Skip to main content

A Scintillating Journey of Genomics in Simplifying Complex Traits and Development of Abiotic Stress Resilient Chickpeas

  • Chapter
  • First Online:
Genomic Designing for Abiotic Stress Resistant Pulse Crops

Abstract

Chickpea (Cicer arietinum L.) is an important cool season food legume cultivated in more than 55 countries across the globe. In the context of climate change, productivity of chickpea is hampered by higher incidence of abiotic and biotic stresses. Among abiotic stresses, drought, heat, cold and salinity are the most important yield limiting factors. Advanced genomics technologies have great potential to accelerate mapping, gene discovery, marker development and genomics-assisted breeding. Integration of precise phenotypic data along with sequence information will help in developing cultivars tolerant to various abiotic stresses. In this chapter, we discuss the impact of various abiotic stresses on chickpea production and provide an update on potential strategies to develop stress-tolerant chickpea cultivars. In addition, we also summarize the systematic efforts of simplifying the complex traits in chickpea as well as development of improved varieties with tolerance to abiotic stresses during last decade. In addition, we also highlight the emerging stresses and future strategies to combat the abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Atieno J, Li Y, Langridge P, Dowling K, Brien C et al (2017) Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  • Atlin GN, Cairns JE, Das B (2017) Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Glob Food Secur 12:31–37

    Article  Google Scholar 

  • Bajaj D, Das S, Badoni S, Kumar V, Singh M et al (2015) Genome-wide high-throughput SNP discovery and genotyping for understanding natural (functional) allelic diversity and domestication patterns in wild chickpea. Sci Rep 5(1):1–17

    Article  Google Scholar 

  • Bandillo N, Raghavan C, Muyco PA, Sevilla MAL, Lobina IT et al (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  • Battisti D (2009) Science RN. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244

    Article  CAS  PubMed  Google Scholar 

  • Berger J, Turner N, Siddique K, Knights EJ, Brinsmead RB et al (2004) Genotype by environment studies across Australia reveal the importance of phenology for chickpea (Cicer arietinum L.) improvement. Aust J Agric Res 55(10):1071–1084

    Google Scholar 

  • Berger J, Kumar S, Nayyar H, Street KA, Sandhu JS et al (2012) Temperature-stratified screening of chickpea (Cicer arietinum L.) genetic resource collections reveals very limited reproductive chilling tolerance compared to its annual wild relatives. Field Crops Res 126:119–129

    Article  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Devi MJ, Lavanya M, Vani G et al (2009) Genetic engineering of chickpea (Cicer arietinum L.) with the P5CSF129A gene for osmoregulation with implications on drought tolerance. Mol Breed 23(4):591–606

    Google Scholar 

  • Bharadwaj C, Tripathi S, Soren KR, Thudi M, Singh RK, Sheoran S et al (2020) Introgression of “QTL-hotspot” region enhances drought tolerance and grain yield in three elite chickpea cultivars. Plant Genome. e20076. https://doi.org/10.1002/tpg2.20076

  • Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty U, Tongden C (2005) Evaluation of heat acclimation and salicylic acid treatments as potent inducers of thermotolerance in Cicer arietinum L. Curr Sci:384–389

    Google Scholar 

  • Change IC (2014) Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 1454

    Google Scholar 

  • Chen Y, Ghanem ME, Siddique KH (2017) Characterising root trait variability in chickpea (Cicer arietinum L.) germplasm. J Exp Bot 68(8):1987–1999

    Google Scholar 

  • Chidambaranathan P, Jagannadham PTK, Satheesh V, Kohli D, Basavarajappa SH et al (2018) Genome-wide analysis identifies chickpea (Cicer arietinum) heat stress transcription factors (Hsfs) responsive to heat stress at the pod development stage. J Plant Res 131(3):525–542

    Article  CAS  PubMed  Google Scholar 

  • Coyne CJ, Kumar S, von Wettberg EJ, Marques E, Berger JD et al (2020) Potential and limits of exploitation of crop wild relatives for pea, lentil, and chickpea improvement. Legume Sci:e36

    Google Scholar 

  • Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S et al (2015) Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res 22(3):193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devasirvatham V, Gaur PM, Mallikarjuna N, Raju TN, Trethowan RM et al (2013) Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crop Res 142:9–19

