Skip to main content

Advertisement

Log in

0D/2D heteronanostructure–integrated bimetallic CoCu-ZIF nanosheets and MXene-derived carbon dots for impedimetric cytosensing of melanoma B16-F10 cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel heterogeneous architecture has been constructed integrating two-dimensional (2D) bimetallic CoCu–zeolite imidazole framework (CoCu-ZIF) and zero-dimensional (0D) Ti3C2Tx MXene-derived carbon dots (CDs) (represented by CoCu-ZIF@CDs). The prepared CoCu-ZIF@CDs were further explored as sensitive layer for anchoring B16-F10 cell–targeted aptamer strands and detecting B16-F10 cells from the biological environment. Basic characterization showed that CDs were homogeneously embedded within CoCu-ZIF NSs owing to their π-π stacking interaction, leading to outstanding fluorescence performance of the 0D/2D CoCu-ZIF@CD nanohybrid. As such, the CoCu-ZIF@CD-based cytosensor was applied to detect living B16-F10 cells through electrochemical techniques and cell imaging. Compared with CoCu-ZIF- and CD-based cytosensors, the constructed CoCu-ZIF@CD-based one showed superior sensing performance, with an extremely low limit of detection (LOD) of 33 cells∙mL−1 and a wide range of suspension concentration of 1 × 102–1 × 105 cells∙mL−1 B16-F10 cells. The developed cytosensor also demonstrated excellent detection performance, including cell imaging properties, good selectivity, high stability, and good reproducibility. By anchoring other probe molecules, the constructed CoCu-ZIF@CD-based biosensor can be extensively explored for early diagnosis of other analytes, thereby widening the applications of porous organic frameworks in biosensing and biomedical fields.

Graphical abstract

A novel sensing system for melanoma B16-F10 cells based on a novel CoCu-ZIF@CD nanohybrid has been developed. The CoCu-ZIF@CDs-based cytosensor displayed an extremely low limit of detection (LOD) of 33 cells∙mL−1 within the wide range of B16-F10 cell concentration from 1 × 102 to 1 × 105 cells∙mL−1, accompanying with cell imaging properties, good selectivity, high stability, and well reproducibility

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nawaz M, Camussi G, Valadi H, Nazarenko I, Ekstrom K, Wang X, Principe S, Shah N, Ashraf NM, Fatima F, Neder L, Kislinger T (2014) The emerging role of extracellular vesicles as biomarkers for urogenital cancers. Nat Rev Urol 11(12):688–701

    Article  PubMed  Google Scholar 

  2. Liu HW, Chen L, Xu C, Li Z, Zhang H, Zhang X-B, Tan W (2018) Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem Soc Rev 47(18):7140–7180

    Article  CAS  PubMed  Google Scholar 

  3. Chang J, Wang X, Wang J, Li H, Li F (2019) Nucleic acid-functionalized metal-organic framework-based homogeneous electrochemical biosensor for simultaneous detection of multiple tumor biomarkers. Anal Chem 91(5):3604–3610

    Article  CAS  PubMed  Google Scholar 

  4. Swierczewska M, Liu G, Lee S, Chen X (2012) High-sensitivity nanosensors for biomarker detection. Chem Soc Rev 41(7):2641–2655

    Article  CAS  PubMed  Google Scholar 

  5. Huang P, Qian X, Chen Y, Yu L, Lin H, Wane L, Zhu Y, Shi J (2017) Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J Am Chem Soc 139(3):1275–1284

    Article  CAS  PubMed  Google Scholar 

  6. Du L, Chen W, Wang J, Cai W, Kong S, Wu C (2019) Folic acid-functionalized zirconium metal-organic frameworks based electrochemical impedance biosensor for the cancer cell detection. Sensor Actuat B-Chem 301:127073

    Article  CAS  Google Scholar 

  7. Wang M, Wang C, Liu Y, Hu B, He L, Ma Y, Zhang Z, Cui B, Du M (2020) Nonenzymatic amperometric sensor for hydrogen peroxide released from living cancer cells based on hierarchical NiCo2O4-CoNiO2 hybrids embedded in partially reduced graphene oxide. Microchim Acta 187(8):436

    Article  CAS  Google Scholar 

  8. Lv J, Zhao LJ, Qian RC, Long YT (2017) Off-on fluorescence monitoring of intracellular Ag+ in single living cells using an Ag+-responsive probe. Methods Appl Fluoresc 5:044003

    Article  PubMed  Google Scholar 

  9. Yan X, Song Y, Liu J, Zhou N, Zhang C, He L, Zhang Z, Liu Z (2019) Two-dimensional porphyrin-based covalent organic framework: a novel platform for sensitive epidermal growth factor receptor and living cancer cell detection. Biosens Bioelectron 126:734–742

