubMed  PubMed Central  Google Scholar 

  122. Greenlon A, Chang PL, Damtew ZM et al (2019) Global-level population genomics reveals differential effects of geography and phylogeny on horizontal gene transfer in soil bacteria. Proc Natl Acad Sci 116:15200–15209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Diapari M, Sindhu A, Bett K et al (2014) Genetic diversity and association mapping of iron and zinc concentrations in chickpea (Cicer arietinum L.). Genome 57:459–468

    Article  CAS  PubMed  Google Scholar 

  124. Upadhyaya HD, Bajaj D, Das S et al (2016) Genetic dissection of seed-iron and zinc concentrations in chickpea. Sci Rep 6:1–12

    Article  CAS  Google Scholar 

  125. Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601

    Article  CAS  PubMed  Google Scholar 

  126. von Wettberg EJ, Chang PL, Başdemir F et al (2018) Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nat Commun 9:1–13

    CAS  Google Scholar 

  127. Lam HM, Xu X, Liu X et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053

    Article  CAS  PubMed  Google Scholar 

  128. Xu X, Liu X, Ge S et al (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30:105

    Article  CAS  Google Scholar 

  129. Zhou Z, Jiang Y, Wang Z et al (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414

    Article  CAS  PubMed  Google Scholar 

  130. Varshney RK, Saxena RK, Upadhyaya HD et al (2017) Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat Genet 49:1082

    Article  CAS  PubMed  Google Scholar 

  131. Khan AW, Garg V, Roorkiwal M et al (2019) Super-pangenome by integrating the wild side of a species for accelerated crop improvement. Trends Plant Sci 25:148–158

    Article  PubMed  CAS  Google Scholar 

  132. Knott D (1984) The genetic nature of mutations of a gene for yellow pigment linked to Lr19 in’Agatha’wheat. Can J Genet Cytol 26:392–393

    Article  Google Scholar 

  133. Niu Z, Klindworth D, Yu G et al (2014) Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum. Theor Appl Genet 127:969–980

    Article  CAS  PubMed  Google Scholar 

  134. McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379

    Article  CAS  PubMed  Google Scholar 

  135. Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341:746–751

    Article  CAS  PubMed  Google Scholar 

  136. Sagi MS, Deokar AA, Tar’an B, (2017) Genetic analysis of NBS-LRR gene family in chickpea and their expression profiles in response to Ascochyta blight infection. Front Plant Sci 8:838

    Article  PubMed  PubMed Central  Google Scholar 

  137. Zhao B, Lin X, Poland J et al (2005) A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci 102:15383–15388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Periyannan S, Moore J, Ayliffe M et al (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786–788

    Article  CAS  PubMed  Google Scholar 

  139. Saintenac C, Zhang W, Salcedo A et al (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341:783–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Witek K, Jupe F, Witek AI et al (2016) Accelerated cloning of a potato late blight–resistance gene using RenSeq and SMRT sequencing. Nat Biotechnol 34:656

    Article  CAS  PubMed  Google Scholar 

  141. Steuernagel B, Periyannan SK, Hernández-Pinzón I et al (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol 34:652

    Article  CAS  PubMed  Google Scholar 

  142. Arora S, Steuernagel B, Gaurav K et al (2019) Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat Biotechnol 37:139–143

    Article  CAS  PubMed  Google Scholar 

  143. Zsögön A, Čermák T, Naves ER et al (2018) De novo domestication of wild tomato using genome editing. Nat Biotechnol 36:1211–1216

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support for this study provided by a research grant from the Department of Biotechnology (DBT), Government of India. JKM acknowledges the DBT-Research Fellowship Award.

Author information

Authors and Affiliations

Authors

Contributions

JKM and SKP conceived the idea. JKM and SKP wrote the manuscript. UCJ  and GPD revised and improved the manuscript.

Corresponding author

Correspondence to Swarup K. Parida.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Ethics approval

This is a review article and therefore no ethical approval is required.

Consent to participate

All Informed consent was obtained from all individual participants included in the review article.

Consent to publish

All authors have given approval to publish the review article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, J.K., Jha, U.C., Dixit, G.P. et al. Harnessing the hidden allelic diversity of wild Cicer to accelerate genomics-assisted chickpea crop improvement. Mol Biol Rep 49, 5697–5715 (2022). https://doi.org/10.1007/s11033-022-07613-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07613-9

Keywords

Navigation