    Article  Google Scholar 

  • Devasirvatham V, Gaur P, Raju T, Trethowan RM, Tan DKY (2015) Field response of chickpea (Cicer arietinum L.) to high temperature. Field Crops Res 172:59–71

    Article  Google Scholar 

  • Dinari A, Niazi A, Afsharifar AR, Ramezani A et al (2013) Identification of upregulated genes under cold stress in cold-tolerant chickpea using the cDNA-AFLP approach. PLoS One 8(1):e52757

    Google Scholar 

  • Dixit GP, Srivastava AK, Singh NP (2019) Marching towards self-sufficiency in chickpea. Curr Sci 116(2):239–242

    Article  Google Scholar 

  • FAOSTAT (2018) Statistical database, Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Farooq M, Hussain M, Nawaz A, Lee DJ, Alghamdi SS et al (2017) Seed priming improves chilling tolerance in chickpea by modulating germination metabolism, trehalose accumulation and carbon assimilation. Plant Physiol Biochem 111:274–283

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Ullah A, Lee D-J, Alghamdi SS, Siddique KH et al (2018) Desi chickpea genotypes tolerate drought stress better than kabuli types by modulating germination metabolism, trehalose accumulation, and carbon assimilation. Plant Physiol Biochem 126:47–54

    Article  CAS  PubMed  Google Scholar 

  • Ferguson JN (2019) Climate change and abiotic stress mechanisms in plants. Emerging Top Life Sci 3(2):165–181

    Article  CAS  Google Scholar 

  • Flowers TJ, Gaur PM, Gowda CL, Krishnamurthy L, Samineni S et al (2010) Salt sensitivity in chickpea. Plant Cell Environ 33(4):490–509

    Article  CAS  PubMed  Google Scholar 

  • Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L et al (2016) Transcriptome analyses reveal genotype-and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep 6:19228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanti SKK, Sujata K, Kumar BV, Karba NN, Janardhan Reddy K et al (2011) Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield. Biol Planta 55(4):634

    CAS  Google Scholar 

  • Gunes A, Cicek N, Inal A, Alpaslan M, Eraslan F et al (2006) Genotypic response of chickpea (Cicer arietinum L.) cultivars to drought stress implemented at pre-and post-anthesis stages and its relations with nutrient uptake and efficiency. Plant Soil Environ 52(8):368

    Google Scholar 

  • Gunes A, Inal A, Adak M, Bagci EG, Cicek N et al (2008) Effect of drought stress implemented at pre-or post-anthesis stage on some physiological parameters as screening criteria in chickpea cultivars. Russ J Plant Physiol 55(1):59–67

    Article  CAS  Google Scholar 

  • Hamwieh A, Imtiaz M, Malhotra R (2013) Multi-environment QTL analyses for drought-related traits in a recombinant inbred population of chickpea (Cicer arientinum L.). Theor AppL Genet 126(4):1025–1038

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, RoyChowdhury R, Fujita M et al (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684

    Google Scholar 

  • Hatfield JL, Dold C (2019) Water-use efficiency: advances and challenges in a changing climate. Front Plant Sci 10:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Hickey LT, Dieters MJ, DeLacy IH, Kravchuk OY, Mares DJ et al (2009) Grain dormancy in fixed lines of white-grained wheat (Triticum aestivum L.) grown under controlled environmental conditions. Euphytica 168(3):303–310

    Google Scholar 

  • Jaganathan D, Thudi M, Kale S, Azam S, Roorkiwal M et al (2015) Genotyping-by-sequencing based intra-specific genetic map refines a ‘‘QTL-hotspot” region for drought tolerance in chickpea. Mol Genet Genom 290(2):559–571

    Article  CAS  Google Scholar 

  • Jaganathan D, Bohra A, Thudi M, Varshney RK et al (2020) Fine mapping and gene cloning in the post-NGS era: advances and prospects. Theor Appl Genet 1–20

    Google Scholar 

  • Jain M, Misra G, Patel RK, Priya P, Jhanwar S et al (2013) A draft genome sequence of the pulse crop chickpea (Cicer arientinum L.). Plant J 74(5):715–729