    Article  CAS  PubMed  Google Scholar 

  10. He L, Li Z, Guo C, Hu B, Wang M, Zhang Z, Du M (2019) Bifunctional bioplatform based on NiCo Prussian blue analogue: label-free impedimetric aptasensor for the early detection of carcino-embryonic antigen and living cancer cells. Sensor Actuat B-Chem 298:126852

    Article  CAS  Google Scholar 

  11. Zhou N, Su F, Li Z, Yan X, Zhang C, Hu B, He L, Wang M, Zhang Z (2019) Gold nanoparticles conjugated to bimetallic manganese(II) and iron(II) Prussian Blue analogues for aptamer-based impedimetric determination of the human epidermal growth factor receptor-2 and living MCF-7 cells. Microchim Acta 186(2):75

    Article  Google Scholar 

  12. Cui L, Zhu BW, Qu S, He XP, Chen GR (2015) “Clicked” galactosyl anthraquinone on graphene electrodes for the label-free impedance detection of live cancer cells. Dyes Pigments 121:312–315

    Article  CAS  Google Scholar 

  13. Gu C, Guo C, Li Z, Wang M, Zhou N, He L, Zhang Z, Du M (2019) Bimetallic ZrHf-based metal-organic framework embedded with carbon dots: ultra-sensitive platform for early diagnosis of HER2 and HER2-overexpressed living cancer cells. Biosens Bioelectron 134:8–15

    Article  CAS  PubMed  Google Scholar 

  14. Wang M, Hu M, Li Z, He L, Song Y, Jia Q, Zhang Z, Du M (2019) Construction of Tb-MOF-on-Fe-MOF conjugate as a novel platform for ultrasensitive detection of carbohydrate antigen 125 and living cancer cells. Biosens Bioelectron 142:111536

    Article  PubMed  Google Scholar 

  15. Kempahanumakkagari S, Deep A, Kim K-H, Kailasa SK, Yoon H-O (2017) Nanomaterial-based electrochemical sensors for arsenic-a review. Biosens Bioelectron 95:106–116

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Chen X (2019) Nanotechnology and nanomaterial-based no-wash electrochemical biosensors: from design to application. Nanoscale 11(41):19105–19118

    Article  CAS  PubMed  Google Scholar 

  17. Wu M-X, Yang Y-W (2017) Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv Mater 29:1606134

    Article  Google Scholar 

  18. Liu L, Zhou Y, Liu S, Xu M (2018) The applications of metal-organic frameworks in electrochemical sensors. Chemelectrochem 5(1):6–19

    Article  CAS  Google Scholar 

  19. Guselnikova O, Postnikov P, Elashnikov R, Miliutina E, Svorcik V, Lyutakov O (2019) Metal-organic framework (MOF-5) coated SERS active gold gratings: a platform for the selective detection of organic contaminants in soil. Anal Chim Acta 1068:70–79

    Article  CAS  PubMed  Google Scholar 

  20. Wang M, Hu M, Hu B, Guo C, Song Y, Jia Q, He L, Zhang Z, Fang S (2019) Bimetallic cerium and ferric oxides nanoparticles embedded within mesoporous carbon matrix: electrochemical immunosensor for sensitive detection of carbohydrate antigen 19-9. Biosens Bioelectron 135:22–29

    Article  CAS  PubMed  Google Scholar 

  21. Li XF, Yu SB, Yang B, Tian J, Wang H, Zhang DW, Liu Y, Li ZT (2018) A stable metal-covalent-supramolecular organic framework hybrid: enrichment of catalysts for visible light-induced hydrogen production. Sci China Chem 61(7):830–835

    Article  CAS  Google Scholar 

  22. Li W, Lv S, Wang Y, Zhang L, Cui X (2019) Nanoporous gold induced vertically standing 2D NiCo bimetal-organic framework nanosheets for non-enzymatic glucose biosensing. Sensor Actuat B-Chem 281:652–658

    Article  CAS  Google Scholar 

  23. Zhong G, Liu D, Zhang J (2018) The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts. J Mater Chem A 6(5):1887–1899

    Article  CAS  Google Scholar 

  24. Meng L, Xiao K, Zhang X, Du C, Chen J (2020) A novel signal-off photoelectrochemical biosensor for M.SssI MTase activity assay based on GQDs@ZIF-8 polyhedra as signal quencher. Biosens Bioelectron 150:111861

