Skip to main content
Log in

Compressible piezoresistive pressure sensor based on Ag nanowires wrapped conductive carbonized melamine foam

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Wearable sensing technology is receiving great attention due to potential applications in smart electronic devices, which requires the sensors own high sensitivity and flexibility at the same time. In present work, we fabricated piezoresistive sensors with the carbonized melamine foam (CMF) and silver nanowires (AgNWs). The CMF and AgNWs interlace and contact each other to form 3D network structures, thus increasing the conductive path. The CMF provided porous skeleton with elasticity. Due to the synergic effect of CMF and AgNWs, the prepared AgNWs@CMF piezoresistive sensor achieved a high sensitivity (4.97 kpa−1 at 30–50 kpa) and excellent stability during cycles within 4000 s (1000 times). Based on the sensor performance tests, it is proved that the AgNWs@CMF pressure sensor can be used to monitor different positions of the human body. This work provided a new opportunity to manufacture CMF based piezoresistive sensors with high-performance in future development of electronic skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.R. Jung, S.I. Ahn, Van der Waals pressure sensors using reduced graphene oxide composites. Chem. Phys. Lett. 697, 12–16 (2018). https://doi.org/10.1016/j.cplett.2018.02.058

    Article  ADS  Google Scholar 

  2. Y. Zhang, M. Li, X. Han, Z. Fan, H. Zhang, Q. Li, High-strength and highly electrically conductive hydrogels for wearable strain sensor. Chem. Phys. Lett. (2021). https://doi.org/10.1016/j.cplett.2021.138437

    Article  Google Scholar 

  3. X. Hou, Q. Zhang, L. Wang, G. Gao, W. Lu, Low-temperature-resistant flexible solid supercapacitors based on organohydrogel electrolytes and microvoid-incorporated reduced graphene oxide electrodes. ACS Appl. Mater. Interfaces 13, 12432–12441 (2021). https://doi.org/10.1021/acsami.0c18741

    Article  Google Scholar 

  4. L. Duan, L. Zhao, H. Cong, X. Zhang, W. Lu, C. Xue, Plasma treatment for nitrogen-doped 3D graphene framework by a conductive matrix with sulfur for high-performance Li-S batteries. Small 15, e1804347 (2019). https://doi.org/10.1002/smll.201804347

    Article  Google Scholar 

  5. X.Y. Zhang, S.H. Sun, X.J. Sun, Y.R. Zhao, L. Chen, Y. Yang, W. Lu, D.B. Li, Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors. Light Sci. Appl. 5, e16130 (2016). https://doi.org/10.1038/lsa.2016.130

    Article  Google Scholar 

  6. Y. Ding, T. Xu, O. Onyilagha, H. Fong, Z. Zhu, Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges. ACS Appl. Mater. Interfaces 11, 6685–6704 (2019). https://doi.org/10.1021/acsami.8b20929

    Article  Google Scholar 

  7. S. Zhang, H. Liu, S. Yang, X. Shi, D. Zhang, C. Shan, L. Mi, C. Liu, C. Shen, Z. Guo, Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer. ACS Appl Mater. Interfaces 11, 10922–10932 (2019). https://doi.org/10.1021/acsami.9b00900

    Article  Google Scholar 

  8. X.P. Li, Y. Li, X. Li, D. Song, P. Min, C. Hu, H.B. Zhang, N. Koratkar, Z.Z. Yu, Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets. J. Colloid Interface Sci. 542, 54–62 (2019). https://doi.org/10.1016/j.jcis.2019.01.123

    Article  ADS  Google Scholar 

  9. T. Xia, R. Yu, J. Yuan, C. Yi, L. Ma, F. Liu, G.J. Cheng, Ultrahigh sensitivity flexible pressure sensors based on 3D-printed hollow microstructures for electronic skins. Adv. Mater. Technol. (2021). https://doi.org/10.1002/admt.202000984

    Article  Google Scholar 

  10. J. Meng, P. Pan, Z. Yang, J. Wei, Q. Wang, M. Gong, G. Zhang, Degradable and highly sensitive CB-based pressure sensor with applications for speech recognition and human motion monitoring. J. Mater. Sci. 55, 10084–10094 (2020). https://doi.org/10.1007/s10853-020-04707-2

    Article  ADS  Google Scholar 

  11. M. Liu, X. Pu, C. Jiang, T. Liu, X. Huang, L. Chen, C. Du, J. Sun, W. Hu, Z.L. Wang, Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. (2017). https://doi.org/10.1002/adma.201703700

    Article  Google Scholar 

  12. J. Yang, S. Luo, X. Zhou, J. Li, J. Fu, W. Yang, D. Wei, Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS Appl Mater Interfaces 11, 14997–15006 (2019). https://doi.org/10.1021/acsami.9b02049

    Article  Google Scholar 

  13. S. Kang, J. Lee, S. Lee, S. Kim, J.-K. Kim, H. Algadi, S. Al-Sayari, D.-E. Kim, D. Kim, T. Lee, Highly sensitive pressure sensor based on bioinspired porous structure for real-time tactile sensing. Adv. Electron. Mater. (2016). https://doi.org/10.1002/aelm.201600356

    Article  Google Scholar 

  14. J. Qiu, X. Guo, R. Chu, S. Wang, W. Zeng, L. Qu, Y. Zhao, F. Yan, G. Xing, Rapid-response, low detection limit, and high-sensitivity capacitive flexible tactile sensor based on three-dimensional porous dielectric layer for wearable electronic skin. ACS Appl. Mater. Interfaces 11, 40716–40725 (2019). https://doi.org/10.1021/acsami.9b16511