    Google Scholar 

  • Jha UC, Chaturvedi SK, Bohra A, Basu PS, Khan MS et al (2014) Abiotic stresses, constraints and improvement strategies in chickpea. Plant Breed 133(2):163–178

    Article  Google Scholar 

  • Jha UC, Jha R, Singh NP, Shil S, Kole PC et al (2018) Heat tolerance indices and their role in selection of heat stress tolerant chickpea (Cicer arientinum) genotypes. Indian J Agri Sci

    Google Scholar 

  • Jha UC, Nayyar H, Palakurthi R, Jha R, Valluri V, Bajaj P, Chitikineni A, Singh NP, Varshney RK, Thudi M (2021) Major QTLs and potential candidate genes for heat stress tolerance identified in chickpea (Cicer arietinum L.). Frontiers in Plant Sci 12:655103. https://doi.org/10.3389/fpls.2021.655103

  • Jumrani K, Bhatia VS, Pandey GP (2017) Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean. Photosynth Res 131(3):333–350

    Article  CAS  PubMed  Google Scholar 

  • Kale SM, Jaganathan D, Ruperao P, Chen C, Punna R et al (2015) Prioritization of candidate genes in “QTL-hotspot” region for drought tolerance in chickpea (Cicer arientinum L.). Sci Rep 5:15296

    Google Scholar 

  • Kanouni H, Khalily M, Malhotra RS (2009) Assessment of cold tolerance of chickpea at rainfed highlands of Iran. Eurasian J Agric Environ Sci 5:250–254

    Google Scholar 

  • Karami-Moalem S, Maali-Amiri R, Kazemi-Shahandashti S-S (2018) Effect of cold stress on oxidative damage and mitochondrial respiratory properties in chickpea. Plant Physiol Biochem 122:31–39

    Article  CAS  PubMed  Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Upadhyaya HD, Krishna H, Chandra S et al (2005) Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arientinum L.). Euphytica 146(3):213–222

    Google Scholar 

  • Kaur D, Grewal S, Kaur J, Singh S (2017) Differential proline metabolism in vegetative and reproductive tissues determine drought tolerance in chickpea. Biol Planta 61(2):359–366

    Article  CAS  Google Scholar 

  • Kaushal N, Awasthi R, Gupta K, Gaur P, Siddique KH et al (2013) Heat-stress-induced reproductive failures in chickpea (Cicer arientinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct Plant Biol 40(12):1334–1349

    Article  CAS  PubMed  Google Scholar 

  • Kaushal N, Bhandari K, Siddique KH, Nayyar H et al (2016) Food crops face rising temperatures: an overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food Agri 2(1):1134380

    Google Scholar 

  • Kiran A, Kumar S, Nayyar H, Sharma KD (2019) Low temperature-induced aberrations in male and female reproductive organ development cause flower abortion in chickpea. Plant Cell Environ 42(7):2075–2089

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy L, Kashiwagi J, Gaur P, Upadhyaya HD, Vadez V et al (2010) Sources of tolerance to terminal drought in the chickpea (Cicer arientinum L.) minicore germplasm. Field Crops Res 119(2–3):322–330

    Google Scholar 

  • Krishnamurthy L, Gaur P, Basu P, Chaturvedi SK, Tripathi S et al (2011) Large genetic variation for heat tolerance in the reference collection of chickpea (Cicer arientinum L.) germplasm. Plant Genet Resour 9(1):59–69

    Google Scholar 

  • Kudapa H, Agarwal G, Chitikineni A, Gaur PM, Krishnamurthy L et al (2017) Mining for heat stress responsive genes by RNA-Seq based comprehensive gene expression analyses in chickpea (Cicer arientinum L.). Plant Cell Environ 87

    Google Scholar 

  • Kudapa H, Garg V, Chitikineni A, Varshney RK (2018) The RNA‐Seq‐based high resolution gene expression atlas of chickpea (Cicer arientinum L.) reveals dynamic spatio‐temporal changes associated with growth and development. Plant Cell Environ 41(9):2209–2225

    Google Scholar 

  • Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R et al (2015a) Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea. Front Plant Sci 6:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Kujur A, Upadhyaya HD, Shree T, Bajaj D, Das S et al (2015b) Ultra-high density intra-specific genetic linkage maps accelerate identification of functionally relevant molecular tags governing important agronomic traits in chickpea. Sci Rep 5:9468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Malik J, Thakur P, Kaistha S, Sharma KD et al (2011) Growth and metabolic responses of contrasting chickpea (Cicer arientinum L.) genotypes to chilling stress at reproductive phase. Acta Physiol Plant 3:779–787