    Article  CAS  PubMed  Google Scholar 

  25. Pang J, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ, Gemming T, Liu H, Liu Z, Rummeli MH (2019) Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev 48(1):72–133

    Article  CAS  PubMed  Google Scholar 

  26. Zhou L, Wu F, Yu J, Deng Q, Zhang F, Wang G (2017) Titanium carbide (Ti3C2Tx) MXene: a novel precursor to amphiphilic carbide-derived graphene quantum dots for fluorescent ink, light-emitting composite and bioimaging. Carbon 118:50–57

    Article  CAS  Google Scholar 

  27. Guan Q, Ma J, Yang W, Zhang R, Zhang X, Dong X, Fan Y, Cai L, Cao Y, Zhang Y, Li N, Xu Q (2019) Highly fluorescent Ti3C2 MXene quantum dots for macrophage labeling and Cu2+ ion sensing. Nanoscale 11(30):14123–14133

    Article  CAS  PubMed  Google Scholar 

  28. Cao Y, Wu T, Zhang K, Meng X, Dai W, Wang D, Dong H, Zhang X (2019) Engineered exosome-mediated near-infrared-II region V2C quantum dot delivery for nucleus-target low-temperature photothermal therapy. ACS Nano 13(2):1499–1510

    CAS  PubMed  Google Scholar 

  29. Sicco E, Baez J, Ibarra M, Moreno M, Cerecetto H, Calzada V (2020) Sgc8-c aptamer as a potential theranostic agent for hemato-oncological malignancies. Cancer Biother Radiopharm 35:262–270

    CAS  PubMed  Google Scholar 

  30. Lai C, Gong M, Zhou Y, Fang J, Huang L, Deng Z, Liu X, Zhao T, Lin R, Wang K, Jiang K, Xin H, Wang D (2020) Sulphur modulated Ni3FeN supported on N/S co-doped graphene boosts rechargeable/flexible Zn-air battery performance. Appl Catal B Environ 274:119086

    Article  CAS  Google Scholar 

  31. Farka Z, Jurik T, Kovar D, Trnkova L, Skladal P (2017) Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem Rev 117(15):9973–10042

    Article  CAS  PubMed  Google Scholar 

  32. Ding D, Yang C, Lv C, Li J, Tan W (2020) Improving tumor accumulation of aptamers by prolonged blood circulation. Anal Chem 92(5):4108–4114

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Hu B, Wu S, Wang M, Zhang Z, Cui B, He L, Du M (2019) Hierarchical nanocomposite electrocatalyst of bimetallic zeolitic imidazolate framework and MoS2 sheets for non-Pt methanol oxidation and water splitting. Appl Catal B-Environ 258:117970

    Article  CAS  Google Scholar 

  34. Cui J, Liu J, Wang C, Rong F, He L, Song Y, Zhang Z, Fang S (2020) Efficient electrocatalytic water oxidation by using the hierarchical 1D/2D structural nanohybrid of CoCu-based zeolitic imidazolate framework nanosheets and graphdiyne nanowires. Electrochim Acta 334:135577

    Article  CAS  Google Scholar 

  35. Yang X, Jia Q, Duan F, Hu B, Wang M, He L, Song Y, Zhang Z (2019) Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots: non-Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution. Appl Surf Sci 464:78–87

    Article  CAS  Google Scholar 

  36. Xiao X, He C-T, Zhao S, Li J, Lin W, Yuan Z, Zhang Q, Wang S, Dai L, Yu D (2017) A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy Environmen Sci 10(4):893–899

    Article  CAS  Google Scholar 

  37. Fang Y, Liu Z, Han J, Jin Z, Han Y, Wang F, Niu Y, Wu Y, Xu Y (2019) High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2 in situ grown on Ti3C2Tx MXene. Adv Energy Mater 9:1803406

    Article  Google Scholar 

  38. Esmeryan KD, Castano CE, Bressler AH, Abolghasemibizaki M, Fergusson CP, Roberts A, Mohammadi R (2017) Kinetically driven graphite-like to diamond-like carbon transformation in low temperature laminar diffusion flames. Diam Relat Mater 75:58–68

    Article  CAS  Google Scholar 

  39. Wang L, Chen L, Song P, Liang C, Lu Y, Qiu H, Zhang Y, Kong J, Gu J (2019) Fabrication on the annealed Ti3C2Tx MXene/epoxy nanocomposites for electromagnetic interference shielding application. Compos Part B-Eng 171:111–118

    Article  CAS  Google Scholar 

  40. Kakaei K, Hasanpour K (2014) Synthesis of graphene oxide nanosheets by electrochemical exfoliation of graphite in cetyltrimethylammonium bromide and its application for oxygen reduction. J Mater Chem A 2(37):15428–15436