    Article  Google Scholar 

  15. Q. Zhang, W. Jia, C. Ji, Z. Pei, Z. Jing, Y. Cheng, W. Zhang, K. Zhuo, J. Ji, Z. Yuan, S. Sang, Flexible wide-srange capacitive pressure sensor using micropore PE tape as template. Smart Mater. Struct. (2019). https://doi.org/10.1088/1361-665X/ab4ac6

    Article  Google Scholar 

  16. Z. Yuan, G. Shen, C. Pan, Z.L. Wang, Flexible sliding sensor for simultaneous monitoring deformation and displacement on a robotic hand/arm. Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2020.104764

    Article  Google Scholar 

  17. J. Sun, X. Zhang, Y. Lang, J. Bian, R. Gao, P. Li, Y. Wang, C. Li, Piezo-phototronic effect improved performance of n-ZnO nano-arrays/p-Cu2O film based pressure sensor synthesized on flexible Cu foil. Nano Energy 32, 96–104 (2017). https://doi.org/10.1016/j.nanoen.2016.12.028

    Article  Google Scholar 

  18. W. Wu, X. Wen, Z.L. Wang, Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340, 952–957 (2013). https://doi.org/10.1126/science.1234855

    Article  ADS  Google Scholar 

  19. W. Choi, J. Kim, E. Lee, G. Mehta, V. Prasad, Asymmetric 2D MoS2 for scalable and high-performance piezoelectric sensors. ACS Appl. Mater. Interfaces 13, 13596–13603 (2021). https://doi.org/10.1021/acsami.1c00650

    Article  Google Scholar 

  20. G.-H. Feng, C.-Y. Chiang, Magnetic-repulsion-coupled piezoelectric-film-based stretchable and flexible acoustic emission sensor. Smart Mater. Struct. (2020). https://doi.org/10.1088/1361-665X/ab67ca

    Article  Google Scholar 

  21. F.R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z.L. Wang, Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 12, 3109–3114 (2012). https://doi.org/10.1021/nl300988z

    Article  ADS  Google Scholar 

  22. X.S. Zhang, M.D. Han, R.X. Wang, F.Y. Zhu, Z.H. Li, W. Wang, H.X. Zhang, Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett 13, 1168–1172 (2013). https://doi.org/10.1021/nl3045684

    Article  ADS  Google Scholar 

  23. N. Tang, C. Zhou, D. Qu, Y. Fang, Y. Zheng, W. Hu, K. Jin, W. Wu, X. Duan, H. Haick, A highly aligned nanowire-based strain sensor for ultrasensitive monitoring of subtle human motion. Small 16, e2001363 (2020). https://doi.org/10.1002/smll.202001363

    Article  Google Scholar 

  24. G. Ge, Y. Cai, Q. Dong, Y. Zhang, J. Shao, W. Huang, X. Dong, A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection. Nanoscale 10, 10033–10040 (2018). https://doi.org/10.1039/c8nr02813c

    Article  Google Scholar 

  25. L. Gao, C. Zhu, L. Li, C. Zhang, J. Liu, H.D. Yu, W. Huang, All paper-based flexible and wearable piezoresistive pressure sensor. ACS Appl. Mater. Interfaces 11, 25034–25042 (2019). https://doi.org/10.1021/acsami.9b07465

    Article  Google Scholar 

  26. Z. Wang, S. Guo, H. Li, B. Wang, Y. Sun, Z. Xu, X. Chen, K. Wu, X. Zhang, F. Xing, L. Li, W. Hu, The semiconductor/conductor interface piezoresistive effect in an organic transistor for highly sensitive pressure sensors. Adv. Mater. 31, e1805630 (2019). https://doi.org/10.1002/adma.201805630

    Article  Google Scholar 

  27. H. Jeong, Y. Noh, S.H. Ko, D. Lee, Flexible resistive pressure sensor with silver nanowire networks embedded in polymer using natural formation of air gap. Compos. Sci. Technol. 174, 50–57 (2019). https://doi.org/10.1016/j.compscitech.2019.01.028

    Article  Google Scholar 

  28. Y. Wei, S. Chen, Y. Lin, X. Yuan, L. Liu, Silver nanowires coated on cotton for flexible pressure sensors. J. Mater. Chem. C 4, 935–943 (2016). https://doi.org/10.1039/c5tc03419a

    Article  Google Scholar 

  29. L. Bi, Z. Yang, L. Chen, Z. Wu, C. Ye, Compressible AgNWs/Ti3C2Tx MXene aerogel-based highly sensitive piezoresistive pressure sensor as versatile electronic skins. J. Mater. Chem. A 8, 20030–20036 (2020). https://doi.org/10.1039/d0ta07044k

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Natural Science Foundation of China (No. 62004015 and 62004014), Science and Technology Research Project of Jilin Provincial Department of Education (JJKH20210735KJ)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liying Wang or Yi Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 881 kb)

Supplementary file2 (MP4 22694 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, B., Wang, L., Yu, F. et al. Compressible piezoresistive pressure sensor based on Ag nanowires wrapped conductive carbonized melamine foam. Appl. Phys. A 128, 6 (2022). https://doi.org/10.1007/s00339-021-05143-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05143-y

Keywords

Navigation