    Article  Google Scholar 

  • Kumar S, Thakur P, Kaushal N, Malik JA, Gaur P et al (2013) Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Arch Agron Soil Sci 59(6):823–843

    Article  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. Volume II. Water, radiation, salt, and other stresses, vol edn 2. Academic Press, New York, p 365

    Google Scholar 

  • Li Y, Ruperao P, Batley J, Edwards D, Khan T et al (2018) Investigating drought tolerance in chickpea using genome-wide association mapping and genomic selection based on whole-genome resequencing data. Front Plant Sci 9:190

    Article  PubMed  PubMed Central  Google Scholar 

  • Mafakheri A (2011) Effect of drought stress and subsequent recovery on protein, carbohydrate contents, catalase and peroxidase activities in three chickpea (Cicer arientinum) cultivars. Aust J Crop Sci 5(10):1255–1260

    CAS  Google Scholar 

  • Mahdavi Mashaki K, Garg V, Nasrollahnezhad Ghomi AA, Kudapa H, Chitikineni A et al (2018) RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arientinum L.). PLoS One 13(6):e0199774

    Google Scholar 

  • Mallikarjuna BP, Samineni S, Thudi M, Sajja SB, Khan AW et al (2017) Molecular mapping of flowering time major genes and QTLs in chickpea (Cicer arientinum L.). Front Plant Sci 8:1140

    Google Scholar 

  • Mashaki KM, Garg V, Ghomi AAN, Kudapa H, Chitikineni A, Nezhad KZ, Yamchi A, Soltanloo H, Varshney RK, Thudi M (2018) RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.). PLoS ONE 13:e0199774

    Google Scholar 

  • Manchikatla P, Kalavikatte D, Mallikarjuna BP, Palakurthi R, Khan AW, Jha UC, Bajaj P, Singam P, Chitikineni A, Varshney RK, Thudi M (2021) MutMap approach enables rapid identification of candidate genes and development of markers associated with early flowering and enhanced seed size in chickpea (Cicer arietinum L.). Frontiers in Plant Sci 12:688694. https://doi.org/10.3389/fpls.2019.00966

  • Millan T, Clarke HJ, Siddique KH, Buhariwalla HK, Gaur PM et al (2006) Chickpea molecular breeding: new tools and concepts. Euphytica 147(1–2):81–103

    Article  Google Scholar 

  • Mobini SH, Warkentin TD (2016) A simple and efficient method of in vivo rapid generation technology in pea (Pisum sativum L.). In Vitro Cell Dev Biol Plant 52(5):530–536

    Google Scholar 

  • Monneveux P, Jing R, Misra S (2012) Phenotyping for drought adaptation in wheat using physiological traits. Front Physiol 3:429

    Article  PubMed  PubMed Central  Google Scholar 

  • Mugabe D, Coyne CJ, Piaskowski J, Zheng P, Ma Y et al (2019) Quantitative trait loci for cold tolerance in chickpea. Crop Sci 59(2):573–582

    Article  CAS  Google Scholar 

  • Munns R, Passioura J (1984) Effect of prolonged exposure to NaCl on the osmotic pressure of leaf xylem sap from intact, transpiring barley plants. Funct Plant Biol 11(6):497–507

    Article  CAS  Google Scholar 

  • Neeraj K, Bharadwaj C, Satyavathi C, Madan P, Tapan K et al (2017) Morpho-physiological characterization and grouping (SAHN) of chickpea genotypes for salinity tolerance. Vegetos 30(Special Issue 1):116–123

    Google Scholar 

  • O’Connor D, Wright G, Dieters M, George DL, Hunter MN et al (2013) Development and application of speed breeding technologies in a commercial peanut breeding program. Peanut Sci 40(2):107–114

    Article  Google Scholar 

  • Palit P, Ghosh R, Tolani P, Tarafdar A, Chitikineni A et al (2020) Molecular and physiological alterations under elevated CO2 concentrations in chickpea. Plant Cell Physiol 61(8):1449–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang J, Turner NC, Du Y-L, ColmerTD SKH et al (2017) Pattern of water use and seed yield under terminal drought in chickpea genotypes. Front Plant Sci 8:1375