    Article  CAS  Google Scholar 

  41. Hu M, Cui C, Shi C, Wu Z-S, Yang J, Cheng R, Guang T, Wang H, Lu H, Wang X (2019) High-energy-density hydrogen-ion-rocking-chair hybrid supercapacitors based on Ti3C2Tx MXene and carbon nanotubes mediated by redox active molecule. ACS Nano 13(6):6899–6905

    Article  CAS  PubMed  Google Scholar 

  42. Zhang X, Zhang H, Zhu H, Li C, Zhang N, Bao J, He G (2019) Co3O4 Nanorods with a great amount of oxygen vacancies for highly efficient Hg-0 oxidation from coal combustion flue gas. Energ Fuels 33(7):6552–6561

    Article  CAS  Google Scholar 

  43. Yin J, Guo W, Qin X, Zhao J, Pei M, Ding F (2017) A sensitive electrochemical aptasensor for highly specific detection of streptomycin based on the porous carbon nanorods and multifunctional graphene nanocomposites for signal amplification. Sensor Actuat B-Chem 241:151–159

    Article  CAS  Google Scholar 

  44. Cardoso AR, Cabral-Miranda G, Reyes-Sandoval A, Bachmann MF, Sales MGF (2017) Detecting circulating antibodies by controlled surface modification with specific target proteins: application to malaria. Biosens Bioelectron 91:833–841

    Article  CAS  PubMed  Google Scholar 

  45. Guo C, Li Z, Duan F, Zhang Z, Marchetti F, Du M (2020) Semiconducting CuxNi3-x(hexahydroxytriphenylene)2 framework for electrochemical aptasensing of C6 glioma cells and epidermal growth factor receptor. J Mater Chem B 8(43):9951–9960

    Article  CAS  PubMed  Google Scholar 

  46. Seven B, Bourourou M, Elouarzaki K, Constant JF, Gondran C, Holzinger M, Cosnier S, Timur S (2013) Impedimetric biosensor for cancer cell detection. Electrochem Commun 37:36–39

    Article  CAS  Google Scholar 

  47. Kivrak E, Ince-Yardimci A, Ilhan R, Kirmizibayrak PB, Yilmaz S, Kara P (2020) Aptamer-based electrochemical biosensing strategy toward human non-small cell lung cancer using polyacrylonitrile/polypyrrole nanofibers. Anal Bioanal Chem 412(28):7851–7860

    Article  CAS  PubMed  Google Scholar 

  48. Liu D, Wang L, Ma S, Jiang Z, Yang B, Han X, Liu S (2015) A novel electrochemiluminescent immunosensor based on CdS-coated ZnO nanorod arrays for HepG2 cell detection. Nanoscale 7(8):3627–3633

    Article  CAS  PubMed  Google Scholar 

  49. Guo Y, Shu Y, Li A, Li B, Pi J, Cai J, Cai H-H, Gao Q (2017) Efficient electrochemical detection of cancer cells on in situ surface-functionalized MoS2 nanosheets. J Mater Chem B 5(28):5532–5538

    Article  CAS  Google Scholar 

  50. Chowdhury AD, Ganganboina AB, Tsai YC, Chiu HC, Doong RA (2018) Multifunctional GQDs-Concanavalin A@Fe3O4 nanocomposites for cancer cells detection and targeted drug delivery. Anal Chim Acta 1027:109–120

    Article  Google Scholar 

  51. Li L, Han B, Wang Y, Zhao J, Cao Y (2019) Simple and universal signal labeling of cell surface for amplified detection of cancer cells via mild reduction. Biosens Bioelectron 145:111714

    Article  CAS  PubMed  Google Scholar 

  52. Yang Y, Fu Y, Su H, Mao L, Chen M (2018) Sensitive detection of MCF-7 human breast cancer cells by using a novel DNA-labeled sandwich electrochemical biosensor. Biosens Bioelectron 122:175–182

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Programs for the National Natural Science Foundation of China (NSFC: Account Nos. U1604127, 81601082, and 81371363) and China Postdoctoral Science Foundation (2019M660175).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nan Zhou or Zhihong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 4.12 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Huang, S., Li, J. et al. 0D/2D heteronanostructure–integrated bimetallic CoCu-ZIF nanosheets and MXene-derived carbon dots for impedimetric cytosensing of melanoma B16-F10 cells. Microchim Acta 188, 69 (2021). https://doi.org/10.1007/s00604-021-04726-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04726-z

Keywords

Navigation