    Article  PubMed  PubMed Central  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349

    Article  CAS  PubMed  Google Scholar 

  • Paul PJ, Samineni S, Thudi M, Sajja SB, Rathore A et al (2018) Molecular mapping of QTLs for heat tolerance in chickpea. Int J Mol Sci 19(8):2166

    Article  PubMed Central  Google Scholar 

  • Pavan S, Lotti C, Marcotrigiano AR, Mazzeo R, Bardaro N et al (2017) A distinct genetic cluster in cultivated chickpea as revealed by genome‐wide marker discovery and genotyping. Plant Genome 10(2):1–9

    Google Scholar 

  • Pushpavalli R, Krishnamurthy L, Thudi M, Gaur PM, Rao MV et al (2015) Two key genomic regions harbour QTLs for salinity tolerance in ICCV 2× JG 11 derived chickpea (Cicer arientinum L.) recombinant inbred lines. BMC Plant Biol 15(1):124

    Google Scholar 

  • Pushpavalli R, Berger JD, Turner NC, Siddique KH, Colmer TD et al (2020) Cross-tolerance for drought, heat and salinity stresses in chickpea (Cicer arientinum L.). J Agron Crop Sci 206(3):405–419

    Google Scholar 

  • Rai P, Chaturvedi AK, Shah D, Pal M et al (2016) Impact of elevated CO. Indian J Agric Sci 86(3):414–417

    CAS  Google Scholar 

  • Ramamoorthy P, Lakshmanan K, Upadhyaya HD, Vadez V, Varshney RK et al (2016) Shoot traits and their relevance in terminal drought tolerance of chickpea (Cicer arientinum L.). Field Crops Res 197:10–27

    Google Scholar 

  • Ramamoorthy P, Lakshmanan K, Upadhyaya HD, Vadez V, Varshney RK et al (2017) Root traits confer grain yield advantages under terminal drought in chickpea (Cicer arientinum L.). Field Crops Res 201:146–161

    Article  PubMed  PubMed Central  Google Scholar 

  • Rani A, Devi P, Jha UC, Sharma KD, Siddique KH et al (2019) Developing climate-resilient chickpea involving physiological and molecular approaches with a focus on temperature and drought stresses. Front Plant Sci 10

    Google Scholar 

  • Rehman A, Malhotra R, Bett K, Tar’An B, Bueckert R et al (2011) Mapping QTL associated with traits affecting grain yield in chickpea (Cicer arientinum L.) under terminal drought stress. Crop Sci 51(2):450–463

    Google Scholar 

  • Ripple WJ, Wolf C, Newsome TM, Barnard P, Moomaw W et al (2019) World scientists’ warning of a climate emergency. BioSci 70(1):8–12

    Google Scholar 

  • Roorkiwal M, Jain A, Kale SM, Doddamani D, Chitikineni A et al (2018) Development and evaluation of high-density Axiom® Cicer SNP array for high-resolution genetic mapping and breeding applications in chickpea. Plant Biotechnol J 16(4):890–901

    Article  CAS  PubMed  Google Scholar 

  • Roorkiwal M, Bharadwaj C, Barmukh R, Dixit GP, Thudi M et al (2020) Integrating genomics for chickpea improvement: achievements and opportunities. Theor Appl Genet. 133(5):1703–1720. https://doi.org/10.1007/s00122-020-03584-2

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Ruperao P, Chan CKK, Azam S, Karafiátová M, Hayashi S et al (2014) A chromosomal genomics approach to assess and validate the desi and kabuli draft chickpea genome assemblies. Plant Biotechnol J 12(6):778–786

    Article  CAS  PubMed  Google Scholar 

  • Sabaghpour SH, Mahmodi AA, Saeed A, Kamel M, Malhotra RS et al (2006) Study on chickpea drought tolerance lines under dryland condition of Iran. Indian J Crop Sci 1(1 and 2):70–73

    Google Scholar 

  • Sachdeva S, Bharadwaj C, Sharma V, Kumar N, Bhat KV et al (2017) Morpho-physiological grouping of chickpea (Cicer arientinum L.) genotypes on the basis of their response to drought stress. Intl J Trop Agri 35:15–23

    Google Scholar 

  • Sachdeva S, Bharadwaj C, Singh RK, Jain PK, Patil BS et al (2020) Characterization of ASR gene and its role in drought tolerance in chickpea (Cicer arientinum L.). PLoS One 15(7):e0234550

    Google Scholar 

  • Saeed A, Darvishzadeh R, Hovsepyan H, Asatryan A (2010) Tolerance to freezing stress in Cicer accessions under controlled and field conditions. African J Biotechnol 9(18):2618–2626

    Google Scholar 

  • Sallam A, Martsch R (2015) Association mapping for frost tolerance using multi-parent advanced generation inter-cross (MAGIC) population in faba bean (Vicia faba L.). Genetica 143(4):501–514

    Google Scholar 

  • Samineni S, Kamatam S, Thudi M, Varshney RK, Gaur PM et al (2016) Vernalization response in chickpea is controlled by a major QTL. Euphytica 207(2):453–461

    Article  CAS  Google Scholar 

  • Samineni S, Sen M, Sajja SB, Gaur PM (2020) Rapid generation advance (RGA) in chickpea to produce up to seven generations per year and enable speed breeding. Crop J 8(1):164–169

    Article  Google Scholar 

  • Samineni S, Siddique KHM, Gaur PM, Colmer TD (2011) Salt sensitivity of the vegetative and reproductive stages in chickpea (Cicer arietinum L.): Podding is a particularly sensitive stage. Environ Exp Bot 71:260–268

    Google Scholar 

  • Saxena SC, Salvi P, Kaur H, Verma P, Petla BP et al (2013) Differentially expressed myo-inositol monophosphatase gene (CaIMP) in chickpea (Cicer arientinum L.) encodes a lithium-sensitive phosphatase enzyme with broad substrate specificity and improves seed germination and seedling growth under abiotic stresses. J Exp Bot 64(18):5623–5639

    Google Scholar 

  • Scarcelli N, Cheverud JM, Schaal BA, Kover PX (2007) Antagonistic pleiotropic effects reduce the potential adaptive value of the FRIGIDA locus. Proc Natl Acad Sci USA 104(43):16986–16991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott MF, Ladejobi O, Amer S, Bentley AR, Biernaskie J et al (2020) Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. Heredity 125(6):396–416

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheelbeek PF, Bird FA, Tuomisto HL, Green R, Harris FB et al (2018) Effect of environmental changes on vegetable and legume yields and nutritional quality. Proc Natl Acad Sci 115(26):6804–6809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahandashti SSK, Amiri RM, Zeinali H, Ramezanpour SS et al (2013) Change in membrane fatty acid compositions and cold-induced responses in chickpea. Mol Biol Rep 40(2):893–903

    Article  Google Scholar 

  • Sharma K, Nayyar H (2014) Cold stress alters transcription in meiotic anthers of cold tolerant chickpea (Cicer arientinum L.). BMC Res Notes 7(1):1–13

    Google Scholar 

  • Sharma S, Upadhyaya HD, Roorkiwal M, Varshney RK (2013) Chickpea. In: Genetic and genomic resources of grain legume improvement. Elsevier, pp 81–111

    Google Scholar 

  • Singh K, Saxena MC (1993) Breeding for stress tolerance in cool-season food legumes. 635.65 S52

    Google Scholar 

  • Singh K, Malhotra R, Saxena M (1990) Sources for tolerance to cold in Cicer species. Crop Sci 30(5):1136–1138

    Article  Google Scholar 

  • Singh VK, Khan AW, Jaganathan D, Thudi M, Roorkiwal M et al (2016) QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol J 14(11):2110–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh J, Singh V, Sharma P (2018b) Elucidating the role of osmotic, ionic and major salt responsive transcript components towards salinity tolerance in contrasting chickpea (Cicer arientinum L.) genotypes. Physiol Mol Biol Plants 24(3):441–453

    Google Scholar 

  • Singh KB, Malhotra RS, Saxena MC (1995) Additional sources of tolerance to cold in cultivated and wild Cicer species. Crop Sci 35:1491–1497. https://doi.org/10.2135/cropsci1995.0011183X003500050037x

  • Sivasakthi K, Thudi M, Tharanya M, Kale SM, Kholová J et al (2018) Plant vigour QTLs co-map with an earlier reported QTL hotspot for drought tolerance while water saving QTLs map in other regions of the chickpea genome. BMC Plant Biol 18(1):29

    Article  PubMed  PubMed Central  Google Scholar 

  • Sita K, Sehgal A, Hanumantha Rao B, Nair RM, Vara Prasad PV, Kumar S et al (2017) Food legumes and rising temperatures: effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Front Plant Sci 8:1–30. https://doi.org/10.3389/fpls.2017.01658

  • Soren KR, Madugula P, Kumar N, Barmukh R, Sengar MS et al (2020) Genetic dissection and identification of candidate genes for salinity tolerance using Axiom® CicerSNP Array in chickpea. Intl J Mol Sci 21(14):5058

    Article  CAS  Google Scholar 

  • Sreeman SM, Vijayaraghavareddy P, Sreevathsa R, Rajendrareddy S, Arakesh S et al (2018) Introgression of physiological traits for a comprehensive improvement of drought adaptation in crop plants. Front Chem 6:92

    Article  PubMed  PubMed Central  Google Scholar 

  • Srinivasan A, Takeda H, Senboku T (1996) Heat tolerance in food legumes as evaluated by cell membrane thermostability and chlorophyll fluorescence techniques. Euphytica 88(1):35–45

    Article  Google Scholar 

  • Srinivasan A, Johansen C, Saxena N (1998) Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.): characterization of stress and genetic variation in pod set. Field Crops Res 57(2):181–193

    Google Scholar 

  • Srivastava R, Bajaj D, Malik A, Singh M, Parida SK et al (2016) Transcriptome landscape of perennial wild Cicer microphyllum uncovers functionally relevant molecular tags regulating agronomic traits in chickpea. Sci Rep 6(1):1–17

    Article  Google Scholar 

  • Srivastava R, Upadhyaya HD, Kumar R, Daware A, Basu U et al (2017) A multiple QTL-Seq strategy delineates potential genomic loci governing flowering time in chickpea. Front Plant Sci 8:1105

    Article  PubMed  PubMed Central  Google Scholar 

  • Tapan K, Bharadwaj C, Rizvi A, Ashutosh S, Shailesh T et al (2015) Chickpea landraces: a valuable and divergent source for drought tolerance. Intl J Trop Agri 33(2 (Part II)):633–638

    Google Scholar 

  • Tapan K, Bharadwaj C, Neha T, Satyavathi CT, Patil BS et al (2018) Morphological characterization and grouping of chickpea (Cicer arientinum) genotypes for drought tolerance. Indian J Agric Sci 88(11):1740–1745

    Google Scholar 

  • Taub DR, Miller B, Allen H (2008) Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Global Change Biol 14(3):565–575

    Article  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H et al (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67(3):429–443

    Article  CAS  Google Scholar 

  • Thudi M, Gaur PM, Krishnamurthy L, Mir RR, Kudapa H et al (2014a) Genomics-assisted breeding for drought tolerance in chickpea. Funct Plant Biol 41(11):1178–1190

    Article  CAS  PubMed  Google Scholar 

  • Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L et al (2014b) Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS One 9(5):e96758

    Google Scholar 

  • Thudi M, Chitikineni A, Liu X, He W, Roorkiwal M et al (2016a) Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea (Cicer arientinum L.). Sci Rep 6:38636

    Google Scholar 

  • Thudi M, Khan AW, Kumar V, Gaur PM, Katta K et al (2016b) Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arientinum L.). BMC Plant Biol 16(1):10

    Google Scholar 

  • Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L et al (2017) Correction: genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS One 12(4):e0175609

    Google Scholar 

  • Turner NC, Abbo S, Berger JD, Chaturvedi SK, French RJ et al (2007) Osmotic adjustment in chickpea (Cicer arientinum L.) results in no yield benefit under terminal drought. J Exp Bot 58(2):187–194

    Google Scholar 

  • Turner NC, Colmer TD, Quealy J, Pushpavalli R, Krishnamurthy L et al (2013) Salinity tolerance and ion accumulation in chickpea (Cicer arientinum L.) subjected to salt stress. Plant Soil 365(1–2):347–361

    Google Scholar 

  • Upadhyaya HD, Dronavalli N, Gowda C, Singh S et al (2011) Identification and evaluation of chickpea germplasm for tolerance to heat stress. Crop Sci 51(5):2079–2094

    Article  Google Scholar 

  • Upadhyaya HD, Bajaj D, Das S, Saxena MS, Badoni S et al (2015) A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea. Plant Mol Biol 89(4–5):403–420

    Article  CAS  PubMed  Google Scholar 

  • Vadez V, Krishnamurthy L, Serraj R, Gaur PM, Upadhyaya HD et al (2007) Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crops Res 104(1–3):123–129

    Article  Google Scholar 

  • Vadez V, Krishnamurthy L, Thudi M, Anuradha C, Colmer TD et al (2012a) Assessment of ICCV 2× JG 62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTL for seed yield and yield components. Mol Breed 30(1):9–21

    Article  Google Scholar 

  • Vadez V, Rashmi M, Sindhu K, Muralidharan M, Pushpavalli R et al (2012b) Large number of flowers and tertiary branches, and higher reproductive success increase yields under salt stress in chickpea. Eur J Agron 41:42–51

    Article  Google Scholar 

  • Van Ha C, Esfahani MN, Watanabe Y, Tran UT, Sulieman S et al (2014) Genome-wide identification and expression analysis of the CaNAC family members in chickpea during development, dehydration and ABA treatments. PLoS One 9(12):e114107

    Google Scholar 

  • Varshney RK, Gaur PM, Chamarthi SK, Krishnamurthy L, Tripathi S et al (2013a) Fast-track introgression of “QTL-hotspot” for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea. Plant Genome 6(3):1–9

    Article  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Kumar A, Zhang Q et al (2013b) Draft genome sequence of chickpea (Cicer arientinum) provides a resource for trait improvement. Nat Biotechnol 31(3):240–246

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J et al (2014) Genetic dissection of drought tolerance in chickpea (Cicer arientinum L.). Theor Appl Genet 127(2):445–462

    Google Scholar 

  • Varshney RK, Thudi M, Pandey MK, Tardieu F, Ojiewo C et al (2018) Accelerating genetic gains in legumes for the development of prosperous smallholder agriculture: integrating genomics, phenotyping, systems modelling and agronomy. J Exp Bot 69(13):3293–3312

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Thudi M, Roorkiwal M, He W, Upadhyaya HD et al (2019b) Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat Genet 51(5):857–864

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Sinha P, Singh VK et al (2020) 5Gs for crop genetic improvement. Curr Opin Plant Biol

    Google Scholar 

  • Verma S, Gupta S, Bandhiwal N, Kumar T, Bharadwaj C et al (2015) High-density linkage map construction and mapping of seed trait QTLs in chickpea (Cicer arientinum L.) using genotyping-by-sequencing (GBS). Sci Rep 5:17512

    Google Scholar 

  • Wang J, Gan Y, Clarke F, McDonald CL (2006) Response of chickpea yield to high temperature stress during reproductive development. Crop Sci 46(5):2171–2178

    Article  Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J et al (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4(1):23–29

    Article  PubMed  Google Scholar 

  • Wery J (1990) Adaptation to frost and drought stress in chickpea and implications in plant breeding. Present status and future prospects of chickpea crop production and improvement in the Mediterranean countries, Options Méditerranéennes-Série Séminaires-n

    Google Scholar 

  • Wilkinson S, Mills G, Illidge R, Davies WJ (2012) How is ozone pollution reducing our food supply? J Exp Bot 63(2):527–536

    Article  CAS  PubMed  Google Scholar 

  • Yi Q, Malvar R, Álvarez-Iglesias L, Ordás B, Revilla P et al (2020) Dissecting the genetics of cold tolerance in a multiparental maize population. Theor Appl Genet 133(2):503–516

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jaganathan, D. et al. (2022). A Scintillating Journey of Genomics in Simplifying Complex Traits and Development of Abiotic Stress Resilient Chickpeas. In: Kole, C. (eds) Genomic Designing for Abiotic Stress Resistant Pulse Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-91039-6_2

Download citation

Publish with us

Policies and ethics